PatentDe  


Dokumentenidentifikation EP0329154 16.12.1993
EP-Veröffentlichungsnummer 0329154
Titel Verfahren zur Herstellung eines dekorativen härtbaren Schichtstoffes.
Anmelder Perstorp AB, Perstorp, SE
Erfinder Lindgren, Kent O., S-284 00 Perstorp, SE;
Danielsson, Sven E., S-284 00 Perstorp, SE;
Johnsson, Tommy M., S-284 00 Perstorp, SE;
Nilsson, Nils-Joel A., S-281 43 Hässleholm, SE
Vertreter Eitle, W., Dipl.-Ing.; Hoffmann, K., Dipl.-Ing. Dr.rer.nat.; Lehn, W., Dipl.-Ing.; Füchsle, K., Dipl.-Ing.; Hansen, B., Dipl.-Chem. Dr.rer.nat.; Brauns, H., Dipl.-Chem. Dr.rer.nat.; Görg, K., Dipl.-Ing.; Kohlmann, K., Dipl.-Ing.; Ritter und Edler von Fischern, B., Dipl.-Ing.; Kolb, H., Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte; Nette, A., Rechtsanw., 81925 München
DE-Aktenzeichen 68910548
Vertragsstaaten AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE
Sprache des Dokument En
EP-Anmeldetag 17.02.1989
EP-Aktenzeichen 891027575
EP-Offenlegungsdatum 23.08.1989
EP date of grant 10.11.1993
Veröffentlichungstag im Patentblatt 16.12.1993
IPC-Hauptklasse B32B 29/00
IPC-Nebenklasse B32B 27/04   

Beschreibung[en]

The present invention relates to a process for the production of a decorative thermosetting laminate with an abrasion resistant surface layer.

Decorative thermosetting laminates are well-known and used for instance as covering material for walls, cupboard doors, desktops tabletops, for other furniture and as flooring material.

Such laminates are often made of two to seven craft paper sheets impregnated with phenol-formaldehyde resin, a monochromatic or patterned decor paper sheet impregnated with melamine-formaldehyde resin and a fine so-called overlay sheet of α-cellulose impregnated with melamine-formaldehyde resin.

The overlay sheet is intended to protect the decor paper sheet from abrasion. In certain cases the overlay sheet is omitted.

There are also laminates consisting of a base layer of particle board or fibre board provided with such a decor paper sheet and possibly an overlay sheet. These sheets can be laminated towards the base layer under heat and pressure. If a decor paper sheet only is used and no overlay sheet, the decor paper sheet can be glued towards the base layer instead.

The laminates have many good properties. However, it has turned out that there is a great need of improving the abrasion resistance of the laminates exposed to an extreme abrasion. This is especially the case with laminates for floors but to a certain extent also laminates for desktops and tabletops.

It has been tried before to improve the abrasion resistance of these laminates by addition of small, hard particles for instance of aluminum oxide already at the production of the overlay paper of α-cellulose. Then the particles have been spread over a layer of wet α-cellulose fibers on the wire of a paper machine.

At said method the particles are distributed more or less irregularily within the whole fibre layer. Some of these particles even pass through the wire. Thus, in the overlayer paper obtained the hard particles will be distributed in an uncontrolable way. It is impossible by this known method to get an even distribution of the hard particles on the surface of the paper, where they give the best effect against abrasion.

In other words the laminates obtained containing such an overlay sheet will get an uneven quality in respect of abrasion resistance.

EP-A- 122 396 describes the production of a decorative laminate wherein a decor sheet is first impregnated with a mixture of a melamine/formaldehyde resin and a crosslinked acrylic resin. In a second step the sheet is impregnated with a mixture of melamine/formaldehyde resin and small hard particles. The abrasion resistance of resin impregnated decor paper bonded on resin impregnated Kraft paper is according to this document improved by incorporating into the decor layer alumina particles.

It is an object of the present invention to provide a process for the production of a decorative thermosetting laminate with an abrasion-resistant surface layer having an improved abrasion resistance and which is easy obtainable. The invention is directed to a process for the production of a decorative thermosetting laminate with an abrasion resistant surface layer, which laminate comprises paper sheets impregnated with a thermosetting resin wherein a continuous paper web is impregnated with a melamine-formaldehyde resin, that at least one side of the continuous paper web is coated with 2 - 20 g/m² , preferably 3 - 12 g/m² of dry and hard particles having an average particle size of 1 - 80 µm evenly distributed over the whole wet surface of resin on the continuous paper web, that the resin is dried, that the particle coated, impregnated paper web (prepreg) is possibly cut to sheets, that at least one such sheet or continuous paper web is placed as a surface layer on a base layer and bonded thereto.

The base layer can consist of a plurality of conventional dry prepregs of continuous paper or paper sheets respectively, which are not coated with particles. The resin in the uppermost of these continuous papers or paper sheets consists of a melamine-formaldehyde resin, while the rest of the continuous papers or paper sheets preferably contain a less noble thermosetting resin such as phenol-formaldehyde resin or phenol-urea-formaldehyde resin. The continuous papers or a pile of paper sheets are laminated continuously or discontinuously respectively with the surface layer at a high pressure and an increased temperature.

According to another embodiment of the invention the base layer can consist of particle board or fibre board, whereby the particle coated paper sheet is bonded to the base layer by glueing or laminating under heat and pressure.

The particle coated paper sheet often consists of a so-called overlay paper, preferably of α-cellulose. However, instead it is also possible to apply the hard particles to the so-called decor paper.

Sometimes you can coat both the overlay paper and the decor paper with particles or use two or more such particle coated overlay papers. It is also possible to put a conventional overlay sheet, which is not coated with particles, over the particle coated sheet or sheets.

The particle coated side is suitably directed towards the upper side of the laminate. This is especially true for particle coated decor paper. Such a placing gives the best abrasion resistance.

However the overlay sheets can have the particle coated side directed towards the under side of the laminate. In this way the abrasion of the press plates can be decreased.

At the use of two particle coated overlay sheets the uppermost one can have the particle coated side directed towards the under side of the laminate while the particle coated side of the other overlay sheet is directed towards the upper side of the laminate.

According to the invention it is possible to avoid the handling of overlay sheets by coating the decor sheet both with hard particles and pulverized α-cellulose impregnated with thermosetting resin such as melamine-formaldehyde resin. The coating can then be applied in one step or in two separate steps. The pulverized α-cellulose will form a protecting layer on top of the decor sheet.

The hard particles can consist of many different materials. It is especially suitable to use silica, aluminum oxide and/or silicon carbide. Accordingly, a mixture of two or more materials is possible. The size of the particles is important for the final result. If the particles are too big the surface of the laminate will be rough and unpleasant. On the other hand too small particles can give too low abrasion resistance. Suitably the average particle size is 1 - 80 µm, preferably 5 - 60 µm.

The invention also relates to a process for the production of a decorative thermosetting resin with an abrasion-resistant surface layer where a special device is used. The device comprises a container containing small hard particles and a rotating doctor-roll with uneven surface placed under the container. The particles fall down from the container to the doctor-roll and then be distributed evenly on a paper web continuously fed under the doctor-roll. The paper web is impregnated with a thermosetting resin which has not been dried before the application of the particles.

Preferably the device also comprises a scraper plate intended to give an even feeding of particles along the surface of the doctor-roll.

Suitably the device comprises an air knife or the like intended to get the hard particles to come loose from the doctor-roll at a constant amount per unit of time.

Also other devices can be used for application of the hard particles to the wet resin surface on the paper web. For instance electrostatic coating can be used. It is also possible to charge the particles by means of friction and then apply them to the resin surface on the paper web. Said charge can be brought about for example by rubbing the particles against a Teflon® surface.

The invention will be explained further in connection with the embodiment examples below and the enclosed drawings. Example 1 shows production of a conventional decorative thermosetting laminate without any special abrasion preventing additives. According to example 2, a special known overlay paper was used, where small hard particles had been added to the paper fibers already at the production of the paper. Examples 3 - 16 illustrate a process according to different embodiments of the invention. Example 17 shows an application of pulverized cellulose solely on a decor paper. Finally Example 18 relates to a process according to another embodiment of the invention where hard particles as well as pulverized cellulose are applied to a decor paper.

On the drawing Fig. 1 shows a container 1 containing small, hard particles 2 and a rotating doctor-roll 3 with uneven surface placed under the container 1. The particles are intended to fall down from the container 1 to the doctor-roll 3 and then be evenly distributed on a paper web 4 continuously fed under the doctor-roll 3.

The paper web 4 is impregnated with melamine-formaldehyde resin which has not been dried before the application of the particles.

The paper web 4 is fed at a constant velocity in the direction of the arrow shown on the figure. However, it is also possible to feed the paper web in the other direction instead.

The doctor-roll 3 can be made of different materials, but it is preferable to make it of steel, especially stainless steel. As mentioned above the surface of the doctor-roll 3 should be uneven. This depends on the fact that in this way the hard particles 2 will follow the surface of the doctor-roll 3 in an even layer which is evenly distributed over the paper web 4.

The surface of the doctor-roll can for instance be provided horizontal and/or vertical grooves along the whole length of the roll. The depth of the grooves can be varied. In many cases, however they suitably have a depth of about 10 - 30 µm.

In order to facilitate an even distribution of particles 2 on the surface of the doctor-roll 3 the device often comprises a scraper plate 5. Furthermore, the device suitably comprises an air knife or the like 6 too. This is intended to help the hard particles 2 to come loose from, the doctor-roll 3 at a constant amount per unit of time.

The dosing amount can be varied in different ways. For example the rotation velocity of the roll 3 or the velocity of the paper web 4 can be varied. The device can also comprise a tightening brush 7.

Fig. 2 shows a magnification of a cross-section of the paper web 4, which web is impregnated with thermosetting resin. The resin is wet and has not been coated yet with particles 2. The web has got resin layers 8 on both sides. For elucidation purposes the thickness of the resin layers 8 has been strongly exaggerated in comparison to the thickness of the web 4.

Fig. 3 shows a similar cross-section as Fig 2. The upper resin layer 8 has however been coated here with small, hard particles 2.

Finally Fig. 4 shows a similar cross-section as in Fig. 2 and Fig. 3. However, here both the upper and the lower resin layer 8 have been coated with small, hard particles 2. For instance this can be brought about with two devices according to the invention, whereby one side is first coated with particles and then the other side.

Example 1

A roll of so-called overlay paper of α-cellulose with a surface weight of 40 g/m² was impregnated with a solution of melamine-formaldehyde resin to a resin content of 70 percent by weight calculated on dry impregnated paper. The impregnated paper web was then fed continuously into a heating oven where the solvent was evaporated. At the same time the resin was partially cured to so-called B-stage. Usually the product obtained is called prepreg.

A roll of so-called decor paper with a surface weight of 80 g/m² was treated in the same way as the overlay paper. The resin content was 48 percent by weight calculated on dry impregnated paper.

A roll of kraft paper with a surface weight of 170 g/m² was also treated in the same way with the exception that the resin consisted of phenol-formaldehyde resin instead of melamine-formaldehyde resin. The resin content was 30 weight percent calculated on dry impregnated paper.

Three of the above prepreg sheets impregnated with phenol-formaldehyde resin (so-called core paper), one decor paper and an overlay paper were placed between two press plates. These sheets were pressed in a conventional multi-opening press at a pressure of 8.83 MPa(90 kp/cm²) and a temperature of 145° C to a homogenous decorative laminate.

The abrasion resistance of the laminate obtained was tested according to the ISO-standard 4586/2 -88 by means of an apparatus called Taber Abraser, model 503. According to said standard the abrasion of the decor layer of the finished laminate is measured in two steps. In step 1 the so-called IP-point (initial point) is measured, where the starting abrasion takes place.

In step 2 the so-called FP-point (final-point) is measured, where 95 % of the decor layer has been abrased.

Moreover, the above ISO-standard stipulates that the number of revolutions obtained with the test machine in step 1 and step 2 are added whereupon the sum obtained is divided with 2. Thereby, the 50 percent point for abrasion is obtained, which is normally reported in standards and off-prints.

However, in the present and the following examples only the IP-point is used.

At the test of the above laminate a value of 200 revolutions was obtained for the IP-point, which is normal for a decorative laminate without any reinforcement of the abrasion layer.

Example 2

In a paper mill an α-cellulose overlay paper was manufactured with a surface weight of 40 g/m² by feeding suspended α-cellulose fibers from a head box to the wire of a paper mill. Aluminum oxide particles with an average particle size of about 50 µm were applied to the upper side of the wet fiber layer in an amount of 3 g/m².

At the subsequent manufacture of the overlay paper the hard particles were distributed more or less irregularily within the whole paper. Some particles landed close to the surface, some near to the middle and some in the lower part of the paper. Certain particles even passed through the whole fibre layer and out of the wire. Thus, they were not left in the finished paper.

The overlay paper produced was impregnated with the same amount of melamine-formaldehyde resin and thereafter treated also as to the rest in the same way as according to Example 1.

A laminate was produced with the same number of sheets and construction as disclosed in Example 1. The pressing took place under the same conditions too.

The abrasion resistance of the laminate obtained was tested in the same way as according to Example 1. An IP-value of 600 revolutions was obtained.

Example 3

The process according to Example 1 was repeated with the difference that immediately after the impregnation but before the drying, aluminum oxide particles with an average particle size of about 50 µm were applied to the upper side of the paper in an amount of 3 g/m². At the application of the aluminum oxide particles an apparatus according to Fig. 1 was used. The revolution velocity of the doctor-roll was 1.5 revolutions per minute.

Thus, the aluminum oxide particles were applied in the melamine-formaldehyde resin, which had not dried yet.

At the subsequent drying the particles were enclosed in the resin layer and consequently concentrated to the surface of the prepreg produced. The overlay sheet was placed with the particle coated side upwards in relation to the decor paper. The abrasion resistance of the laminate produced was tested in the same way as according to Example 1. An IP-value of 2000 revolutions was measured.

Example 4

The process according to Example 3 was repeated with the difference that the amount of aluminum oxide particles was increased from 3 g/m² to 6 g/m². The abrasion resistance of the laminate produced was tested in the same way as according to Example 1. An IP-value of 3 000 revolutions was measured.

Example 5

The process according to Example 3 was repeated with the difference that the amount of aluminum oxide was increased from 3 g/m² to 8 g/m². The abrasion resistance of the laminate produced was tested in the same way as according to Example 1. An IP-value of 4000 revolutions was measured.

Example 6

The process according to Example 3 was repeated with the difference that the amount of aluminum oxide was increased from 3 g/m² to 20 g/m². The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 6 000 revolutions was measured.

However, the laminate had a certain haziness which cannot be accepted. Probably the haziness depends on a too high content of aluminum oxide.

Example 7

The process according to Example 4 was repeated with the difference that the overlay sheet was placed with the particle coated side downwards facing the decor paper. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 1200 revolutions was measured.

Example 8

The process according to Example 7 was repeated with the difference that two overlay sheets coated with hard particles were used. Both overlay sheets were placed with the particle coated side downwards facing the decor paper. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 2800 revolutions was measured.

Example 9

The process according to Example 4 was repeated with the difference that an overlay sheet with a surface weight of 32 g/m² was used. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 2700 revolutions was measured.

Example 10

The process according to Example 9 was repeated with the difference that the particle coated side of the overlay sheet was placed downwards facing the decor paper. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 1100 revolutions was measured.

Example 11

The process according to Example 10 was repeated with the difference that two particle coated overlay sheets were used. The two overlay sheets were placed with the particle coated side downwards facing the decor paper. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 2500 revolutions was measured.

Example 12

The process according to Example 9 was repeated with the difference that an overlay sheet with a surface weight of 25 g/m² was used. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 2600 revolutions was measured.

Example 13

The process according to Example 12 was repeated with the difference that the particle coated side of the overlay sheet was placed downwards facing the decor paper. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 1000 revolutions was measured.

Example 14

The process according to Example 13 was repeated with the difference that two particle coated overlay sheets were used. The two overlay sheets were placed with the particle coated side downwards facing the decor paper. The abrasion resistance of the laminate produced was tested in the same way as in Example 1. An IP-value of 2300 revolutions was measured.

Example 15

A patterned decor paper with a surface weight of 80 g/m² was impregnated with a solution of a rapidly curing melamine-formaldehyde resin to a resin content of 66 % by weight calculated on dry impregnated paper.

The impregnated decor paper which had not been dried yet was provided with an even coating of aluminum oxide particles with an average particle size of 30 µm by means of the device shown in Fig 1. The added amount of particles was 6 g/m².

The impregnated decor paper coated with aluminum oxide particles was dried in a heating oven in the same way as in Example 1. The paper was dried to a moisture content (volatile) of about 6.5 %. The aluminum oxide particles were now embedded in the resin layer.

A decorative laminate consisting of the thus obtained decor paper as a surface layer and three kraft paper webs with a surface weight of 170 g/m², impregnated with a rapidly curing phenol-formaldehyde resin were continuously pressed in a double band press. The press pressure was 50 bar, the press temperature 175° C and the press time 20 seconds.

The particle coated side of the decor paper was directed towards the upper side of the laminate. No overlay paper was used. The laminate was tested in the same way as in Example 1. An IP-value of 550 revolutions was measured.

Example 16

The process according to Example 15 was repeated with the difference that the amount of aluminum oxide particles added was 13 g/m². An IP-value of 2900 revolutions was measured.

Example 17

A patterned decor paper for decorative laminates, with a surface weight of 80 g/m² was impregnated with a solution of a melamine-formaldehyde resin to a resin content of 50 % by weight calculated on dry impregnated paper.

The impregnated decor paper which had not been dried was provided with an even coating of dry particles of an unpigmented cellulose material with an average particle size of about 50 µm. The added amount of cellulose particles was 65 g/m². The particles were applied by the device shown in Fig. 1.

The cellulose material consisted of high-quality, bleached cellulose with a high content of α-cellulose which had been impregnated with a solution of a melamine-formaldehyde resin in a separate process, dried and partially cured to the so-called B-stage of the resin and finally ground to an average particle size of about 50 µm.

The unpigmented cellulose material contained about 70 % by weight of melamine-formaldehyde resin calculated on dry material.

The impregnated decor paper coated with cellulose particles was dried in a heating oven in the same way as in Example 1 to a moisture content (volatile) of 6.5 %. The decor sheet was then placed over three kraft paper sheets impregnated with phenol-formaldehyde resin and pressed to a laminate in the same way as in Example 1. The side of the decor paper coated with cellulose particles was facing upwards in the laminate. No overlay sheet was used.

In the pressed laminate the pattern in the decor sheet could be seen without haziness.

The abrasion resistance was tested in the same way as in Example 1. An IP-value of 300 revolutions was measured.

Thus, the normally used overlay paper can be replaced by a fine powder of cellulose material impregnated with melamine-formaldehyde resin according to the method disclosed above.

Decorative laminates with different levels of abrasion resistance can also be produced by the above technique by varying the amount of cellulose particles added.

Example 18

The process according to Example 17 was repeated with the difference that cellulose particles impregnated with melamine-formaldehyde resin and aluminum oxide particles with an average particle size of 50 µm were applied. The cellulose particles were applied in an amount of 62 g/m² and the aluminum oxide particles in an amount of 3 g/m². An IP-value of 2000 revolutions was measured.


Anspruch[de]
  1. Verfahren zur Herstellung eines dekorativen hitzehärtbaren Laminats mit einer abriebfesten Oberflächenschicht, bei dem das Laminat mit einem hitzehärtbaren Harz imprägnierte Papierbögen umfaßt, wobei eine fortlaufende Papierbahn mit einem MelaminFormaldehyd-Harz lmprägniert wird; mindestens eine Seite der fortlaufenden Papierbahn mit 2 - 20 g/m², vorzugsweise 3 - 12 g/m² trockenen und harten Teilchen, beschichtet wird, die eine durchschnittliche Teilchengröße von 1-80 µm haben, und die gleichmäßig über die gesamte nasse Harzoberfläche auf der fortlaufenden Papierbahn verteilt werden; das Harz getrocknet wird; die mit Teilchen beschichtete, imprägnierte Papierbahn (Prepreg) möglicherweise in Bögen geschnitten wird; mindestens ein solcher Bogen oder eine solche fortlaufende Papierbahn als Oberflächenschicht auf eine Grundschicht gebracht wird und damit verklebt wird.
  2. Verfahren nach Anspruch 1, bei dem die Grundschicht aus einer Vielzahl herkömmlicher trockener Prepregs von fortlaufenden Papierbahnen bzw. Papierbögen besteht, welche nicht mit Teilchen beschichtet sind; das Harz in der obersten dieser fortlaufenden Papierbahnen oder Papierbögen aus Melamin-Formaldehyd-Harz besteht, während der Rest der fortlaufenden Papierbahnen oder der Papierbögen vorzugsweise ein Phenol-Formaldehyd-Harz oder ein Phenol-Harnstoff-Harz enthält; und die fortlaufenden Papierbahnen oder ein Stapel Papierbögen kontinuierlich bzw. diskontinuierlich bei hohem Druck und bei erhöhter Temperatur mit der Oberflächenschicht laminiert werden.
  3. Verfahren nach Anspruch 1, bei dem die Grundschicht aus einer Spanplatte oder einer Faserplatte besteht.
  4. Verfahren nach einem der Ansprüche 1 - 3, bei dem die mit Teilchen beschichtete fortlaufende Papierbahn oder der mit Teilchen beschichtete Papierbogen aus einem sogenannten Overlay-Papier, vorzugsweise aus alpha-Cellulose, und/oder einem sogenannten Dekorbogen besteht.
  5. Verfahren nach Anspruch 3, bei dem die teilchenbeschichtete Papierbahn oder das teilchenbeschichtete Papierblatt durch Verkleben oder Laminieren unter Hitze und Druck mit der Grundschicht verbunden wird.
  6. Verfahren nach einem der Ansprüche 1 - 5, bei dem die harten Teilchen aus Siliziumdioxid, Aluminiumoxid und/oder Siliziumcarbid bestehen.
  7. Verfahren nach einem der Ansprüche 1 - 6, bei dem die Teilchen eine durchschnittliche Teilchengröße von 5 - 60 µm haben.
  8. Verfahren nach einem der Ansprüche 1-7, bei dem die teilchenbeschichtete fortlaufende Papierbahn oder der teilchenbeschichtete Papierbogen ein Dekorbogen ist und dieser Bogen auch mit pulverisierter alpha-Cellulose, die mit einem hitzehärtenden Harz wie Melaminharz imprägniert ist, beschichtet ist.
  9. Verfahren nach einem der Ansprüche 1 - 8, bei dem zwei teilchenbeschichtete Overlay-Bögen verwendet werden.
  10. Verfahren nach einem der Ansprüche 1 - 9, bei dem die teilchenbeschichtete Seite der fortlaufenden Papierbahn oder die teilchenbeschichtete Seite des Bogens zur Oberseite des Laminates gerichtet ist.
  11. Verfahren nach einem der Ansprüche 1 - 10, bei dem die trockenen, harten Teilchen (2) mittels einer Vorrichtung aufgetragen werden, die einen Behälter (1), der die harten Teilchen (2) enthält, und eine rotierende Dosierwalze (3) mit einer ungleichmäßigen Oberfläche, die unter dem Behälter (1) angebracht ist, umfaßt; wobei die Teilchen (2) aus dem Behälter (1) auf die Dosierwalze (3) fallen und gleichmäßig auf der Papierbahn (4) verteilt werden, die kontinuierlich unter der Dosierwalze (3) vorbeigeführt wird; wobei die Papierbahn (4) mit einem hitzehärtbaren Harz imprägniert wird, aber vor dem Auftragen der Teilchen (2) nicht getrocknet wird.
  12. Verfahren nach Anspruch 11, bei dem die verwendete Vorrichtung unter dem Behälter (1) noch eine Abstreichplatte (5) enthält, welche eine gleichmäßige Zuführung der Teilchen entlang der Oberfläche der Dosierwalze (3) schafft.
  13. Verfahren nach Anspruch 11 oder 12, bei dem die verwendete Vorrichtung ein Luftmesser (6) oder dergleichen enthält, um zu erreichen, daß die Teilchen (2) sich in konstanter Menge pro Zeiteinheit von der Dosierwalze (3) lösen.
  14. Verfahren nach einem der Ansprüche 1 - 10, bei die harten Teilchen durch elektrostatische Beschichtung aufgetragen werden.
  15. Verfahren nach einem der Ansprüche 1 - 10, bei dem die harten Teilchen durch Reibung aufgeladen werden und dann auf die Papierbahn aufgetragen werden.
Anspruch[en]
  1. Process for the production of a decorative thermosetting laminate with an abrasion-resistant surface layer, which laminate comprises paper sheets impregnated with a thermosetting resin wherein a continuous paper web is impregnated with a melamine-formaldehyde resin, at least one side of the continuous paper web is coated with 2 - 20 g/m² , preferably 3 - 12 g/m² of dry and hard particles having an average particle size of 1 - 80 µm evenly distributed over the whole wet surface of resin on the continuous paper web, the resin is dried, the particle coated, impregnated paper web (prepreg) is possibly cut to sheets, at least one such sheet or continuous paper web is placed as a surface layer on a base layer and bonded thereto.
  2. Process according to claim 1, wherein the base layer consists of a plurality of conventional dry prepregs of continuous paper webs or paper sheets respectively which are not coated with particles, the resin in the uppermost of these continuous paper webs or paper sheets consists of a melamine-formaldehyde resin, while the rest of the continuous paper webs or paper sheets preferably contain a phenol-formaldehyde resin or phenol-urea-formaldehyde resin, and the continuous paper webs or a pile of paper sheets are laminated continuously or discontinuously respectively with the surface layer at a high pressure and an increased temperature.
  3. Process according to Claim 1, wherein the base layer consists of a particle board or a fibre board.
  4. Process according to any one of Claims 1 - 3, wherein the particle coated continuous paper web or paper sheet consists of a so-called overlay paper, preferably of alpha-cellulose and/or of a so-called decor sheet.
  5. Process according to claim 3, wherein the particle coated continuous paper web or paper sheet is bonded to the base layer by gluing or laminating under heat and pressure.
  6. Process according to any one of Claims 1 - 5, wherein the hard particles consist of silica, aluminum oxide and/or silicon carbide.
  7. Process according to any one of Claims 1 - 6, wherein the particles have an average particle size of 5 to 60 µm.
  8. Process according to any one of Claims 1 - 7, wherein the particle coated continuous paper web or paper sheet is a decor sheet and said sheet is also coated with pulverized alpha-cellulose impregnated with a thermosetting resin, such as melamine resin.
  9. Process according to any one of Claims 1 to 8, wherein two particle coated overlay sheets are used.
  10. Process according to any one of Claims 1 - 9, wherein the particle coated side of the continuous paper web or the sheet is directed toward the upper side of the laminate.
  11. Process according to any one of Claims 1 - 10, wherein the dry, hard particles (2) are applied by means of a device comprising a container (1) containing the hard particles (2), and a rotating doctor-roll (3) with uneven surface placed under the container (1), whereby the particles (2) fall down from the container (1) to the doctor-roll (3) and are evenly distributed on a paper web (4) continuously fed under the doctor-roll (3), said paper web (4) being impregnated with a thermosetting resin but not dried before the application of the particles (2).
  12. Process according to Claim 11, wherein the device used also comprises a scraper plate (5) under the container (1), which plate gives an even feeding of the particles (2) along the surface of the doctor-roll (3).
  13. Process according to Claim 11 or 12, wherein the device used comprises an air knife (6) or the like to get the particles (2) to come loose from the doctor-roll (3) at a constant amount per unit of time.
  14. Process according to any one of Claims 1 - 10, wherein the hard particles are applied by electrostatic coating.
  15. Process according to any one of Claims 1 - 10, wherein the hard particles are charged by means of friction and then applied to the paper web.
Anspruch[fr]
  1. Procédé pour la fabrication d'un stratifié thermodurcissable décoratif avec une couche superficielle résistant à l'abrasion, stratifié qui comprend des feuilles de papier imprégnées d'une résine thermodurcissable, dans lequel un voile de papier continu est imprégné avec une résine mélamine-formaldéhyde, au moins un côté du voile de papier continu est revêtu avec 2-20 g/m², de préférence avec 3-12 g/m² de particules sèches et dures ayant un diamètre moyen des particules de 1-80 µm réparties régulièrement sur l'ensemble de la surface humide de la résine sur le voile en papier continu, la résine est séchée, le voile en papier imprégné, revêtu de particules (feuilles préimprégnées) est éventuellement coupé en feuilles, au moins une telle feuille ou voile en papier continu est placé comme couche superficielle sur une couche de base et liée à celle-ci.
  2. Procédé selon la revendication 1, dans lequel la couche de base est constituée d'une pluralité de feuilles préimprégnées sèches classiques de voile de papier continu ou de feuilles de papier, respectivement, qui ne sont pas revêtues de particules, la résine, dans celui ou celle de ces voiles de papier continus ou feuilles de papier qui est dans la position supérieure, étant constituée d'une résine mélamine-formaldéhyde, alors que le reste des voiles de papier continus ou feuilles de papier contient de préférence une résine phénol-formaldéhyde ou une résine phénol-urée-formaldéhyde, et les voiles de papier continus ou un empilage de feuilles de papier sont laminés en continu ou en discontinu, respectivement, avec la couche superficielle sous haute pression et une température élevée.
  3. Procédé selon la revendication 1, dans lequel la couche de base est constituée d'un panneau de particules ou d'un panneau de fibres.
  4. Procédé selon l'une quelconque des revendications 1-3, dans lequel le voile de papier continu ou la feuille de papier revêtus de particules consistent en papier dit de recouvrement, de préférence en α-cellulose, et/ou une feuille dite de décoration.
  5. Procédé selon la revendication 3, dans lequel le voile ce papier continu ou la feuille de papier revêtus de particules sont liés à la couche de base par collage ou laminage avec chauffage et sous pression.
  6. Procédé selon l'une quelconque des revendications 1-5, dans lequel les particules dures sont constituées de silice, d'oxyde d'aluminium et/ou de carbure de silicium.
  7. Procédé selon l'une quelconque des revendications 1-6, dans lequel les particules ont un diamètre moyen de 5 à 60 µm.
  8. Procédé selon l'une quelconque des revendications 1-7, dans lequel le voile de papier continu ou la feuille de papier revêtus de particules est une feuille de décoration et ladite feuille est également revêtue d'α-cellulose pulvérisée, imprégnée avec une résine thermodurcissable, telle qu'une résine mélamine.
  9. Procédé selon l'une quelconque des revendications 1-8, dans lequel on utilise deux feuilles de recouvrement revêtues de particules.
  10. Procédé selon l'une quelconque des revendications 1-9, dans lequel le côté revêtu de particules du voile ce papier continu ou de la feuille est dirigé vers le côté supérieur du stratifié.
  11. Procédé selon l'une quelconque des revendications 1-10, dans lequel les particules sèches, dures (2) sont appliquées au moyen d'un dispositif comprenant un conteneur (1) renfermant des particules dures (2) et un rouleau-docteur tournant (3) avec une surface irrégulière placée au-dessous du conteneur (1), d'où il résulte que les particules (2) tombent du conteneur (1) sur le rouleau-docteur (3) et sont réparties régulièrement sur un voile de papier (4) introduit continuellement sous le rouleau-docteur (3), ledit voile en papier (4) étant imprégné avec une résine thermodurcissable mais non séché avant l'application des particules (2).
  12. Procédé selon la revendication 11, dans lequel le dispositif utilisé comprend aussi une plaque de grattage (5) sous le conteneur (1), plaque qui donne une introduction régulière des particules (2) le long de la surface du rouleau-docteur (3).
  13. Procédé selon la revendication 11 ou 12, dans lequel le dispositif utilisé comprend un couteau d'air (6) ou analogue pour que les particules (2) se détachent du rouleau-docteur (3) suivant une quantité constante par unité de temps.
  14. Procédé selon l'une quelconque des revendications 1-10, dans lequel les particules dures sont appliquées par revêtement électrostatique.
  15. Procédé selon l'une quelconque des revendications 1-10, dans lequel les particules dures sont chargées par frottement et appliquées alors au voile de papier.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com