PatentDe  


Dokumentenidentifikation EP0364593 31.05.1990
EP-Veröffentlichungsnummer 0364593
Titel WERKZEUGMASCHINE MIT ZWEI HAUPTSPINDELN.
Anmelder Fanuc Ltd., Oshino, Yamanashi, JP
Erfinder KOHARI, Katsuo, Tokyo 190, JP;
KONO, Shinichi Fanuc Mansion Harimomi 7-2, Yamanashi 401-05, JP;
TAKAH1CHI, Hironobu Fanuc Dai-3 Vira-karamatsu, Minamitsuru-gun Yamanashi 401-05, JP
Vertreter derzeit kein Vertreter bestellt
Vertragsstaaten DE, FR, GB
Sprache des Dokument En
EP-Anmeldetag 21.02.1989
EP-Aktenzeichen 899025480
WO-Anmeldetag 21.02.1989
PCT-Aktenzeichen JP8900170
WO-Veröffentlichungsnummer 8908533
WO-Veröffentlichungsdatum 21.09.1989
EP-Offenlegungsdatum 25.04.1990
Veröffentlichungstag im Patentblatt 31.05.1990
IPC-Hauptklasse B23Q 5/10
IPC-Nebenklasse B23Q 15/00   B23B 3/30   G05D 13/62   

Beschreibung[en]

This invention relates to a machine tool having two spindles and, more particularly, to a method of controlling simultaneous operation of the spindles of a machine tool such as a lathe adapted to control two spindles in order to machine a workpiece efficiently.

The machine tool of a multiple-spindle head unit is widely employed to realize a shorter piece time when machining workpieces. As is seen in an NC lathe, by way of example, two or more spindles are provided for each tool rest, and the spindles are controlled by independent spindle motors to shorten the time needed for mounting and unmounting workpieces. Alternatively, the flexibility with which workpieces are machined is enhanced by spindle motors having different functions.

When workpieces are regripped at a plurality of spindles, the same velocity command is applied to each spindle motor and, when the velocities coincide, a transition is made to the next machining operation without stopping the workpiece, which is in the rotating state.

With the conventional machine tool in which two spindles are disposed to oppose each other on the same axis and a tool rest is capable of machining the workpiece at either spindle, it is required that the velocities of both spindles coincide reliably at workpiece regripping. If this is not achieved, the workpiece may be damaged by a chuck or is in danger of being deformed. When the spindle motors differ, however, it is difficult to bring their rotational velocities into perfect coincidence. In addition, owing to the load, the rotational velocities fluctuate even though the velocity commands are the same.

Furthermore, with conventional control for synchronous spindle operation, the rotational angular positions of both spindles do not readily coincide even if the velocities can be made to coincide, and it is difficult to correct for a deviation in chuck meshing position.

Attempts have been made in alternative arts to provide synchronism between two motors. Thus see for example DE-A-2 163 474 wherein two drives can be brought into synchronism employing an up/down counter, and also FR-A-2 087 055 wherein a slave machine is synchronised to a master machine.

The present invention has been devised in order to solve the foregoing problems and its object is to provide a machine tool having two spindles, and a method of controlling the same, in which synchronous operation is performed reliably upon achieving coincidence between the rotational angles of the spindles.

In accordance with one aspect of the invention, there can be provided a machine tool having two spindles in which rotational velocity of a first spindle is made to coincide with rotational velocity of a second spindle and a workpiece is transferred between the spindles, comprising command means for supplying respective velocity controllers of the first and second spindles with identical velocity commands, mode setting means for cutting off the velocity command to the velocity controller of the second spindle and setting an operation control mode for synchronizing the second spindle with the first spindle, arithmetic means for computing a position error related to rotational angles of the first and second spindles in the synchronous operation control mode, and correcting means for correcting the velocity command to the velocity controller of the second spindle in such a manner that a detected position error becomes zero.

Further, in accordance with another aspect of the invention, there can be provided a spindle synchronous operation control method for applying synchronous operation control to first and second spindles having mutually independent velocity control circuits, having a first step of bringing velocity commands to the first and second spindles into coincidence, a second step of detecting actual velocity and rotational angular position of each spindle and computing an error between these velocities and an error between these positions, a third step of correcting one of the velocity commands by the computed velocity error, and a fourth step of correcting one of the velocity commands by the computed position error.

Thus, a machine tool having two spindles in accordance with an embodiment of the invention may be such that the velocity error signal of the first and second spindles and the position error signal of the first and second spindles are each added to the velocity command of the second spindle to enable correction of this velocity command.

Brief Description of the Drawings

Fig. 1 is a view of system configuration illustrating an example of the velocity controller of a machine tool according to the invention, Fig. 2 is a view illustrating the control flow of the abovementioned machine tool system, and Fig. 3 is a view illustrating an example of the construction of the machine tool mechanism for rotating first and second spindles.

An embodiment of the present invention will now be described in detail with reference to the drawings.

Fig. 1 is a view of system configuration illustrating an example of the velocity controller of a machine tool according to the invention.

Servomotors 1, 2, which are for rotating two spindles of a machine tool, are controlled to rotate at a predetermined velocity by current commands from velocity control circuits 3, 4, respectively. During ordinary operation, the velocity control circuits 3, 4 are provided with velocity commands Vcmd&sub1;, Vcmd&sub2; for independently controlling the rotational velocities of the first and second spindles. Velocity and current feedback signals of the servomotors 1, 2 are also applied to the circuits 3, 4. The velocities of the servomotors 1, 2 when V&sub1;, V&sub2; are applied to the velocity control circuits 3, 4 as commanded velocities are detected by respective velocity detectors 5, 6, and the results of detection are applied to an adder 7 as velocity data x&sub1;, x&sub2;, whereby a velocity error e is calculated.

Numeral 8 denotes a position detector of the first spindle. The detector detects rotational position data x&sub1; from the first spindle connected to the servomotor 1 at a gear ratio of 1:n. With regard to the second spindle, rotational position data x&sub2; are detected by a similar position detector 9. These position signals are outputted to an adder 10, where a positional error e˙ is calculated.

Numeral 11 denotes a PI operation adjustment circuit constituting a velocity loop with respect to the velocity control circuit 4. Outputs of an amplifier block 12 comprising a proportional element (P) and a block 13 which includes an integration element (I) are added by an adder 14. Accordingly, with a switch mechanism SW&sub5; turned on, proportional integration data y&sub1; based on a velocity error e˙ from the adder 7 are formed in accordance with the following equation by the PI operation adjustment circuit 11: Y1(s) = K1[1 + (1/Tis)]E(s) where K&sub1; is integration gain and Ti is a constant value corresponding to the time required for integration processing.

The velocity control circuit 4 constitutes also a position loop based on the positional error e from the adder 10. An amplifier block 15 whose proportional constant is K&sub2; is arranged within this position loop.

It is possible for the velocities x˙&sub1;, x˙&sub2; to be determined by computation from amount of movement per unit time using the position detectors 8, 9.

The velocity command Vcmd&sub2; for one of the two spindles of the machine tool that is connected to the servomotor 2 is supplied to the velocity control circuit 4 via a mode changeover circuit 16. The latter comprises four switch mechanisms SW&sub1; - SW&sub4; and three adders 17 - 19 for changing over the control mode. The velocity command Vcmd&sub2; enters the adder 17 via the switch mechanism SW&sub1;. Also applied to the adder 17 via the switch mechanism SW&sub2; is an output y&sub2; of the amplifier block 15. The result of the addition performed by the adder 17 enters the next adder 18, to which is applied the velocity command Vcmd&sub1; via the switch mechanism SW&sub3;. The proportional integration data y&sub1; from the PI operation adjustment circuit 11 is supplied to the adder 19 via the switch mechanism SW&sub4; to be added to the output of the adder 18, thereby forming the command velocity V&sub2; applied to the velocity control circuit 4.

Fig. 2 is a view showing the control flow of the abovementioned machine tool system.

In a case where the rotational velocity of the first spindle is made to coincide with the rotational velocity of the second spindle and a workpiece is transferred between the two spindles, the first step is to set a control mode M1 (step a) for turning on SW&sub1; and turning off SW&sub2; - SW&sub4; in the mode changeover circuit 16. This causes the velocity commands Vcmd&sub1;, Vcmd&sub2; to be delivered to the velocity control circuits 3, 4 (step b).

Next, the control mode is switched from M1 to M2 by turning off SW&sub1;, SW&sub2;, SW&sub4; and turning on SW&sub3;, SW&sub5; (step c), and Vcmd&sub1; is applied to the velocity control circuits 3, 4 (step d).

The command is applied until the absolute value of the difference between the detected velocity x˙&sub1; of the first spindle and Vcmd&sub1; approaches a predetermined value ε (step e).

Next, the control mode is switched from M2 to M3 by turning off SW&sub1;, SW&sub2; and turning on SW&sub3; through SW&sub5;, and the same velocity command is applied to both spindles (step f). As a result, control solely by means of the velocity loop starts, at which time the velocities x˙&sub1;, x˙&sub2; and positions x&sub1;, x&sub2; of the servomotor motors 1, 2 of the respective spindles are detected and the velocity error e˙ calculated. The positions x&sub1;, x&sub2; of the spindles are also calculated at this time (step g). In other words, the command velocity V&sub1; to the velocity control circuit 3 of the first spindle is applied as V1 = Vcmd1 and the velocity command V&sub2; to the velocity control circuit 4 of the second spindle is applied as V2 = Vcmd1 + K1 (x1 - x2) + (K1/Ti) [(x1 - x2) + (x10 - x20)] (step h) obtained by adding the commanded velocity V&sub1; of the first spindle applied to the velocity control circuit 3 and the proportional integration output yl obtained from the velocity deviation e˙. It should be noted that x&sub1;&sub0;, x&sub2;&sub0; represent the offsets of the respective first and second spindles from the machine origin.

The velocity V&sub2; is repeatedly calculated at a predetermined computation cycle until the detected velocities x˙&sub1;, x˙&sub2; of the two spindle motors coincide (step i). At coincidence, the control mode is switched from M3 to M4 by turning off SW&sub1;, SW&sub5; and turning on SW&sub2; - SW&sub4; (step j). In other words, the rotational velocity of the second spindle is subjected to control at the same time by the velocity loop and position loop. Next, the velocities x˙&sub1;, x˙&sub2; and positions x&sub1;, x&sub2; of the spindle servomotors 1, 2 are detected as in step d, and the velocity error e and position error are calculated (step k). That is, with the command velocity V&sub1; applied to the velocity control circuit 3 of the first spindle held at V1 = Vcmd1 the velocity V&sub2; applied to the velocity control circuit 4 of the second spindle is corrected as follows: V2 = Vcmd1 + K1 (x1 - x2) + K2[(x1 - x2) + (x1 - x2)] obtained by adding the command velocity V&sub1; applied to the velocity control circuit 3 of the first spindle, the proportional output y&sub2; based on the position error e, and the proportional output y&sub1; obtained from the velocity error e˙ (step l). The velocity V&sub2; is repeatedly computed at a predetermined computation cycle until the detected posiitons x&sub1;, x&sub2; of the two spindles coincide (step m).

As a result of this series of processing steps, the spindles are reliably operated in synchronism with the rotational angles thereof in agreement. At the moment the velocities and positions of the two spindle motors coincide, a predetermined signal is generated to move the spindles and regrip the workpiece. The switch mechanisms SW&sub1; - SW&sub3; of the mode changeover circuit 16 illustrate the concept of control mode changeover. In actuality, they are constructed as electronic devices or formed as a control program in each servo processor. Accordingly, regardless of the spindle at which the workpiece is gripped, it is possible to achieve coincidence with regard to velocity and position.

Fig. 3 illustrates an example of the arrangement of a machine tool mechanism so adapted that the servomotors 1, 2 rotate a first spindle 23 and a second spindle 24 via respective gear mechanisms 21, 22. When a workpiece 27 held by a chuck 25 attached to the first spindle 23 is regripped by a chuck 26 on the side of the second spindle, the velocity commands for the velocity control circuits 3, 4 are corrected by the above-described control for synchronous spindle operation, whereby the accuracy of the synchronous velocities is enhanced to reduce the load on the workpiece 27 when the workpiece is transferred. Numeral 28 denotes a synchronous control circuit for controlling this synchronous operation of the spindles.

Though an embodiment of the present invention has been described, the invention is not limited thereto but can be modified in various ways without departing from the scope of the claims.

A machine tool having two spindles in accordance with the invention is such that synchronous operation is executed upon achieving coincidence between the rotational angles of the spindles, thereby allowing a workpiece to be regripped during rotation. As a result, labor in a cutting process can be reduced and machining time shortened without damaging workpieces.


Anspruch[de]
  1. Werkzeugmaschine, die zwei Spindeln (23, 24) hat, wobei die Drehgeschwindigkeit einer ersten Spindel (23) so bestimmt wird, daß sie mit der Drehgeschwindigkeit einer zweiten Spindel (24) zusammenfällt, und wobei ein Werkstück (27) zwischen den Spindeln (23, 24) verschoben wird, welche Maschine umfaßt:
    • Befehlsmittel zum Versorgen betreffender Geschwindigkeits-Regelungsschaltungen (3, 4) der ersten und zweiten Spindeln (23, 24) mit identischen Geschwindigkeitsbefehlen,
    • ein Betriebsart-Einstellmittel (16) zum Einstellen einer Synchronbetriebs-Regelungsbetriebsart zum Abschalten des Geschwindigkeitsbefehls für die Geschwindigkeits-Regelungsschaltung (4) der zweiten Spindel (24) und zum Synchronisieren der zweiten Spindel (24) mit der ersten Spindel (23),
    • ein arithmetisches Mittel (10) zum Berechnen einer Positions-Abweichung bezogen auf Drehungswinkel der ersten und zweiten Spindeln (23, 24) in der Synchronbetriebs-Regelungsbetriebsart und
    • Korrekturmittel zum Korrigieren des Geschwindigkeitsbefehls für die Geschwindigkeits-Regelungsschaltung (4) der zweiten Spindel (24) in einer Weise, daß eine erfaßte Positions-Abweichung zu Null wird.
  2. Spindelsynchronbetriebs-Regelungsverfahren zum Anwenden einer Synchronbetriebs-Regelung auf erste und zweite Spindeln (23, 24), die voneinander unabhängige Geschwindigkeits-Regelungsschaltungen (3, 4) haben, welches Verfahren umfaßt:
    • einen ersten Schritt zum Bewirken, daß die Geschwindigkeitsbefehle für die ersten und zweiten Spindeln (23, 24) zusammenfallen,
    • einen zweiten Schritt zum Erfassen der Ist-Geschwindigkeit und der Drehungswinkel-Position jeder Spindel (23, 24) und zum Berechnen einer Abweichung zwischen diesen Geschwindigkeiten und einer Abweichung zwischen diesen Positionen,
    • einen dritten Schritt zum Korrigieren eines der Geschwindigkeitsbefehle mittels der berechneten Geschwindigkeits-Abweichung und
    • einen vierten Schritt zum Korrigieren eines der Geschwindigkeitsbefehle mittels der berechneten Positions-Abweichung.
Anspruch[en]
  1. A machine tool having two spindles (23,24) in which rotational velocity of a first spindle (23) is made to coincide with rotational velocity of a second spindle (24) and a workpiece (27) is transferred between the spindles (23,24), comprising:
    • command means for supplying respective velocity controllers (3,4) of the first and second spindles (23,24) with identical velocity commands;
    • mode setting means (16) for setting a synchronous operation control mode for cutting off the velocity command to the velocity controller (4) of the second spindle (24) and synchronizing the second spindle (24) with the first spindle (23);
    • arithmetic means (10) for computing a position error related to rotational angles of the first and second spindles (23,24) in the synchronous operation control mode; and
    • correcting means for correcting the velocity command to the velocity controller (4) of the second spindle (24) in such a manner that a detected position error becomes zero.
  2. A spindle synchronous operation control method for applying synchronous operation control to first and second spindles (23,24) having mutually independent velocity control circuits (3,4), comprising:
    • a first step of bringing velocity commands to the first and second spindles (23,24) into coincidence;
    • a second step of detecting actual velocity and rotational angular position of each spindle (23,24) and computing an error between these velocities and an error between these positions;
    • a third step of correcting one of said velocity commands by the computed velocity error; and
    • a fourth step of correcting one of said velocity commands by the computed position error.
Anspruch[fr]
  1. Une machine-outil présentant deux broches (23, 24), dans laquelle on fait coïncider la vitesse de rotation d'une première broche (23) avec la vitesse de rotation d'une seconde broche (24) et dans laquelle une pièce d'ouvrage (27) est transférée entre les broches (23, 24), comprenant :
    • des moyens de commande pour fournir des instructions de vitesse identiques aux organes respectifs de commande de vitesse (3, 4) des première et seconde broches (23, 24) ;
    • des moyens de réglage de modes (16) pour régler un mode de commande de fonctionnement synchrone afin d'arrêter l'instruction de vitesse vers l'organe de commande de vitesse (4) de la seconde broche (24) et synchroniser la seconde broche (24) avec la première broche (23) ;
    • des moyens arithmétiques (10) pour calculer une erreur de position reliée aux angles de rotation des première et seconde broches (23, 24) dans le mode de commande de fonctionnement synchrone ; et
    • des moyens de correction pour corriger l'instruction de vitesse appliquée à l'organe de commande de vitesse (4) de la seconde broche (24) de telle manière qu'une erreur de position détectée devienne nulle.
  2. Un procédé de commande du fonctionnement synchrone de broches pour appliquer une commande de fonctionnement synchrone à de première et seconde broches (23, 24) présentant des circuits de commande de vitesse mutuellement indépendants (3, 4), comprenant :
    • une première opération consistant à amener en coïncidence des instructions de vitesse aux première et seconde broches (23, 24) ;
    • une seconde opération consistant à détecter la vitesse et la position angulaire de rotation réelles de chaque broche (23, 24) et de calculer une erreur entre ces vitesses ainsi qu'une erreur entre ces positions ;
    • une troisiéme opération consistant à corriger une desdites instructions de vitesse à l'aide de l'erreur de vitesse calculée ; et
    • une quatrième opération consistant à corriger une desdites instructions de vitesse à l'aide de l'erreur de position calculée.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com