Simons, Michael J. c/o EASTMAN KODAK COMPAN; Harvey, Donald M. c/o EASTMAN KODAK COMPANY; Willis, Roland C. c/o EASTMAN KODAK COMPANY, Rochester New York 14650, US
This invention relates to a color transfer imaging element capable
of thermal image transfer to an image-receiving material.
Color imaging thermal transfer elements capable of transferring electronically
stored image information onto an image support as a color image generally require
time-consuming separate heating steps for at least each primary color of the image.
For example, U.S. Patent 4,395,718 discloses a thermal transfer color recording
medium having a mosaic pattern of different color dyes having a different melting
point for each color. Transfer of a color image to an image support requires individually
heating the various colored dyes in the mosaic with a heating head. U.S. Patent
4,006,018 discloses an intermediate element having a photosensitive layer developable
to an infrared absorbing image and three large dye areas, each having a different
color. Each area of the element is exposed to a color separation image corresponding
complementary to the color of the dye in that area, the photosensitive layer is
developed, then each of the areas of the element is individually juxtaposed with
the same image receiving material and exposed to infrared radiation to cause transfer
of the color separation image.
Processes such as the ones described above require time-consuming
multiple heating steps to cause image transfer. Thus, there is a need for a color
imaging element capable of quick and easy thermal image transfer requiring only
one overall exposure to radiation to initiate image transfer. It is toward such
a color imaging thermal transfer element capable of transferring electronically
stored image information onto an image support as a color image that the present
invention is directed.
The color transfer imaging element of the invention comprises a support
having thereon an imaging layer comprising a thermographic, photothermographic,
or electrographic material capable of forming an image that absorbs or scatters
light or infrared radiation, and a heat-transferable dye layer from which a dye
image can be transferred to a dye image receiver when the imaging element is overall
exposed to light or infrared radiation that is absorbed or scattered as a function
of the imaged areas of the imaging layer, thereby causing selective heating of
the dye layer of the element. The dye layer comprises a mosaic dye pattern of at
least two colors and is positioned relative to the other layers so as to allow
imagewise transfer of the dye to the image receiver.
In one embodiment of the invention, the dyes of the dye layer are
sublimable. In alternative embodiments, the element comprises a thermal adhesive
layer as an exterior face of the element adjacent to the dye layer or the dye
layer itself is thermally adhesive.
The color transfer imaging element of the invention is used to transfer
an image to an image receiver by first selectively exposing the imaging layer
of the element to form an infrared- or light- absorbing or -scattering image corresponding
to a desired dye image, the absorbtion of the infrared- or light-absorbing or
-scattering image varying inversely with the amount of dye desired to be transferred.
If the element does not already comprise an image receiver, the element is juxtaposed
with an image receiver so that dye transfer can take place. The infrared- or light-absorbing
or -scattering image is then overall exposed to light or infrared radiation at
an intensity and for a time sufficient to cause imagewise transfer of dye to the
image receiver.
FIGS. 1 and 2 represent imaging elements of the invention having
alternative layer configurations.
FIG. 3 represents an imaging element of the invention having a sublimable
dye layer arranged in a mosaic pattern.
FIG. 4 represents an imaging element of the invention having a thermal
adhesive layer adjacent to the dye layer.
Referring to FIGS. 1 and 2, there is shown a support 12 or 22 having
thereon a dye layer 10 or 20 capable of transferring an image to an image-receiving
material upon overall exposure to radiation and a thermographic, photothermographic,
or electrographic layer 18 or 28. The layers of the color transfer imaging element
of the invention are positioned such that the dye layer 10 or 20 is not between
thermographic, photothermographic, or electrographic layer 18 or 28 and the support
12 or 22.
In one embodiment of the present invention as shown in FIG. 3, there
is a support 32 having on one side a dye layer 30 capable of image transfer upon
overall exposure to radiation, and on the other side a thermographic, photothermographic,
or electrographic layer 38. The dye layer 30 comprises a three-color mosaic pattern
of sublimable dyes 30a, 30b, and 30c dispersed in a binder on support 32.
The layers of the imaging element should be positioned so that the
dye layer is capable of transferring dye to the image receiver upon overall exposure
of the element to light or infrared radiation. The dye layer for example should
not be positioned between the support and the thermographic, photothermographic,
or electrographic layer. A generally convenient arrangement is to position the
thermographic, photothermographic or electrographic layer and the dye layer on
opposite sides of a transparent support.
In the embodiment of the present invention in which sublimable dyes
are employed, such dyes should be chosen so that the sublimation temperature is
high enough to prevent sublimation when heat is applied to the thermographic, photothermographic,
or electrographic layer, but low enough to allow sublimation upon overall exposure
to radiation for image transfer. Correspondingly, the material of the thermographic,
photothermographic, or electrographic layer should be chosen so that any heat necessarily
applied during the selective exposure of that layer would be insufficient to cause
significant sublimation. If the dye is unable to absorb sufficient radiation to
provide the heat necessary for sublimation, an infrared- or light-absorbing material
that heats up upon exposure, such as carbon black, may be uniformly disposed in
the heat-transferable dye layer. Exemplary sublimable dyes include the yellow
dyes, C. I. Solvent Yellow 56,
the magenta dyes, C. I. Disperse Red 9,
and the cyan dyes, C.I. Solvent Blue 36.
Dye coverages are generally 50-1000 mg/m² and coverages of the infrared-
or light-absorbing material are generally 0-3 g/m². Further illustration of sublimable
dyes that transfer upon infrared or light exposure is provided in Research Disclosure
14223,
p. 14, Feb., 1976, and British Patent 1,154,162.
In another embodiment of the invention as shown in FIG. 4, the color
transfer imaging element comprises a support 42 having thereon thermographic,
photothermographic, or electrographic layer 48, a dye layer 40 comprising a three-color
mosaic pattern of dyes 40a, 40b, and 40c dispersed in a binder, a thermal adhesive
layer 46. In an alternative embodiment, a thermal adhesive is mixed with the dyes,
eliminating the need for thermal adhesive layer 46. The dyes in the embodiment
represented by FIG. 4 need not be sublimable. Any of a number of well-known dyes
can be used in this embodiment. Exemplary dyes include: C.I. Pigment Yellow 12,
C.I. Pigment Red 57, and C.I. Pigment Blue 15
The thermal adhesive acts as an adhesive in the areas where it is
heated. During image transfer, as the overall exposure to radiation causes selective
heating of the dye layer, the thermal adhesive layer causes the heated areas of
the dye layer to preferentially adhere to an adjacently placed image-receiving
material. Materials out of which thermal adhesive layers are made are well known
in the art and include those described in U.S. Patents 3,036,913, 4,126,464, and
4,282,308. The element of FIG. 4 may also optionally have a stripping layer between
support 42 and dye layer 40. The stripping layer may be a thermal stripping layer,
which acts as an adhesive except in heated areas, where it acts as a stripping
layer. Materials out of which stripping layers are well known in the art and include
those described in U.S. Patent 4,564,577.
In a further alternative embodiment, the dye layer melts on heating
allowing transfer of the melted areas to form an image on the image receiver.
An example of such dye layers are described in UK Patent Specification 2,069,160.
The imaging layer comprises a thermographic, photothermographic,
or electrographic material generally dispersed in a binder. The thermographic,
photothermographic, or electrographic layer used in the imaging element of the
invention should be capable of forming an infrared- or light-absorbing or scattering
image. Exposure to heat causes image formation in the thermographic layer. Exposure
to light and heat, or exposure to light followed by an overall heating or heat
processing step, causes image formation in the photothermographic layer. Exposure
to electric charge or electric charge and heat or exposure to electric charge
followed by heat processing causes image formation in the electrographic layer.
Thermographic materials include physical systems, in which a light-scattering
layer is made transparent by melting processes, oxidation/reduction color-forming
systems such as a silver salt plus a reducing agent, or a leuco dye plus an organic
acid, and color coupling systems such as diazonium salt systems, and are further
described in Brinckman, Dezenne, Poot and Willems, Unconventional Imaging Processes,
Focal Press, London and New York, 1978, as well as in J. Kosar, Light Sensitive
System, pp. 402-19, John Wiley & Sons, New York, 1965. Examples of thermographic
materials include silver salts of stearate, behenate, and benzotriazole.
Photothermographic materials include materials based on silver salts,
as described in Research Disclosure, June 1978, item 17029; materials
based on cobalt or other transition metal complexes as exemplified in
Research Disclosure, June 1980, item 19423; and materials based on tellurium
compounds as described by Lelental and Gysling in J. Phot. Sci.28, 209-218
(1980). Exemplary of photothermographic materials are silver behenates, silver
bromide, or silver chloride.
Electrographic materials as defined herein, include electrolytic
recording materials (charge-sensitive) as disclosed in Japanese Kokai 74-43,648
(Chemical Abstracts, 113747, 81, 1974) and electrothermographic
(spark discharge-sensitive) as disclosed in Japanese Kokai 75-41,554 (Chemical Abstracts,
139891, 83 1975).
The support of the element of the invention can be chosen from any
of the support materials well-known in the photographic art. The support material
should allow enough infrared radiation or light to pass through so as to allow
dye transfer upon overall exposure to infrared radiation or light, and is preferably
essentially transparent to infrared radiation and light. Exemplary support materials
include cellulose triacetate, polyesters, e.g., poly(ethylene terephthalate),
poly(vinyl chloride), and polyolefins, e.g., polyethylene.
The dye layer and the imaging layer preferably contain a binder which,
for example, can be chosen from any of a number of well-known binders such as
ethyl cellulose, vinyl polymers, acrylamide polymers, alkylacrylates and the like.
Binder coverages are generally 50-2000 mg/m² for sublimable dyes, 50-2000 mg/m²
for non-sublimable dyes, and 50-2000 mg/m² for the imaging layer, although electrographic
layers comprising evaporated metal such as aluminum do not require a binder.
The layers employed in the invention may be coated by coating procedures
known in the photographic art, including vacuum deposition, sintering, dip coating,
air-knife coating, curtain coating, and hopper coating, or by printing procedures
such as gravure roll printing . Methods for coating mosaic dye patterns are well-known
in the art and include the gravure printing process. Coating solutions can be
prepared by mixing the components with suitable solutions or mixtures such as organic
solvents using procedures known in the photographic art.
In use, the thermographic layer is selectively exposed to heat such
that an infrared- or light-absorbing or scattering pattern corresponding to the
dye pattern (such that a color image may be transferred to an image receiver upon
overall exposure to light or infrared radiation) in the heat-transferable dye
layer is formed. This can be accomplished by any of a number of well-known means
such as a thermal head or laser.
If a photothermographic layer is used, it is usually selectively
exposed to light followed by heat development. Such light exposure means are well
known. The heat development means are also well known and can include heated rollers
or a hot air blower. Light and heat may also be simultaneously applied when, for
example, a laser is used.
If an electrographic layer is used, it is selectively exposed with
electric charge or electric charge and heat by known means.
The selective exposure of the imaging layers should be done so that
the correct color information is applied to the element in register with the correct
color component of the mosaic pattern. This can be achieved by determining the
location of the dye pattern with a scanning laser prior to exposure, or by orienting
both the mosaic pattern and the selective exposure means to a fixed position on
the element, such as perforations. The dye pattern can be oriented to perforations
on the element by applying the dye to the element with a lithographic or gravure
roll that also functions as a perforating punch roll. When the element is selectively
exposed, a sprocket or other sensing mechanism determines the location of the
perforations and the selective exposing means is oriented accordingly.
The radiation used to cause image transfer through overall exposure
of the element can be provided by any known source of infrared radiation such
as an infrared lamp, or a high intensity light flash such as a xenon flashlamp.
The duration and temperature or intensity of the radiation source should be sufficient
to cause image transfer and, when using sublimable dyes, dye sublimation. The
duration and temperature or intensity are easily determined by a simple test on
the element. If a high intensity light flash is used, a flash duration of 10&supmin;&sup6;
to 10&supmin;² seconds is preferred with an energy intensity of 0.5 to 10 joules/cm²
of dye.
If the color transfer imaging element has the dyes arranged in a
mosaic pattern, each dye spot of the mosaic pattern is preferably small enough
to achieve the desired image resolution, e.g. each dye spot may provide one picture
element or pixel. The array can comprise yellow, magenta and cyan dyes arranged
in dots or stripes and a single image transfer operation will give a full color
image on the receiving sheet.
The color balance of the transferred picture will be determined by
the intensity of the infrared or light absorbing or scattering image in the thermographic,
photothermographic or electrographic layer corresponding to each color of dye.
Control of these values should be adjusted for a correctly balanced color picture.
An image receiver may be present in the image transfer element itself
as an image receiving layer, or the image receiver may be separate from the image
transfer element, such as with an image receiving layer on a reflective support
such as paper or a clear support coated with or on a clear film support such as
polyethylene terephthalate or cellulose triacetate. The support may be coated with
a layer capable of absorbing and retaining the dye image, for instance polyesters,
polyvinylchloride, vinyl-chloride-vinyl acetate copolymers, polyamides, polymers
and copolymers of acrylic acid and its derivatives, polyethylene and polypropylene,
polyvinylbutyral, polyvinylpyridine and so on. Alternatively, these image-receiving
materials may be self-supporting. If the dye used in the dye layer is a metallizable
dye capable of chelating with metal ions such as nickel (II) or copper (II), the
receiving layer may contain such ions. The receiving layer may also contain, or
be adjacent to a layer containing, image stabilizing materials which are known
in the photographic art, such as ultraviolet light absorbers and antioxidants.
During image transfer, the color transfer imaging element of the
invention and the image receiver are juxtaposed so that the heat-transferable
dye element of the color imaging element faces the receiving layer (if any) of
the image receiver. If the heat-transferable dye element uses sublimable dyes
as in the embodiment shown in FIG. 3, there is preferably face to face contact
between the color imaging element and the image-receiving material during image
transfer; however, it may sometimes be advantageous to provide a gap of 5 to 50
µm between the dye layer and the image receiver to avoid sticking of the layer
to the mage receiver after image transfer and to achieve some degree of color dye
mixing. If the heat-transferable dye element uses a thermal adhesive layer as
in the embodiment shown in FIG. 4, the imaging element and the image support are
preferably sandwiched together for image transfer.
The invention is further described in the following example.
Example
A clear, heat-sensitive layer was coated onto 50µm thick polyethylene
terephthalate film as follows. A solution of 1.0 g of the blocked leuco dye 'Pergasol
Black' (Ciba-Geigy) and 3.0 g of poly(vinyl chloride-co-vinyl acetate) (86:14)
in 100 ml of butanone are blade coated at 0.07 mm wet thickness onto the polyethylene
terephthalate film. After gently drying the resulting layer, it was supercoated
using a blade at 0.1 mm wet thickness with a solution comprising 0.5 g 2,6-di-hydroxybenzoic
acid, 0.3 g salicylic acid and 2.0 g polyvinyl butyral dissolved in 100 ml ethanol.
A few drops of 2% solution of polydimethylsiloxane levelling agent are added prior
to coating and the layer was dried gently at 25 °C.
The film was then printed on the reverse (uncoated) side with a mosaic-patterned
dye layer using the gravure printing method. Three different dyes are usd; C.I.
Disperse Yellow 3; 4-methoxy-2-phenylazonaphthol; and 4-(3-chloro-4-oxophenylideneimono)-N,N′-diethyl-3-methyl-aniline.
The imaging element was then loaded, with its thermal imaging layer
facing the print head, into a small thermal printer driven by a microcomputer.
A computer-generated color separation negative image was printed onto the thermal
layer using variable dot spacing to produce a grey scale. The image thus generated
appears black against the color of the dye layer on the other side of the base.
The dye side of the imaged element was then contacted against a sheet
of paper which has been coated with a thin layer of poly(vinyl chloride-co-vinyl
acetate) (86:14). The window of a hammer head photographic flash gun which has
been fitted with a small mirror box to give a more even light flux at the window
plane was pressed against the thermal layer of the element and the flash gun fired.
On separating the imaging element from the receiver sheet, a color image corresponding
to a negative of the thermal image was seen to have transferred to the paper.
The result was a full colored image which is then heated overall with a hot air
blower to fix it into the image-receiving layer.
Anspruch[de]
Farbstoffübertragungsaufzeichnungselement mit einem Träger, auf dem sich eine
Bildaufzeichnungsschicht mit einem thermographischen, photothermographischen oder
elektrographischen Material befindet, das ein Bild zu erzeugen vermag, das Licht
oder Infrarotstrahlung absorbiert oder streut, und eine durch Einwirkung von Wärme
übertragbare Farbstoffschicht, von der ein Farbstoffbild auf ein Farbbildempfangsteil
übertragen werden kann, wenn das bildaufzeichnende Element insgesamt Licht oder
Infrarotstrahlung exponiert wird, das bzw. die als Funktion der Bildbezirke der
bildaufzeichnenden Schicht absorbiert oder gestreut wird, wodurch eine selektive
Erhitzung des Farbstoffes des Elementes erfolgt, und bei dem die Farbstoffschicht
ein mosaikartiges Farbstoffmuster aus mindestens zwei Farben aufweist und bezüglich
der anderen Schichten so angeordnet ist, daß eine bildweise Übertragung des Farbstoffes
auf das Bildempfangsteil ermöglicht wird.
Element nach Anspruch 1, in dem die Farbstoffe der Farbstoffschicht sublimierbar
sind.
Element nach Anspruch 1, in dem die Farbstoffschicht thermisch klebend ist.
Element nach Anspruch 3, dadurch gekennzeichnet, daß sie eine thermische Klebschicht
als äußere Fläche des Elementes benachbart zur Farbstoffschicht aufweist.
Element nach Anspruch 3 oder 4, weiter gekennzeichnet, durch eine Abstreifschicht
zwischen dem Träger und der Farbstoffschicht.
Element nach Ansprüchen 1-5 weiter dadurch gekennzeichnet, daß es eine Bildempfangsschicht
aufweist, die die Funktion eines Bildempfangsteils hat.
Element nach Ansprüchen 1-6, in dem die Farbstoffschicht ein dispergiertes
Pigment aufweist, das Licht oder Infrarotstrahlung zu absorbieren vermag, und dadurch
den Aufheizeffekt der Strahlung erhöht.
Element nach Ansprüchen 1-7, in dem sich die Position des Musters in der Farbstoffschicht
nach Perforationen im Bildaufzeichnungselement orientiert.
Verfahren zur Erzeugung eines Farbbildes unter Verwendung eines Farbstoffübertragungsaufzeichnungselementes
nach Anspruch 1, bei dem
die bildaufzeichnende Schicht des Bildaufzeichnungselementes selektiv exponiert
wird, um ein infrarot- oder lichtabsorbierendes oder -streuendes Bild zu erzeugen,
das einem gewünschten Farbstoffbild entspricht, wobei die Absorption des infrarot-
oder lichtabsorbierenden oder -streuenden Bildes eine umgekehrte Funktion der Menge
des zu übertragenden Farbstoffes ist, das Bildaufzeichnungselement, sofern das
Element kein Bildempfangsteil aufweist, mit dem Bildempfangsteil zusammengebracht
wird, so daß eine Bildfarbstoffübertragung erfolgen kann, und
das infrarot- oder lichtabsorbierende oder -streuende Bild insgesamt Infrarotstrahlung
oder Licht von einer Intensität und einer Dauer exponiert wird, die ausreichend
sind, um eine bildweise Übertragung des Farbstoffes auf das Bildempfangsteil zu
bewirken.
Verfahren nach Anspruch 9, bei dem die Insgesamt-Exponierungstufe die Exponierung
des Bildaufzeichnungselementes mit einer Infrarotlampe umfaßt.
Verfahren nach Anspruch 9, bei dem die Insgesamt-Exponierungsstufe die Exponierung
des Bildaufzeichnungselementes mit einem Lichtblitz hoher Intensität umfaßt.
Verfahren nach Ansprüchen 9-11, weiter gekennzeichnet durch die Stufe der Erhitzung
des Bildempfangsteiles, die ausreicht, um das Übertragene Farbstoffbild nach Durchführung
der Ingesamt-Exponierungsstufe auf dem oder in dem Bildempfangsteil zu fixieren.
Verfahren nach Ansprüchen 9-12, bei dem sich die selektive Exponierung des
Bildaufzeichnungselementes nach den Perforationen des Bildaufzeichnungselementes
orientiert.
Anspruch[en]
A color transfer imaging element comprising a support having thereon an imaging
layer comprising a thermographic, photothermographic, or electrographic material
capable of forming an image that absorbs or scatters light or infrared radiation,
and a heat transferable dye layer from which a dye image can be transferred to
a dye image receiver when said imaging element is overall exposed to light or
infrared radiation that is absorbed or scattered as a function of the imaged areas
of said imaging layer, thereby causing selective heating of said dye of the element,
said dye layer comprising a mosaic dye pattern of at least two colors and being
positioned relative to the other layers so as to allow said imagewise transfer
of said dye to said image receiver.
The element of claim 1 wherein the dyes of said dye layer are sublimable.
The element of claim 1 wherein said dye layer is thermally adhesive.
The element of claim 3 further comprising a thermal adhesive layer as an exterior
face of said element adjacent to said dye layer.
The element of claim 3 or 4 further comprising a stripping layer between said
support and said dye layer.
The element of claims 1-5 further comprising an image-receiving layer that
functions as said image receiver.
The element of claims 1-6 wherein said dye layer contains dispersed therein
a pigment capable of absorbing said light or infrared radiation and thereby increasing
the heating effect of said radiation.
The element of claims 1-7 wherein the location of the pattern of the dye layer
is oriented to perforations in said imaging element.
A method of forming a color image using a color transfer imaging element according
to Claim 1 comprising:
   selectively exposing the imaging layer of said imaging element
to form an infrared- or light-absorbing or -scattering image corresponding to a
desired dye image, the absorption of said infrared- or light-absorbing or -scattering
image varying inversely with the amount of dye desired to be transferred,
   if said element does not comprise an image receiver, juxtaposing
said imaging element to with image receiver so that image dye transfer can take
place, and then
   overall exposing said infrared- or light-absorbing or -scattering
image to infrared radiation or light at an intensity and for a time sufficient,
thereby causing imagewise transfer of dye to the image receiver.
The method of claim 9 wherein said overall exposing step comprises exposure
of said imaging element with an infrared lamp.
The method of claim 9 wherein said overall exposing step comprises exposure
of said imaging element with a high intensity of light flash.
The method of claims 9-11 further comprising the step of, after said overall
exposing step, heating said image receiver sufficiently to fix said transferred
dye thereto or therein.
The method of claims 9-12 wherein the selective exposure of said imaging element
is oriented to perforations in the imaging element.
Anspruch[fr]
Elément d'enregistrement en couleurs par transfert de colorant comprenant un
support recouvert d'une couche d'enregistrement comprenant une substance thermographique,
photothermographique ou électrographique capable de former une image qui absorbe
ou diffuse de la lumière ou du rayonnement infrarouge et une couche de colorant
transférable par la chaleur de laquelle l'image de colorant peut être transférée
sur un récepteur d'image de colorant quand l'élément d'enregistrement est exposé
globalement à la lumière ou au rayonnement infrarouge qui est absorbé ou diffusé
en fonction des zones images enregistrées de la couche d'enregistrement, ce qui
provoque un réchauffement sélectif du colorant de l'élément, la couche de colorant
comprenant une répartition de colorants juxtaposés en mosaïque d'au moins deux
couleurs et étant placée par rapport aux autres couches de manière à permettre
le transfert de colorant sur le récepteur d'image.
Elément selon la revendication 1 dans lequel les colorants de la couche de
colorant sont sublimables.
Elément selon la revendication 1 dans lequel la couche de colorant est rendue
adhésive par l'action de la chaleur.
Elément selon la revendication 3 comprenant de plus une couche rendue adhésive
sous l'action de la chaleur comme face externe de l'élément, adjacente à la couche
de colorant.
Elément selon la revendication 3 ou 4 comprenant de plus une couche pelliculable
entre le support et la couche de colorant.
Elément selon les revendications 1 à 5 comprenant de plus une couche réceptrice
d'image qui fonctionne comme récepteur d'image.
Elément selon les revendications 1 à 6 dans lequel la couche de colorant contient
un pigment sous forme dispersée, capable d'absorber de la lumière ou du rayonnement
infrarouge, ce qui augmente l'efficacité du rayonnement du point de vue du réchauffement.
Elément selon les revendications 1 à 7 dans lequel la répartition de colorants
juxtaposés de la couche de colorant est repérée au moyen de perforations dans
l'élément d'enregistrement.
Procédé pour former un enregistrement en couleurs en utilisant un élément de
transfert de colorant selon la revendication 1 comprenant les étapes suivantes
:
   on expose sélectivement la couche d'enregistrement de l'élément
d'enregistrement pour former une image absorbant ou diffusant la lumière ou le
rayonnement infrarouge correspondant à l'image de colorant désirée, l'absorption
ou la diffusion de la lumière ou du rayonnement infrarouge par cette image variant
de façon inversement proportionnelle à la quantité de colorant que l'on souhaite
transférer,
   si l'élément ne comprend pas de récepteur d'image, on juxtapose
l'élément d'enregistrement avec un récepteur d'image pour effectuer le transfert
de colorant, et ensuite
   on expose globalement l'image absorbant ou diffusant la lumière
ou le rayonnement infrarouge à une intensité et pendant un temps suffisant pour
que le transfert de l'image colorée sur le récepteur d'image se produise.
Procédé selon la revendication 9 dans lequel l'exposition globale est réalisée
avec une lampe infrarouge.
Procédé selon la revendication 9 dans lequel l'exposition globale est réalisée
avec une lampe flash d'intensité élevée.
Procédé selon les revendications 9 à 11 dans lequel après l'exposition globale
on chauffe suffisamment le récepteur d'image pour que l'image colorée y soit fixée.
Procédé selon les revendications 9 à 12 dans lequel l'exposition sélective
de l'élément d'enregistrement est repérée par rapport à des perforations dans
l'élément d'enregistrement.