PatentDe  


Dokumentenidentifikation EP0288164 01.12.1988
EP-Veröffentlichungsnummer 0288164
Titel Verfahren und Vorrichtung zur Verhütung von Explosionen und Feuern.
Anmelder O'Connell, Michael Oliver, Ballineem, Cork, IE
Erfinder O'Connell, Michael Oliver, Ballineem, Cork, IE
Vertreter derzeit kein Vertreter bestellt
Vertragsstaaten AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE
Sprache des Dokument En
EP-Anmeldetag 25.03.1988
EP-Aktenzeichen 883026452
EP-Offenlegungsdatum 26.10.1988
Veröffentlichungstag im Patentblatt 01.12.1988
IPC-Hauptklasse A42C 3/00
IPC-Nebenklasse F17C 13/12   

Beschreibung[en]

The invention relates to a method and apparatus for suppressing, extinguishing or inhibiting a fire or an explosion in an area of the type in which a charge of suppressant is released into the area in response to fire or explosion conditions in the area.

The term "enclosure" as used in this specification refers to any space having a boundary such as a duct. a cavity, a vessel. a spray dryer, cycione, silo, fluidiser beds. the hold of a ship, a conveyor. a storage tank, a pump house or the like which may be opened or closed and which may be at any pressure (i.e. above or below atmospheric pressure) or temperature (i.e. above or below ambient temperature).

Various appliances are available to contain or suppress dust explosions in vessels such as dryers. cyclones. connecting duct work, fluidizer beds and powder silos of milk drying plants. All suppression appliances operate on the principle that an explosion is not instantaneous but takes a measurable time. in the order of from 40 to 400 milliseconds to build up to destructive pressure. During a first phase the rate of pressure rise is low. the maximum pressure reaching approximately 10.4 KPa (1.5 psi). Thereafter the rate of pressure rise rapidly increases. generating up to 690 KPa (100 psi) in a second phase. The duration of the pressure rise phases is dependant on the size and geometry of the enclosure in which the explosion occurs. Generally it is recognised that to adequately suppress an explosion the initiating ignition must be suppressed and extinguished within periods of the order of from 10 to 200 milliseconds. To satisfy this requirement the response time of conventional suppression appliances must be very short.

Generally, conventional suppression appliances comprise a detector for detecting the pressure rise caused by an explosion at an early low pressure stage of approximately 3.5 KPa (0.5 psi). When explosion condition occurs in an enclosure a control system outputs a signal to burst a diaphragm at the outlet of a suppression charge vessel which introduces a charge of explosion suppressant material into the enclosure. Such suppression systems interrupt particle heat transfer. breaking the combustion chain and preventing rapid pressure rise.

There are three commonly available suppressants in use. These are chlorobromethane (Halon 1011 (trademark)), mono-ammonium phosphate based dry powder (MAP), and water. It has been reported by Moore in The Chemical Engineer. November 1986 and December 1984 that Halon 1011, MAP powder and water are effective in suppressing explosions. The effectiveness of these three different types of suppressants however varies depending on the nature of the explosion. Halon and MAP may contaminate vessels into which they are introduced and this is a considerable disadvantage, particularly in the food industry. Conventional water suppressors have a short period of effectiveness and their use involves a greater risk of re-ignition.

Somewhat similar comments apply to the extinguishing of fire in any area. "Fire" in this- connection refers to a flame front moving at any speed and not only to an explosion which may be characterised as a fast moving fire. The distinction between the terms "fire" and "explosion" is not clearly defined and. where the context allows. the expressions may be interchanged when reading this specification.

US-A-4394868 which represents the closest prior art and discloses a hazard suppression device for preventing fire and explosions in confined zones, wherein the device includes reservoir means in the forrr of a tank for containing a fire suppressant such as Halon 1301. an outlet through which the suppressant is introduced into the confined zone. and a valve means closing the outlet. the valve means being a selectively operable rupturable disc which is ruptured when a preselected hazardous condition is sensed in the confined zone.

US-A-3.135.330 discloses a source of water under pressure, a conduit for leading the water to the fire region, a control in the conduit, and a fire detection apparatus for actuating the control valve to cause water delivery when a fire is detected.

There is a need for an improved method and apparatus for suppressing, extinguishing or inhibiting a fire or an explosion.

This invention is directed towards providing such an improved method and apparatus.

The invention is characterised in that the method comprises the steps of:-

  • introducing a charge of water into a reservoir means having an outlet means closed by a valve means;
  • heating and pressurising the water in the reservoir means to increase the liquid heat content of the water in the reservoir means to such a level that, on release into the lower pressure area, a portion of the pressurised hot water forms droplets and a portion of the water flashes off as steam;
  • maintaining by control means the elevated temperature and pressure conditions of the water in the reservoir means:
  • sensing fire or explosion conditions in the area: and opening the valve means in response to fire or explosion conditions occurring in the area to introduce hot water with increased liquid heat content from the reservoir means into the area at a pressure higher than that in the area. so that a portion of the pressurised hot water. the temperature and corresponding pressure of which has been raised by the heating means and maintained by the control means. is fragmented into water droplets and another portion of the water flashes off as steam on entry into the lower pressure area. whereby a vapour cloud formed by the droplets and the flash steam extinguishes or inhibits a fire or an explosion in the area and prevents re-ignition.

In one embodiment of the invention the charge of water in the reservoir means is heated to a temperature which is less than the boiling point of the water at the pressure within the reservoir means.

In one aspect the invention provides a hazard suppression apparatus constructed and adapted to carry out the method of the invention. the apparatus being of the type comprising reservoir means having outlet means through which suppressant is introduced into an area. and valve means characterised in that:

  • the suppressant is pressurised water with increased liquid heat content at a pressure in the reservoir means which is higher than that in the area into which it is released,
  • and in that the apparatus includes:
    • heating means for heating the water to increase the liquid heat content of the water in the reservoir means to such a level that. on release into the lower pressure area. a portion of the pressurized hot water forms droplets and a portion of the water flashes off as steam;
    • control means for maintaining the elevated temperature and pressure conditions of the water in the reservoir means:
      • sensing means for detecting fire or explosion conditions in the area; and
      • actuating means responsive to said sensing means for opening the valve means in response to fire or explosion conditions occurring in the area to introduce pressurised hot water with increased liquid heat content from the reservoir means into the area at a pressure higher than that in the area, whereby in use a portion of the pressurized hot water. the temperature and corresponding pressure which has been raised by the heating means and maintained by the control means, is fragmented into water droplets and another portion of the water flashes off as steam on entry into the lower pressure area, whereby a vapour cloud formed by the droplets and the flash steam extinguishes or inhibits a fire or an explosion in the area and prevents re-ignition.

One advantage of using pressurised hot water is that, in addition to using the already proven suppressant characteristics of water, flash steam is also used which, on expanding from unit working pressure to atmospheric pressure, imparts additional velocity, and consequently the reaction time in suppressing explosions or extinguishing fires is very fast. Further, the water droplets and flash steam assist in preventing re-ignition of a secondary fire or explosion. In addition, because the suppressant material is freely available and is easily charged into a suppressant reservoir, it will be considerably cheaper than existing suppression systems. In addition, the suppressant is safe, non-contaminating, non-corrosive and non-toxic.

In one embodiment of the invention the apparatus is for use in suppressing, extinguishing or inhibiting a fire or an explosion in an enclosure and the reservoir means includes a pipeline which is arranged to communicate via the outlet means with the enclosure in use. Preferably the pipeline comprises a ring main having a plurality of the outlet means which are mutually spaced apart. said ring main being arranged. in use. to extend substantially around the enclosure. Preferably the pipeline includes a section which is arranged, in use. to extend along at least a portion of the enclosure and which has a plurality of the outlet means which are mutually spaced apart. The heating means may comprise means for heating the pipeline. the heating means being a steam or electrical heater or a hot air dryer.

In another embodiment of the invention the reservoir means comprises a pressurised suppression vessel. In this case the heating means may comprise an electrically powered heating element or a heating coil through which steam is led to heat the water in the pressurised suppression vessel.

In one embodiment of the invention the outlet valve means comprises a diaphragm means comprising a differential pressure diaphragm comprising two spaced-apart diaphragms defining therebetween a pressurised space. and said actuating means is arranged to relieve the pressure in the space to allow bursting of the diaphragms in response to preset conditions. The actuating means may comprise a valve which is activatable in response to explosion conditions occurring in the enclosure. the valve when actuated serving to release the pressure in the space.

In one embodiment of the invention means are provided to minimise the air space between the diaphragms. In one case the space is pressurised with an incompressible fluid such as water or a high boiling point inert liquid such as glycol. In another case the space may be partially filled with an insert which is arranged to be ejected from the space, on bursting of the diaphragm. The insert is preferably of an inert, preferably water soluble material.

The means for detecting the explosion conditions in the enclosure may comprise a membrane pressure detector, a pressure transducer, a U tube detector, a heat sensor or an infra red detector.

The invention will be more clearly understood from the following description thereof given by way of example only with reference to the accompanying drawings in which:

  • Fig. 1 is a diagrammatic side view of an apparatus according to one embodiment of the invention:
  • Fig. 2 is a schematic view of an apparatus according to another embodiment of the invention, in use on a drying plant.
  • Fig. 3 is a plan, partially cross sectional view of one portion of the apparatus of Fig. 2 in use on a spray dryer,
  • Fig. 4 is a side view of the portion of Fig. 3.
  • Fig. 5 is a side, partially cross sectional view of another portion of the apparatus of Fig. 2 in use on a cooling bed,
  • Fig. 6 is a graph of pressure rise over time of an unsuppressed explosion:
  • Fig. 7 is a graph of pressure rise over time of an explosion suppressed using the method and apparatus of the invention;
  • Fig. 8 is a flow diagram of a differential pressure diaphragm, in use,
  • Fig. 9 is a schematic perspective view of another apparatus according to the invention;
  • Fig. 10 is a schematic perspective view of a further apparatus according to the invention; and
  • Fig. 11 is a side view on the line Xl - Xl in Fig. 10.

Referring to the drawings and initially to Fig. 1 thereof there is illustrated an apparatus 1 for suppressing, extinguishing or inhibiting a fire or an explosion in an area. In this case the apparatus 1 is particularly adapted for suppressing explosions in an enclosure 2. The apparatus 1 comprises a reservoir which in this case comprises a pressurized suppression unit 5. The unit 5 in this case is of generally cylindrical shape having an outlet 7 connected by an elbow piece 3 to an inlet opening 4 to the enclosure 2. A charge 8 of water is introduced into the suppression unit 5 and is heated in the unit by a heating means, in this case comprising an electrical heating element 9, which heats the water to a temperature which is below the boiling point of the water at the particular pressure maintained in the unit 5. Pressure in the suppression unit 5 is maintained by air or any suitable inert gas. In this case where the unit is not a pre-pressurised unit. pressure is provided by the steam generated.

The outlet 7 of the suppression unit 5 is sealed by a valve means which in this case comprises a high speed differential pressure diaphragm 10 which, as will be described in more detail below, is fractured to release a charge of water from the suppression unit 5 into the enclosure 2 in response to explosion conditions incurring within the enclosure 2. A diffuser may be provided at the inlet 4 to the vessel 2 to direct the charge of pressurised hot water into the enclosure 2 on bursting or fracturing of the differential pressure diaphragm 10.

In use. a charge of water is introduced into the suppression unit 5 through a filling port 16 and the water is pressurised to the desired pressure, for example 3.5 MPa (500 psi). The water is then heated using the heating element 9 to the desired temperature which is less than the boiling point of the water at the pressure in the suppression unit. In the case of a pressure of 3.5 MPa (500 psi), the water may be heated to a temperature of 232°C (450 degrees F). Control means (not shown) may be used to maintain the temperature and pressure at the correct levels. Pressure may be provided by compressed gas such as air or nitrogen or by the heating effect of the water charge or by a combination of both.

If explosion conditions occur in the enclosure 2. an explosion conditions detector, for example a diaphragm detector, sends a signal through a control system to fracture the diaphragm 10 to release a charge of pressurized hot water from the suppression unit 5 into the enclosure 2. Because the water is at a substantially higher pressure than that in the enclosure 2, when the water enters the enclosure, portion of it is converted into water droplets to suppress the flame front of a deflagration, and portion of the water flashes off as flash steam to reduce the oxygen concentration in the atmosphere. The flash steam vapour cloud remains in suspension in the enclosure and hence prevents a secondary explosion.

When water under pressure is heated, the temperature is raised so that the liquid heat of the water is also raised. The liquid heat of the high temperature, high pressure water is released at lower temperatures in the form of latent heat and flashes off a percentage of the liquid in the form of flash steam. Above 70% of the liquid can be flashed off at atmospheric pressure. On discharge, the water element behaves conventionally forming water droplets to suppress the deflagration. In addition. the flash steam reduces the oxygen concentration in the enclosure to below a level which will support combustion and prevents re-ignition.

The initial charge of pressurized hot water may be followed by a continued steam discharge from a process steam line on bursting of the diaphragm 10 or by activation of a fixed water spray system to assist in maintaining suppression conditions and preventing re-ignition within the enclosure.

It will be appreciated that the suppression reservoir may be connected to the enclosure wall by a section having a flexible spool to take-up weight and reaction from the enclosure 2. To maintain sterility in the enclosure a discharge pressure blow out plug may be provided at the outlet to the enclosure.

It will be appreciated that the discharge time for the pressure suppression vessel is proportional to the pressure. the area of the discharge nozzle and the distance to be travelled. Various designs of nozzle may be used to attain the best effect and the suppression units may be fitted on a number of different locations around an enclosure to achieve the best effect.

The method and apparatus according to the invention makes it possible to enhance water properties providing a unique combination of suppressant qualities plus inerting qualities.

A second major advantage is that as the unit discharges the volume increase created is immediately occupied by flash steam. This creates a condition where the unit discharge pressure is almost constant. As the pressure remains substantially higher using pressurised hot water rather than an inert gas such as nitrogen the discharge velocity V1 also is higher.

The third major advantage the method is that as only a fraction of the surplus heat is used to self propel the water from a reservoir. the remaining surplus heat is available to do other work. This surplus heat under atmospheric conditions regains thermal equilibrium by converting to steam. In converting to steam it expands enormously compared to its liquid condition. For example 1 kg of water occupies a vol. of 0.001 cu.m., 1 kg of steam at atmospheric occupies a vol. 1.673 cu.m. Therefore the steam now occupies a volume 1630 greater than its original. This large expansion imparts a very large secondary velocity V2. The expansion also explodes the water into very fine particle sizes akin to molecular fragmenta. This forms a cloud of vapour which remains in suspension suppressing an explosion and effectively preventing secondary re-ignition.

The unique combination of the almost constant discharge pressure giving V1 combined with the secondary velocity V2 enables the suppressor units to be designed to very low pressures of 2 to 10 Bar and still maintain velocities in excess of higher charged units.

Because the system uses freely available suppressant material which is easily charged into the suppression vessel it will be considerable cheaper than existing suppression systems.

In addition, because the suppression system pressure can be controlled it can easily be switched off for inspection or cleaning of the enclosure to which it is attached. Further, the pressure in the vessel can be easily varied thermostatically by controlling the temperature. Further, the suppressant used is safe. noncontaminating, non-corrosive and non-toxic.

In the method and apparatus according to the invention on discharge of the pressurised hot water charge as the pressure drops flash steam will immediately fill the volume of the suppressor unit and maintain substantially constant pressure. Thus, the suppression vessels can be discharged at a substantially constant high pressure to give a considerably faster response time. In conventional arrangements the suppressor units are pressurised with a propellant gas. As the suppression vessel is discharged the propelling gas loses pressure, thus increasing the time required to discharge the suppressant charge. To compensate. usually a very high pressure is required. The method and apparatus according to the invention. however, does not have this problem because of the compensating discharge pressure improvement involving flash steam and steam expansion.

In addition, the enclosure is inerted against secondary re-ignition by saturation. heat transfer interference and oxygen reduction.

Depending on the characteristics of the material being handled re-ignition may be prevented by particle wetting. In this case the operating parameters are calculated and on the basis of the maximum dust or powder concentrations the volume of the water charge required to increase the moisture content of the particles to the level at which re-ignition would not occur is calculated. This is particularly important for hygroscopic dusts such as skim milk powder.

The cloud of steam and atomised water particles remain in suspension, in use. providing a barrier of moisture between the dust particles to prevent re-ignition.

The steam also substantially reduces the level of oxygen to a level, which will not support re-ignition. The volume of steam used is such as to reduce the air and steam mixture to approximately 14% by volume. The following calculation may be used to determine the weight of water that is required to be heated to produce the required volume of steam at atmospheric pressure. Vessel volume = V    for a volume V of air there is .22V of O2 and 0.78V nitrogen

   To achieve 14% O2: 14 / (100) = 0.22V / ( V+x)    where x is the added gas/steam volume

   Solving this equation gives x = 0.57V

The volume occupied by 1 lb (454g) of steam at atmospheric pressure is 26.8 ft3 (0.76 m3).

Thus, the weight of steam required is = 0.57V / ( 26.8) = 0.02V lbs 1 (= 9,08.V g) Different operating pressures give different flash steam volumes. At an operating pressure of Po the amount of flash steam is dependent on the liquid heat hL at the operating pressure Po and on the atmospheric conditions which are latent heat L = 970.4 Btu/lb (539 cal/g) and liquid heat hL = 180 Btu/lb (100 cal/g).

Therefore the amount of flash steam available for unit weight of pressurised hot water is hL(at Po) - 180 / ( 970.4) Combining equation 1 above the total weight (W) of water that is required to be heated to the operating conditions of Po can be calculated as W = 0.02V x 970.4 / (hL(at Po) - 180) = 20.7V / ( (hL (at Po) - 180)) where

V =
Vessel volume in ft3 (1 ft3 = 0.0283 m3)
hL =
liquid heat at operating pressure Po
W =
weight (in pounds) of water to be heated to give the desired content of flash steam at atmospheric pressure to reduce the oxygen concentration in the vessel to 14% by volume (1 pound = 454 g)
For enclosures to be protected, normally a number of suppression apparatus units according to the invention will be mounted to the enclosure at pro-selected locations to give maximum spreading and explosion suppressant characteristics.

The units can be designed to suppress or extinguish confined deflagration of practically all gases. vapours, dusts and would have specific application to petrochemical, chemical. pharmaceutical, food and agri based industries.

Example

An explosion suppression test apparatus was designed with reference to International Standard ISO 6184. The vessel was cylindrical having a volume of approximately 2.5 m3 and an aspect ratio of 2. The dust dispersion mechanism comprised two sets of spray rings. each having 15 spray holes having an orifice diameter of 5mm. Each spray ring was fed from a 5 litre powder pot. Ignition was by two pyrotechnic igniters having a total energy of 10KJ. The igniters were fired with a low voltage source under the control of a PLC which determines a fixed delay after dust dispersion. Powder is released from the pots and sprayed into the vessel. After a fixed delay, which is typically 600 milliseconds the igniters are fired and two pressure transducers record the changes in pressure.

An unsuppressed explosion test was first carried out on skim milk powder and the resultant graph of pressure in bar over time in milliseconds is illustrated in Fig. 6. In Fig. 6:-

  • X axis - each step 50 milliseconds
  • Y axis - each step 1 bar
  • mid time - 2000 milliseconds
  • ignition time - 1758.64 milliseconds
  • valve time - 978.658 milliseconds
  • maximum pressure - 6.3 bar.

It will be noted that there is an initial phase in which the rate of pressure rise is relatively low followed by a second phase with a high rate of pressure rise.

A suppressed explosion test using pressurised hot water was then carried out in the same vessel. under the following conditions and using the same material as for the unsuppressed explosion test.

  • Pressure 9.1 bar gauge
  • Temperature 180°C
  • Water volume 1.5 litres
  • Water volume/m3 of vessel = 0.65 litres/m3
  • Discharge diameter = 3" (7.6 cm)
  • No nozzle
The resultant graph of pressure in bar over time in milliseconds is illustrated in Fig. 7. In Fig. 7:-
  • X axis - each step 100 milliseconds
  • Y axis - each step 0.025 bar
  • mid time - 1750 milliseconds
  • ignition time - 1737.22 milliseconds
  • valve time - 949.583 milliseconds.

It will be apparent from Figs. 6 and 7 that the maximum pressure is reduced by the suppression method and apparatus of the invention from approximately 6.3 bar to approximately .35 bar thus suppressing the explosion. This is achieved cheaply, safely, quickly, and using a suppressant which will not contaminate the vessel.

Referring to Figs. 2 to 5 there is illustrated an explosion suppression apparatus according to another embodiment of the invention which is illustrated in use on a spray dryer 20, a cooling bed 21, a bank of cyclones 22 and connecting ducts. The apparatus comprises reservoirs, in this case main pipelines 25 for pressurised water each having a plurality of spaced-apart outlets 26 each closed by a valve means such as a differential pressure diaphragm 24 which are fractured on explosion conditions occurring in the enclosure to release the charge of hot pressurised water into the enclosures. Each outlet 26 is connected to the enclosure 20. 21 or 22 by a flexible stainless steel bellows 27. Water in each pipeline 25 is heated by an electric surface heat tracing 28 which is thermostatically controlled to maintain a desired temperature of pressurised water in the pipeline 25. Heat insulation 29 (only a portion of which is illustrated in the drawings) is provided, for each pipeline 25 and the discharge outlets 26. Pressurised suppression vessels may be provided for at least the larger diameter ring main pipelines for additional reservoir capacity. The ring main pressurised pipeline can also be used without a reservoir by only partially filling the line with water and allowing space for expanded water and head space for flash steam.

One advantage of using a ring pipeline arrangement for suitably shaped enclosures such as the dryer 20 and cyclones 22 is that it can easily self sustain the discharge thrust of the pressurised water as it is discharged.

Electrical trace heating allows the temperature to be more easily and efficiently controlled and it maintains a uniform temperature which ensures a balanced discharge. In addition, the pipeline units whether in ring form or in straight sections may be readily manufactured to suit any desired application.

It will be noted that to facilitate discharge and to maintain headsoace and pressure each of the outlets from the suppression unit. whether vessel or pipeline is arranged to provide a filled leg between the reservoir and the discharge into the enclosure.

Referring to Fig. 8. there is illustrated a diaphragm unit 40 which may be utilised in the explosion suppression apparatus described above. The diaphragm unit 40 comprises a pair of bursting diaphragms 41, 42 which are spaced-apart to define therebetween a pressurised space 43 which is pressurised from an air or gas reservoir 50 through an inlet port 44. The outer 41 of the diaphragms is exposed to a pressure P2 in the pipeline in which the unit is mounted and the inner diaphragm 42 is exposed to a pressure P1 in an enclosure. which is typically, but not necessarily, atmospheric pressure.

The balance pressure P3 (200 psi = 1.4 MPa) maintained in the space 43 allows a 300 p.s.i. (2.1 MPa) rated diaphragm to contain a higher pressure of discharge unit of say 400 p.s.i. (2.8 MPa). In the event of explosion conditions occurring in an enclosure the differential pressure in the space 43 is relieved. for example by a solenoid 51. allowing the higher pressure from the explosion suppression reservoir 50 to burst the two diaphragms 41,42 and discharge into the enclosure. Air supply from the vessel 50 to the space 43 is shut off during discharge to prevent air discharge into the enclosure.

In the case of the diaphragm illustrated in Fig. 8 the evacuation time to reduce the internal pressure in the space 43 is the time taken to reduce the internal pressure from 200 psi (1.4 MPa) to 100 psi (690 KPa). At this stage the discharge unit pressure is equal to the diaphragm burst pressure of 300 psi (2.1 MPa) and the diaphragms start to yield. The evacuation time measured in milliseconds is dependent on the volume to be evacuated and in this case corresponds to the time required to reduce the pressure in the space 63 from 200 psi (1.4 MPa) to 100 psi (690 KPa).

The differential pressure diaphragm units may be sealed and the differential pressure released by an electrically operated detonator. a solenoid release valve or the like.

The volume of the space 43 is preferably kept to a minimum to facilitate rapid response. Preferably the space 43 is at least partially filled with an insert which substantially reduces the volume of the space filled with air and consequently the estimated time to evacuate the air to the activation pressure is substantially reduced. For example, for a space volume of 340 cm3 reduced to 15 cm3 by an insert, the estimated time for evacuation is reduced from 16 milliseconds to approximately 2 milliseconds. Thus, the diaphragms rupture almost instantaneously allowing an explosion to be suppressed extremely quickly. The insert may typically be of an inert material which may be water soluble. The insert also assists in reducing heat loss as it acts as an insulation barrier.

Alternatively, the space 43 between the diaphragms may be filled with an incompressible fluid such as water. The water may be pressurised with an air gas mixture to effectively 200 psi (1.4 MPa), thus maintaining the differential pressure. On explosion conditions occurring, a solenoid is activated which vents the space 43 to atmosphere. The water instantly loses pressure and is subjected to the much higher vessel pressure of 400 psi (2.8 MPa) as also is the vent to atmosphere. Thus, both diaphragms burst instantaneously.

As well as the potential for explosion suppression of confined deflagrations, the pressure hot water system may also be used for extinguishing fires including fires involving flammable liquids or gases, surface fires involving flammable solids and deep seated fires beneath the surface of a particulate or fibrous material.

Fig. 9 illustrates a typical fire extinguishing application having two reservoirs 80 connected to a distribution piping system 81, containing laterals which terminate at nozzles or distributors 82. The insulated reservoirs 80 are charged with water which is heated to above atmospheric to the desired pressure and temperature by means of electric heating elements 83. Pressurised hot water is released from the reservoirs 80 by activating release valves 85,86.

Fig. 10 and 11 illustrate an alternative fire extinguishing arrangement. In this case the reservoir is provided as a length of pipe 90. Attached to the underside of the pipe 90 are laterals 92 which terminate in nozzles or distributors 93. The pipe 90 is heated to the required pressure and temperature by means of an electric heat tracing element 95 spirally wrapped around the outside of the pipe. The pipe is also insulated to prevent heat loss. Pressured hot water is released from the pipe 90 by activation of release valves 96, such as solenoid valves which are positioned at the underside of pipe. there being one release valve 96 per lateral 92 as will be particularly apparent from Fig. 11. Fire conditions are detected by approved sensors which can detect heat. flames, smoke, combustible vapour, etc. The speed of release and volume of the pressurised hot water will depend on the particular application required. On detection of fire the valves are opened to deliver a charge of pressured hot water into the area in which the nozzles or distributors are sited. When the hot pressurised water is introduced into an area at a pressure higher than that in the area portion of the water forms vapour and portion of the water flashes off as steam. The water droplets and steam act to inhibit particle heat transfer and possible chemical reaction between fuel and oxygen. The water droplets and steam also extinguish fire by cooling and/or by dilution or reduction of oxygen.

Wherever air or gas is used to pre-pressurise, the initial charge pressure can be calculated to allow for the temperature increase which. in an enclosed volume. will give rise to a corresponding pressure increase. This will apply to the suppression units and differential pressure diaphragm. Pre-pressurising the suppression units is optional for particular applications. the unit-generated flash steam can also be used.

It will be appreciated that various additional chemicals may be added to the pressurised hot water charge to achieve desired results in explosion suppression and/or fire extinguishing.


Anspruch[de]
  1. Verfahren zur Unterdrückung, zum Löschen oder zur Verhütung von Bränden oder Explosionen in einem Bereich, das den Schritt der Abgabe einer Ladung eines Feuer- oder Explosionsunterdrückungsmittels in den Bereich in Reaktion auf Brand- oder Explosionsbedingungen in dem Bereich aufweist, gekennzeichnet dadurch, daß das Verfahren folgende Schritte aufweist:
    • Einführung einer Wasserfüllung in ein Behältermittel (5, 25, 80, 90), das ein Auslaßmittel (7, 26) hat, welches durch ein Ventil (10, 24, 40, 85, 86, 96) geschlossen wird; Erhitzen und Unter-Druck-Setzen des Wassers in dem Behältermittel (5, 25, 80, 90), um den Flüssigkeitswärmeinhalt des Wassers in dem Behältermittel (5, 25, 80, 90) auf einen Wert zu erhöhen, bei welchem bei Abgabe in den Bereich mit niedrigerem Druck ein Teil des unter Druck stehenden, heißen Wassers Tröpfchen bildet und ein anderer Teil des Wassers als Dampf verzischt;
    • Aufrechterhaltung durch Steuermittel der Bedingungen von erhöhter Temperatur und erhöhtem Druck des Wassers in dem Behältermittel (5, 25, 80, 90);
    • Erfassen von Brand- oder Explosionsbedingungen in dem Bereich und Öffnen des Ventils (10, 24, 40, 85, 86, 96) in Reaktion auf das Auftreten von Brand- oder Explosionsbedingungen in dem Bereich, um heißes Wasser mit einem erhöhten Flüssigkeitswärmeinhalt aus dem Behältermittel (5, 25, 80, 90) bei einem Druck in den Bereich einzuführen, welcher über dem in dem Bereich liegt, so daß ein Teil des unter Druck stehenden, heißen Wassers, dessen Temperatur und dessen entsprechender Druck durch das Heizelement erhöht und durch das Steuerelement aufrechterhalten wurden, in Wassertröpfchen aufgespalten wird und so daß ein anderer Teil des Wassers beim Eintritt in den Bereich mit dem niedrigeren Druck als Dampf verzischt, wodurch von den Tröpfchen eine Dampfwolke gebildet wird und der Entspannungsdampf einen Brand oder eine Explosion in dem Bereich löscht oder verhütet und ein erneutes Aufflammen verhindert.
  2. Verfahren nach Anspruch 1, bei welchem die Wasserfüllung in dem Behältermittel auf eine Temperatur erhitzt wird, die bei dem Druck, der in dem Behältermittel (5, 25, 80, 90) herrscht, unter dem Siedepunkt des Wassers liegt.
  3. Vorrichtung zur Verhütung von Gefahren, die so konstruiert und angepaßt ist, daß damit das Verfahren nach Anspruch 1 und 2 ausgeführt werden kann, wobei es sich um eine Vorrichtung des Typs handelt, der ein Behältermittel (5, 25, 80, 90) mit einem Auslaßmittel (7, 26), durch welches das Feuer- oder Explosionsunterdrückungsmittel in einen Bereich eingeführt wird, und mit einem Ventil (10, 24, 40, 86, 96) aufweist, gekennzeichnet dadurch, daß
    • das Feuer- oder Explosionsunterdrückungsmittel unter Druck stehendes Wasser mit einem erhöhten Flüssigkeitswärmeinhalt bei einem Druck in dem Behältermittel ist, der über dem Druck in dem Bereich, in welchen es abgegeben wird, liegt, und dadurch, daß die Vorrichtung folgende Elemente einschließt:
      • ein Heizmittel (9, 28, 83, 95) zum Erhitzen des Wassers, um den Flüssigkeitswärmeinhalt des Wassers in dem Behältermittel (5, 25, 80, 90) auf einen Wert zu erhöhen, bei welchem bei der Abgabe in den Bereich mit dem niedrigeren Druck ein Teil des unter Druck stehenden Wassers Tröpfchen bildet und ein anderer Teil des Wassers als Dampf verzischt;
      • ein Steuermittel zur Aufrechterhaltung der Bedingungen der erhöhten Temperatur und des erhöhten Drucks des Wassers in dem Behältermittel (5, 25, 80, 90);
      • ein Sensormittel zum Feststellen von Brand- oder Explosions-bedingungen in dem Bereich; und
      • ein Betätigungsmittel, das auf das Sensormittel anspricht, um das Ventil (10, 24, 40, 86, 96) in Reaktion auf das Auftreten von Brand- oder Explosionsbedingungen in dem Bereich zu öffnen, um unter Druck stehendes, heißes Wasser mit einem erhöhten Flüssigkeitswärmeinhalt aus dem Behältermittel (5, 25, 80, 90) mit einem Druck in den Bereich einzuführen, der höher liegt als der Druck in dem Bereich, wodurch beim Einsatz ein Teil des unter Druck stehenden, heißen Wassers, dessen Temperatur und dessen entsprechender Druck durch das Heizmittel erhöht und durch das Steuermittel aufrechterhalten wurden, in Wassertröpfchen aufgespalten wird und ein anderer Teil des Wassers beim Eintritt in den Bereich mit dem niedrigeren Druck als Dampf verzischt, wodurch von den Tröpfchen eine Dampfwolke gebildet wird und der Entspannungsdampf einen Brand oder eine Explosion in dem Bereich löscht oder verhütet und ein erneutes Aufflammen verhindert wird.
  4. Vorrichtung nach Anspruch 3 zur Anwendung bei der Unterdrückung, dem Löschen oder der Verhütung von Bränden oder Explosionen in einem Gehäuse (2, 20, 21, 22), bei welcher das Behältermittel (5, 25) eine Rohrleitung (25) einschließt, die so angeordnet ist, daß sie bei der Nutzung über das Auslaßmittel (26) mit dem Gehäuse (2, 20, 21, 22) in Verbindung steht.
  5. Vorrichtung nach Anspruch 4, gekennzeichnet dadurch, daß die Rohrleitung (25) eine Ringleitung (25) aufweist, die eine Vielzahl von Auslaßmitteln (26) hat, die voneinander getrennt sind, wobei die Ringleitung (25) so angeordnet ist, daß sie sich in der Nutzung im wesentlichen um das Gehäuse (20, 22) erstreckt.
  6. Vorrichtung nach Anspruch 4, bei welcher die Rohrleitung (25) einen Abschnitt aufweist, der so angeordnet ist, daß er in der Nutzung wenigstens längs eines Abschnitts des Gehäuses (21) verläuft, und der eine Vielzahl von Auslaßmitteln (26) hat, die im Abstand zueinander angeordnet sind.
  7. Vorrichtung nach einem der Ansprüche 4 bis 6, gekennzeichnet dadurch, daß das Heizmittel (9, 28, 83, 95) ein Mittel (28) zum Erhitzen der Rohrleitung (25) aufweist, wobei das Heizmittel ein Dampfheizungs- oder ein elektrisches Heizelement oder ein Heißlufttrockner ist.
  8. Vorrichtung nach einem der Ansprüche 3 bis 7, gekennzeichnet dadurch, daß das Behältermittel einen Druckbehälter (5) einschließt.
  9. Vorrichtung nach Anspruch 8, gekennzeichnet dadurch, daß das Heizmittel (9, 28, 83, 95) ein elektrisch betriebenes Heizelement (9) oder eine Heizrohrschlange ist, durch welche in der Nutzung Dampf geführt wird, um das Wasser im Druckbehälter (5) zu erhitzen.
  10. Vorrichtung nach einem der Ansprüche 3 bis 7, gekennzeichnet dadurch, daß das Auslaßventilmittel (10, 24, 40, 86, 96) ein Membranmittel (10, 24, 40) aufweist, das eine Wirkdruckmembran (24, 40) mit zwei voneinander getrennten Membranen (41, 42) aufweist, zwischen denen ein unter Druck stehender Raum (43) gebildet wird, und daß das Betätigungsmittel so aufgebaut ist, daß es den Druck in dem Raum (43) entspannt, so daß die Membranen (41, 42) in Reaktion auf vorgegebene Bedingungen bersten können.
  11. Vorrichtung nach Anspruch 10, gekennzeichnet dadurch, daß das Betätigungsmittel ein Ventil (51) aufweist, das in Reaktion auf das Auftreten von Explosionsbedingungen in dem Gehäuse aktiviert werden kann, wobei das Ventil (51) bei Betätigung dazu dient, den Druck in dem Raum (43) freizusetzen.
  12. Vorrichtung nach Anspruch 10 oder 11, gekennzeichnet dadurch, daß Mittel vorhanden sind, um den Luftraum (43) zwischen den Membranen (41, 42) auf ein Minimum zu reduzieren.
  13. Vorrichtung nach Anspruch 12, gekennzeichnet dadurch, daß der Raum (43) mit einem nicht komprimierbaren Fluid oder einer inerten Flüssigkeit mit hohem Siedepunkt unter Druck gesetzt wird oder daß der Raum (43) teilweise mit einer Einlage gefüllt ist, die so angeordnet ist, daß sie beim Bersten der Membran (40) aus dem Raum ausgestoßen wird.
Anspruch[en]
  1. , A method of suppressing, extinguishing or inhibiting a fire or an explosion in an area,
    • comprising the step of releasing a charge of suppressant into the area in response to fire or explosion conditions in the area.
    characterised in that the method comprises the steps of:
    • introducing a charge of water into a reservoir means (5, 25, 80, 90) having an outlet means (7, 26) closed by a valve means (10, 24, 40, 85, 86, 96); heating and pressurising the water in the reservoir means (5, 25, 80, 90) to increase the liquid heat content of the water in the reservoir means (5, 25, 80, 90) to such a level that. on release into the lower pressure area. a portion of the pressurised hot water forms droplets and a portion of the water flashes off as steam: maintaining by control means the elevated temperature and pressure conditions of the water in the reservoir means (5. 25, 80, 90):
    • sensing fire or explosion conditions in the area:
    • and opening the valve means (10, 24, 40, 85, 86, 96) in response to fire or explosion conditions occurring in the area to introduce hot water with increased liquid heat content from the reservoir means (5. 25. 80. 90) into the area at a pressure higher than that in the area, so that a portion of the pressurised hot water, the temperature and corresponding pressure of which has been raised by the heating means and maintained by the control means, is fragmented into water droplets and another portion of the water flashes off as steam on entry into the lower pressure area, whereby a vapour cloud formed by the droplets and the flash steam extinguishes or inhibits a fire or an explosion in the area and prevents re-ignition.
  2. A method as claimed in claim 1, wherein the charge of water in the reservoir means is heated to a temperature which is less than the boiling point of the water at the pressure within the reservoir means (5, 25, 80, 90).
  3. Hazard suppression apparatus constructed and adapted to carry out the method of claims 1 and 2. said apparatus being of the type comprising reservoir means (5, 25, 80, 90) having outlet means (7, 26) through which suppressant is introduced into an area, and valve means (10, 24, 40, 86. 96)

    characterised in that:
    • the suppressant is pressurised water with increased liquid heat content at a pressure in the reservoir means which is higher than that in the area into which it is released.
    • and in that the apparatus includes:
      • heating means (9, 28, 83, 95) for heating the water to increase the liquid heat content of the water in the reservoir means (5, 25, 80, 90) to such a level that, on release into the lower pressure area. a portion of the pressurised hot water forms droplets and a portion of the water flashes off as steam:
        • control means for maintaining the elevated temperature and pressure conditions of the water in the reservoir means (5. 25. 80. 90);
        • sensing means for detecting fire or explosion conditions in the area: and
        • actuating means responsive to said sensing means for opening the valve means (10, 24, 40, 86, 96) in response to fire or explosion conditions occurring in the area to introduce pressurised hot water with increased liquid heat content from the reservoir means (5, 25, 80, 90) into the area at a pressure higher than that in the area. whereby in use a portion of the pressurised hot water, the temperature and corresponding pressure which has been raised by the heating means and maintained by the control means, is fragmented into water droplets and another portion of the water flashes off as steam on entry into the lower pressure area. whereby a vapour cloud formed by the droplets and the flash steam extinguishes or inhibits a fire or an explosion in the area and prevents re-ignition.
  4. Apparatus as claimed in claim 3. for use in suppressing, extinguishing or inhibiting a fire or explosion in an enclosure (2, 20, 21, 22). wherein the reservoir means (5, 25) includes a pipeline (25) which is arranged to communicate via the outlet means (26) with the enclosure (2, 20, 21, 22) in use.
  5. Apparatus as claimed in claim 4. characterised in that the pipeline (25) comprises a ring main (25) having a plurality of the outlet means (26) which are mutually spaced apart. said ring main (25) being arranged, in use, to extend substantially around the enclosure (20, 22).
  6. Apparatus as claimed in claim 4. wherein the pipeline (25) comprises a section which is arranged, in use, to extend along at least a portion of the enclosure (21) and which has a plurality of the outlet means (26) which are mutually spaced apart.
  7. Apparatus as claimed in any of claims 4 to 6, characterised in that the heating means (9, 28, 83, 95) comprises means (28) for heating the pipeline (25), the heating means being a steam or electrical heater or a hot air dryer.
  8. Apparatus as claimed in any one of claims 3 to 7. characterised in that the reservoir means includes a pressurised suppression vessel (5).
  9. Apparatus as claimed in claim 8. characterised in that heating means (9, 28, 83, 95) is an electrically powered heating element (9) or a heating coil through which steam is led in use to heat the water in the pressurised suppression vessel (5).
  10. Apparatus as claimed in any of claims 3 to 7, characterised in that the outlet valve means (10, 24, 40, 86, 96) comprises diaphragm means (10, 24, 40) comprising a differential pressure diaphragm (24, 40) comprising two spaced-apart diaphragms (41, 42) defining therebetween a pressurised space (43). and said actuating means is arranged to relieve the pressure in the space (43) to allow bursting of the diaphragms (41, 42) in response to preset conditions.
  11. Apparatus as claimed in claim 10, characterised in that said actuating means comprises a valve (51) which is activatable in response to explosion conditions occurring in the enclosure, the valve (51) when actuated serving to release the pressure in the space (43).
  12. Apparatus as claimed in claim 10 or 11, characterised in that means are provided to minimise the air space (43) between the diaphragms (41, 42).
  13. Apparatus as claimed in claim 12. characterised in that the space (43) is pressurised with an incompressible fluid or a high boiling point inert liquid: or the space (43) is partially filled with an insert which is arranged to be ejected from the space on bursting of the diaphragm (40).
Anspruch[fr]
  1. Un procédé pour prévenir, éteindre ou inhiber un incendie ou une explosion dans une zone, comprenant l'étape d'émission d'une charge d'un produit d'extinction dans la zone en réponse à l'existence de conditions d'incendie ou d'explosion dans la zone, caractérisé en ce que le procédé comprend les étapes ci-dessous:
    • introduction d'une charge d'eau dans un moyen de réservoir (5, 25, 80, 90) possédant un moyen de sortie (7, 26) fermé par un moyen de soupape (10, 24, 40, 85, 86, 96); chauffage et mise sous pression de l'eau dans le moyen de réservoir (5, 25, 80, 90) pour accroître la teneur en chaleur liquide de l'eau dans le moyen de réservoir (5, 25, 80, 90) à un niveau tel que, lors de l'émission dans la zone de pression plus réduite, une partie de l'eau chaude sous pression forme des gouttes et une partie de l'eau est évaporée rapidement sous forme de vapeur;
    • maintien des conditions de température et de pression élevées de l'eau dans le moyen de réservoir (5, 25, 80, 90) par l'intermédiaire d'un moyen de réglage;
    • détection de conditions d'incendie ou d'explosion dans la zone; et ouverture du moyen de soupape (10, 24, 40, 85, 86, 96) en réponse à l'apparition de conditions d'incendie ou d'explosion dans la zone, pour introduire de l'eau chaude à teneur accrue en chaleur liquide du moyen de réservoir (5, 25, 80, 90) dans la zone, à une pression plus élevée que celle existant dans la zone, de sorte qu'une partie de l'eau chaude sous pression, dont la température et la pression correspondante ont été accrues par le moyen de chauffage et maintenues par le moyen de réglage, est fragmentée en gouttes d'eau et qu'une autre partie de l'eau est évaporée rapidement sous forme de vapeur lors de l'entrée dans la zone de pression réduite, un nuage de vapeur formé par les gouttes et la vapeur de détente servant ainsi à l'extinction ou à l'inhibition d'un incendie ou d'une explosion dans la zone et empêchant une nouvelle inflammation.
  2. Un procédé selon la revendication 1, dans lequel la charge d'eau dans le moyen de réservoir est chauffée à une température inférieure au point d'ébullition de l'eau, à la pression existant à l'intérieur du moyen de réservoir (5, 25, 80, 90).
  3. Appareil de prévention de risques, construit et adapté en vue de la mise en application du procédé selon les revendications 1 et 2, ledit appareil étant du type comprenant un moyen de réservoir (5, 25, 80, 90) possédant un moyen de sortie (7, 26), à travers lequel le produit d'extinction est introduit dans une zone, ainsi qu'un moyen de soupape (10, 24, 40, 86, 96), caractérisé en ce que:
    • le produit d'extinction est de l'eau sous pression avec une teneur accrue en chaleur liquide, sa pression dans le moyen de réservoir étant supérieure à celle existant dans la zone dans laquelle il est déchargé,
    • et en ce que l'appareil englobe:
      • un moyen de chauffage (9, 28, 83, 95) pour chauffer l'eau en vue d'accroître la teneur en chaleur liquide de l'eau dans le moyen de réservoir (5, 25, 80, 90), à un niveau tel que lors de l'émission dans la zone de pression réduite, une partie de l'eau chaude sous pression forme des gouttes et une partie de l'eau est évaporée rapidement sous forme de vapeur;
      • un moyen de réglage pour maintenir les conditions de température et de pression élevées de l'eau dans le moyen de réservoir (5, 25, 80, 90);
      • un moyen de détection pour détecter des conditions d'incendie ou d'explosion dans la zone; et
      • un moyen de commande réagissant au dit moyen de détection pour ouvrir le moyen de soupape (10, 24, 40, 86, 96) en réponse à l'apparition de conditions d'incendie ou d'explosion dans la zone, pour introduire de l'eau chaude sous pression avec une teneur accrue en chaleur liquide, du moyen de réservoir (5, 25, 80, 90) dans la zone, à une pression plus élevée que celle existant dans la zone, de sorte qu'en cours de fonctionnement, une partie de l'eau chaude sous pression, dont la température et la pression correspondante ont été élevées par le moyen de chauffage et maintenues par le moyen de réglage est fragmentée en gouttes d'eau et qu'une autre partie de l'eau est évaporée rapidement sous forme de vapeur lors de l'entrée dans la zone de pression réduite, un nuage de vapeur formé par les gouttes et la vapeur de détente servant ainsi à l'extinction ou à l'inhibition d'un incendie ou d'une explosion dans la zone et empêchant une nouvelle inflammation.
  4. Appareil selon la revendication 3, destiné à être utilisé pour prévenir, éteindre ou inhiber un incendie ou une explosion dans une enceinte (2, 20, 21, 22), dans lequel le moyen de réservoir (5, 25) englobe une canalisation (25) agencée de sorte à communiquer en cours de fonctionnement par l'intermédiaire du moyen de sortie (26) avec l'enceinte (2, 20, 21, 22).
  5. Appareil selon la revendication 4, caractérisé en ce que la canalisation (25) comprend une conduite circulaire (25) possédant plusieurs moyens de sortie (26) mutuellement espacés, ladite conduite circulaire (25) étant agencée en cours de fonctionnement de sorte à s'étendre pratiquement autour de l'enceinte (20, 22).
  6. Appareil selon la revendication 4, dans lequel la canalisation (25) comprend une section qui est agencée en cours de fonctionnement de sorte à s'étendre au moins le long d'une partie de l'enceinte (21) et qui comporte plusieurs moyens de sortie (26) mutuellement espacés.
  7. Appareil selon l'une quelconque des revendications 4 à 6, caractérisé en ce que le moyen de chauffage (9, 28, 83, 95) comprend un moyen (28) pour chauffer la canalisation (25), le moyen de chauffage étant un dispositif de chauffage à vapeur, un dispositif de chauffage électrique ou un séchoir à air chaud.
  8. Appareil selon l'une quelconque des revendications 3 à 7, caractérisé en ce que le moyen de réservoir englobe un récipient d'extinction sous pression (5).
  9. Appareil selon la revendication 8, caractérisé en ce que le moyen de chauffage (9, 28, 83, 95) est un élément de chauffage à énergie électrique (9) ou une bobine de chauffage, à travers laquelle la vapeur est guidée en cours de fonctionnement pour chauffer l'eau dans le récipient d'extinction sous pression (5).
  10. Appareil selon l'une quelconque des revendications 3 à 7, caractérisé en ce que le moyen de soupape de sortie (10, 24, 40, 86, 96) comprend un moyen de diaphragme (10, 24, 40), comprenant un diaphragme à pression différentielle (24, 40), comprenant deux diaphragmes espacés (41, 42) définissant un espace sous pression (43) entre eux, et en ce que ledit moyen de commande est agencé de sorte à réduire la pression dans l'espace (43), et à permettre ainsi l'éclatement des diaphragmes (41, 42) en réponse à des conditions préréglées.
  11. Appareil selon la revendication 10, caractérisé en ce que ledit moyen de commande comprend une soupape (51) pouvant être actionnée en réponse à l'apparition de conditions d'explosion dans l'enceinte, la soupape (51) servant en cas d'actionnement à réduire la pression dans l'espace (43).
  12. Appareil selon les revendications 10 ou 11, caractérisé en ce qu'il comporte un moyen pour réduire au minimum l'espace d'air (43) entre les diaphragmes (41, 42).
  13. Appareil selon la revendication 12, caractérisé en ce que l'espace (43) est mis sous pression avec un fluide incompressible ou un liquide inerte à point d'ébullition élevé; ou en ce que l'espace (43) est partiellement rempli par un élément d'insertion agencé de sorte à être éjecté de l'espace lors de l'éclatement du diaphragme (40).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com