PatentDe  


Dokumentenidentifikation DE3426200C2 10.02.1994
Titel Überbrückungselement
Anmelder Asea Brown Boveri AG, 68309 Mannheim, DE
Erfinder Petri, Günther Friedrich, 69207 Sandhausen, DE;
Ziegenbein, Botho, Dr.rer.nat., 69239 Neckarsteinach, DE
DE-Anmeldedatum 17.07.1984
DE-Aktenzeichen 3426200
Offenlegungstag 23.01.1986
Veröffentlichungstag der Patenterteilung 10.02.1994
Veröffentlichungstag im Patentblatt 10.02.1994
IPC-Hauptklasse H01M 2/22
IPC-Nebenklasse H01L 23/48   H01L 29/90   

Beschreibung[de]

Die Erfindung bezieht sich auf ein Überbrückungselement gemäß dem Oberbegriff des Patentanspruches 1.

Solche Überbrückungselemente finden vor allem in Hochtemperaturbatterien eine Anwendung, die aus wiederaufladbaren elektrochemischen Speicherzellen aufgebaut sind. Sie dienen hier zur Überbrückung von Speicherzellen, deren Funktion gestört ist, und die deshalb aus dem Stromkreis der Hochtemperaturbatterie herausgetrennt werden müssen, damit die Kapazität der Batterie nicht wesentlich gemindert wird. Bei Hochtemperaturbatterien, die für Fahrzeuge verwendet werden, besteht die Notwendigkeit, viele elektrochemische Speicherzellen in Reihe und nur wenige parallel zu schalten. Gründe hierfür sind dadurch gegeben, daß der Energieinhalt einer solchen Batterie im allgemeinen kleiner als 40 kWh sein wird, der Energieinhalt einer einzelnen Speicherzelle ist jedoch größer als 80 Wh. Daraus folgt, daß eine Fahrzeugbatterie nicht mehr als 500 Speicherzellen beinhalten muß. Falls mit einer solchen Batterie bei einer Spannung der Einzelspeicherzelle von etwa 2 Volt insgesamt 200 Volt erzeugt werden sollen, müssen 100 Speicherzellen in Serie geschaltet werden. Das bedeutet, daß höchstens 5 Speicherzellen parallel geschaltet werden können. Da die Redundanz bei 5 parallel geschalteten Speicherzellen noch nicht sehr groß ist, ist es zweckmäßig möglichst viele Speicherzellen in Serie zu schalten. Derartige Zweige können dann parallel geschaltet werden, so daß sich das in Fig. 1 dargestellte Schaltschema ergibt. Die Speicherzellen sind in dieser Zeichnung nur durch ihre elektrischen Anschlüsse dargestellt. Wie anhand dieser Zeichnung zu sehen ist, sind jeweils N-Speicherzellen zu einem Zweig serienartig zusammengeschaltet. M-Zweige mit jeweils N-Speicherzellen sind parallel geschaltet und bilden einen Block. Die gesamte Batterie ist aus p solchen seriengeschalteten Blöcken zusammengesetzt. Sie enthält demgemäß in Fig. 1 gezeigten Beispiel n×m×p Speicherzellen.

Probleme treten bei der beschriebenen Schaltung dann auf, wenn eine Speicherzelle einer Serienschaltung defekt wird. Bei Natrium/Schwefel-Speicherzellen hat es sich gezeigt, daß ein Defekt meist dadurch auftritt, daß der Festelektrolyt Risse bekommt, so daß die Reaktionsstoffe Natrium und Schwefel chemisch miteinander direkt reagieren können, und von der Speicherzelle keine Spannung mehr abgegeben wird. Eine solche defekte Speicherzelle weist einen großen Innenwiderstand auf, der meist um mehr als einen Faktor 2 größer ist als der ohmsche Widerstand einer intakten Speicherzelle. Die Folge hiervon ist, daß durch den Zweig mit der defekten Speicherzelle nur ein sehr geringer oder kein Lade- oder Entladestrom fließt. Ist der Widerstand der defekten Speicherzelle sehr groß, so fällt der Zweig, in dem sich die defekte Speicherzelle befindet, vollständig für die Stromversorgung aus. Dies bedeutet, daß die Kapazität der Gesamtbatterie unter diesen Bedingungen um den Faktor (m-1)/m kleiner ist als diejenige einer intakten Batterie.

Aus der DE-PS 31 17 385 ist ein Überbrückungselement bekannt, das für die Überbrückung einer einzelnen Speicherzelle vorgesehen ist. Das Überbrückungselement wird im wesentlichen durch zwei direkt aneinandergrenzende Räume gebildet. Der erste Raum ist mit einem Metall oder einer zersetzbaren Metallverbindung gefüllt. Das Metall muß bei der Betriebstemperatur der Speicherzelle flüssig und die Metallverbindung bei dieser Temperatur zersetzbar sein. Der zweite Raum des Überbrückungselements enthält die in einem definierten Abstand voneinander angeordneten Kontaktflächen von zwei Elektroden. Eine weitere Elektrode ist in dem Raum enthalten, in den das Metall bzw. die Metallverbindung gefüllt ist. Wird die Speicherzelle hochohmig, so kommt es zu einer Spannungsumkehr an ihren Elektroden und damit zu einer Spannungsumkehr an den Anschlußpolen des Überbrückungselementes. Hierdurch wird das in dem ersten Raum enthaltene Metall bzw. die Metallverbindung in den zweiten Raum transportiert. Ist dieser vollständig mit dem Metall bzw. der Metallverbindung gefüllt, so werden die beiden in diesem Raum angeordneten Elektroden durch den flüssigen Werkstoff elektrisch leitend verbunden, so daß der durch die Serienschaltung fließende Strom nun über das Überbrückungselement fließt. Nachteilig ist bei diesem Überbrückungselement, daß es zu aufwendig in seiner Konstruktion ist, und viel Platz beansprucht, der gerade in einer Hochtemperaturspeicherbatterie, die von einer thermischen Isolierung umgeben ist, nicht zur Verfügung steht.

Aus der DE-OS 28 38 996 ist eine Schaltung zu Sicherung von Speicherzellen bekannt, die durch wenigstens zwei parallelgeschaltete, jedoch in Gegenrichtung gepolte Dioden gebildet wird, wobei einer Diode ein Heizelement nachgeschaltet ist, das zur Betätigung eines Schalters vorgesehen ist. Mit Hilfe dieser Anordnung wird erreicht, daß eine Speicherzelle nicht über eine maximale Ladespannung hinaus aufgeladen bzw. nicht unterentladen wird. Wird eine definierte negative Entladespannung erreicht, so spricht das Heizelement an und der Schalter wird geöffnet, so daß die Speicherzelle aus dem Stromkreis getrennt wird.

Der Erfindung liegt die Aufgabe zugrunde, ein Überbrückungselement für ein elektrisches Bauteil, insbesondere eine elektrochemische Speicherzelle aufzuzeigen, das in seinem Abmessungen klein dimensioniert ist, einen einfachen Aufbau aufweist und den Stromkreis durch elektrisches Bauteil im Bedarfsfall niederohmig überbrückt.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst.

Erfindungsgemäß wird jedem elektrischen Bauteil, das beim Bedarfsfall überbrückt werden soll, ein elektrisches Überbrückungselement parallelgeschaltet. Bei Hochtemperaturspeicherbatterien, die aus Speicherzellen auf der Basis von Natrium und Schwefel aufgebaut sind, werden die beiden Anschlußelemente einer jeden Speicherzelle über ein solches Überbrückungselement miteinander verbunden.

Das Überbrückungselement ist so ausgebildet, daß bei einer intakten Speicherzelle, die in Serie mit weiteren Speicherzellen geschaltet ist, der Strom durch die Speicherzelle selbst fließt. Kommt es zu einer Störung innerhalb der Speicherzelle, beispielsweise zu einem Bruch des aus Betaaluminiumoxid gefertigten Festelektrolyten, der die beiden Reaktandenräume der Speicherzelle voneinander trennt, so wird selbige hochohmig und der Stromfluß durch die Speicherzelle unterbrochen. In einem solchen Fall wird der Strom dann vollständig von dem Überbrückungselement übernommen.

Bei einer Ausführungsform der Erfindung ist das Überbrückungselement so ausgebildet, daß es erst dann anspricht, wenn die Speicherzelle, zu der es parallelgeschaltet ist, eine anhaltende Funktionsstörung aufweist. Beim normalen Funktionieren der Speicherzelle fließt in diesem Fall durch das Überbrückungselement nur ein sehr geringer Sperrstrom. Erfindungsgemäß kann das Überbrückungselement auch so ausgebildet sein, daß es auch schon dann anspricht, wenn die Speicherzelle auf ihre maximale Kapazität aufgeladen bzw. vollständig entladen ist. Eine vollständig aufgeladene Zelle wird hochohmig, d. h. durch sie fließt nur noch ein sehr kleiner Strom. Dies bedeutet, daß bei einer Serienschaltung von Speicherzellen der Stromfluß durch die Reihenschaltung unterbrochen wird. Noch nicht vollständig aufgeladene Speicherzellen werden nicht mehr weiter geladen werden, so daß hierdurch die gesamte Kapazität der Speicherzellen dieser Reihenschaltung niedriger ist als die andere Serienschaltungen. Durch das erfindungsgemäße Überbrückungselement wird die Speicherzelle beim Erreichen ihrer maximalen Aufladung so lange überbrückt, bis alle Speicherzellen der Serienschaltung aufgeladen sind. Eine solche Überbrückung ist auch dann möglich und sinnvoll, wenn die Speicherzelle soweit entladen ist, daß ihre Spannung den Wert null erreicht hat. Wird der Stromkreis durch die Speicherzelle dann ebenfalls durch das Überbrückungselement überbrückt, so wird das Fließen eines Kurzschlußstromes durch die Speicherzelle vermieden. Insbesondere wird durch die Überbrückung verhindert, daß der Speicherzelle von außen ein Strom aufgezwungen wird, der die Umpolung der Speicherspannung bewirkt, so daß diese negativ wird.

Erfindungsgemäß wird das Überbrückungselement durch ein Halbleiterbauelement gebildet, daß über wenigstens zwei elektrisch leitende teilweise als Federn ausgebildete Bauteile elektrisch leitend mit einem elektrischen Anschlußpol des Überbrückungselementes verbunden ist. Jedem Bauelement, insbesondere jeder elektrochemischen Speicherzelle wird ein solches Überbrückungselement parallel geschaltet. Die Überbrückungselemente werden zusammen mit den Speicherzellen innerhalb der Batterie angeordnet, die nach außen hin durch eine thermische Isolierung begrenzt ist. Im Innenraum der Batterie herrscht eine Temperatur von 350°C, was der Arbeitstemperatur der Speicherzellen entspricht. Beim Hochohmig werden einer Speicherzelle fließt der gesamte Strom der Reihenschaltung durch das Überbrückungselement, insbesondere durch sein Halbleiterbauelement. Hierdurch wird die Temperatur innerhalb des Überbrückungselements auf 570° und wesentlich mehr erhöht, so daß die Glaskapselung des Halbleiterbauelements zu schmelzen beginnt. Bei einer Ausführungsform ist das Halbleiterbauelement über ein scheibenförmiges Bauteil und eine Kontaktfeder mit einem ersten Anschlußelement verbunden. Das Halbleiterbauelement sitzt in elektrisch leitender Verbindung auf der Innenfläche eines Gehäuses auf. Das erste Ende der Kontaktfeder drückt gegen das zwischen ihm und dem Halbleiterbauelement angeordneten Bauteil. Das zweite Ende der Kontaktfeder ist durch die Gehäusewand isoliert nach außen geführt und dort mit dem ersten Anschlußelement des Überbrückungselementes verbunden. An der Außenfläche des metallischen Gehäuses ist das zweite elektrische Anschlußelement des Überbrückungselementes befestigt. Auf Grund des Temperaturanstiegs innerhalb des Überbrückungselements beginnt auch das scheibenförmige Bauteil zu schmelzen, so daß es zusammen mit dem Halbleiterbauelement ein Kurzschlußelement bildet. Die elektrische Verbindung zwischen diesem Kurzschlußelement und dem elektrischen Anschlußpol wird weiterhin durch die Kontaktfeder gebildet.

Bei einer anderen Ausführungsform der Erfindung ist das Halbleiterbauelement mit seinem ersten Anschlußpol über eine Kontaktfeder und zusätzlich über eine Tellerfeder mit der elektrisch leitenden Innenfläche eines Gehäuses verbunden, innerhalb dessen das Halbleiterbauelement angeordnet ist. Dieser ersten inneren Begrenzungsfläche des Gehäuses liegt eine zweite ebenfalls elektrisch leitende Begrenzungsfläche gegenüber, mit welcher das Halbleiterbauelement direkt verbunden ist. Zwischen den beiden elektrisch leitenden Begrenzungsflächen sind zwei isolierende Begrenzungsflächen angeordnet, so daß ein geschlossenes Gehäuse gebildet wird. An der Außenfläche der ersten elektrisch leitenden Begrenzungsfläche ist der erste Anschlußpol und an der zweiten elektrisch leitenden Wand der zweite elektrische Anschlußpol des Überbrückungselementes befestigt. Fließt der gesamte Strom, der normalerweise durch die Speicherzelle fließt, durch dieses Überbrückungselement, so wird die Temperatur im Halbleiterbauelement so stark erhöht, daß die Glaskapselung des Halbleiterbauelements zu schmelzen beginnt. Dadurch wird die Spannung der Federn reduziert. Aufgrund der sich nun ausdehnenden Tellerfeder, wird die Kontaktfeder in Richtung auf das Halbleiterbauelement gedrückt bis sie auf einem in das Innere des Gehäuses hineinragenden Stift aufliegt, der elektrisch leitend mit der zweiten metallischen Begrenzungsfläche verbunden ist. Damit ist eine niederohmige Verbindung zwischen den beiden Gehäusewandungen, insbesondere den beiden an ihnen befestigten Anschlußelementen des Überbrückungselementes gebildet.

Die zur Fertigung der Überbrückungselemente verwendeten Halbleiterbauelemente können beispielsweise als Zenerdioden ausgebildet sein.

Werden als Halbleiterbauelemente Siliziumdioden verwendet, so sind diese bei der normalen Funktionsweise der Speicherzelle so gepolt, daß durch sie nur ein kleiner Sperrstrom fließt. Wird die Speicherzelle hochohmig und kommt es an ihren Anschlußelementen zu einer Spannungsumkehr, so wird das Halbleiterbauelement in Durchlaßrichtung gepolt, so daß der gesamte Strom von dem Überbrückungselement übernommen werden kann.

Um den Sperrstrom bei erhöhten Batterietemperaturen zu erniedrigen, ist es jedoch besser ein Halbleiterelement aus Galliumarsenid oder Galliumsphosphid zu verwenden.

Die Erfindung wird nachfolgend anhand von Zeichnungen erläutert.

Es zeigen:

Fig. 1 den schematischen Schaltungsaufbau einer Hochtemperaturspeicherbatterie,

Fig. 2 ein erfindungsgemäßes Überbrückungselement,

Fig. 3 eine Variante des Überbrückungselements,

Fig. 4 die Serienschaltung von mehreren Speicherzellen, von denen jede mit einem Überbrückungselement ausgerüstet ist.

Das in Fig. 2 dargestellte Überbrückungselement 1 wird im wesentlichen durch ein Halbleiterbauelement 2, ein scheibenförmiges Bauteil 3 und eine Kontaktfeder 4 gebildet. Begrenzt wird das Überbrückungselement 1 nach außen hin durch ein metallisches Gehäuse 5, das becherförmig ausgebildet ist. Das Halbleiterbauelement 2 ist als Siliziumdiode oder als Zenerdiode ausgebildet. Es ist auf der Innenfläche des metallischen Gehäuses 5 angeordnet, und direkt elektrisch leitend mit diesem verbunden. Der zweite elektrische Anschluß des Halbleiterbauelementes 2 steht über das scheibenförmige Bauteil 3 mit der Kontaktfeder in Verbindung. Dieses ist aus einer Schmelzlegierung, beispielsweise aus einer Aluminiumlegierung, gefertigt. Auf der Oberfläche des scheibenförmigen Bauteils 3 ist das erste Ende der Kontaktfeder 4 so angeordnet, daß eine elektrisch leitende Verbindung zwischen dem Bauteil 3 und selbigem besteht. Die Kontaktfeder 4 ist so installiert, daß ihr erstes Ende fest gegen die Oberfläche des scheibenförmigen Bauteils 3 drückt. Insbesondere ist die Kontaktfeder 4 in vorgespanntem Zustand innerhalb des Gehäuses 5 angeordnet. Das zweite Ende der Kontaktfeder 4 ist durch einen Verschluß 6 hindurch nach außen geführt. Der Verschluß 6 ist aus einem isolierenden Material gefertigt, das gegenüber Temperaturen von 580° und mehr beständig ist. Das zweite Ende der Kontaktfeder steht nach außen über und ist mit dem ersten Anschlußelement 7 des Überbrückungselements elektrisch leitend verbunden. Das Anschlußelement 7 wird beispielsweise durch einen stabförmigen Leiter gebildet. Das zweite Anschlußelement 8 des Überbrückungselementes 1 wird ebenfalls durch einen stabförmigen Leiter gebildet, der elektrisch leitend mit der Außenfläche des Gehäuses 5 verbunden ist. Wird von diesem Überbrückungselement 1 der gesamte Strom, der normalerweise durch die Speicherzelle fließt, übernommen, so bewirkt dieser zumindest im Bereich des Halbleiterbauelementes 2 und des scheibenförmigen Bauteils 3 eine Temperaturerhöhung die mindestens 570°C und mehr beträgt.

Aufgrund dieser Temperaturerhöhung beginnt die Glaskapselung um das Halbleiterbauelement und das Bauteil 3 zu schmelzen. Gleichzeitig wird das Halbleiterbauelement 2 von der Kontaktfeder 4 in das Bauteil 3 gedrückt, so daß die Kontaktfeder über das so gebildete Kurzschlußelement mit der Begrenzungsfläche verbunden ist, womit eine niederohmige elektrisch leitende Verbindung zwischen den Anschlußelementen 7 und 8 des Überbrückungselementes gebildet wird.

Fig. 3 zeigt eine Variante des Überbrückungselements 1, das im wesentlichen durch ein Halbleiterbauelement 2 eine Kontaktfeder 3 und eine Tellerfeder 4 gebildet wird. Das Halbleiterbauelement 2 ist innerhalb eines quaderförmigen Gehäuses 5 angeordnet. Dieses weist zwei einander gegenüberliegende elektrisch leitende Begrenzungswände 5A und 5B auf, während die übrigen Begrenzungswände 5D und 5E aus einem isolierenden Material gefertigt sind. Das Halbleiterbauelement ist mit seinem ersten Anschlußpol direkt mit der elektrisch leitenden Begrenzungsfläche 5A verbunden. Sein Anschlußpol 2A ist elektrisch leitend in eine Vertiefung der Begrenzungsfläche 5A eingesetzt. Der zweite Anschlußpol 2B des Halbleiterbauelements ist elektrisch leitend in eine Ausnehmung der Kontaktfeder 3 eingesetzt. Der äußere Rand der scheibenförmigen Kontaktfeder 3 steht mit einem in den Innenraum des Gehäuses 5 hineinragenden hakenförmig ausgebildeten Arm 5E der zweiten elektrisch leitenden Begrenzungsfläche 5B des Gehäuses 5 in Verbindung. Zwischen der Oberfläche der scheibenförmigen Kontaktfeder 3 und der Innenfläche der Begrenzungsfläche 5B ist die Tellerfeder 4 in gespanntem Zustand angeordnet. Durch die oben beschriebenen Maßnahmen ist der Anschlußpol 2B des Halbleiterbauelements 2 mit der elektrisch leitenden Begrenzungsfläche 5B zum einen über die Kontaktfeder 3 und den Arm 5E und zum anderen über die Kontaktfeder 3 und die Tellerfeder 4 elektrisch leitend verbunden. Parallel zu der Begrenzungsfläche 5D verläuft ein Stift 6, der in den Innenraum des Gehäuses 5 ragt und elektrisch leitend mit der Begrenzungsfläche 5A verbunden ist. Der Stift 6 ist soweit in den Innenraum hineingeführt, daß er in geringem Abstand von der Kontaktfeder 3 endet. Das erste elektrisch leitende Anschlußelement 7 ist mit der Begrenzungsfläche 5A des Gehäuses 5 verbunden. Es wird bei dem hier dargestellten Ausführungsbeispiel durch einen stabförmigen Leiter gebildet. Das zweite elektrische Anschlußelement 8 ist an der Außenseite der Begrenzungsfläche 5B befestigt und wird ebenfalls durch einen stabförmigen Leiter gebildet.

Wird der gesamte, durch eine Speicherzelle fließende Strom von diesem Überbrückungselement übernommen, so kommt es auch hierin, insbesondere im Bereich des Halbleiterbauelements 2 zu einer Temperaturerhöhung auf Werte von 570°C und mehr, woraufhin die Glaskapselung des Halbleiterbauelements zu schmelzen beginnt. Die Festigkeit der Glaskapselung durch welche die Tellerfeder in ihrem gespannten Zustand zwischen der Kontaktfeder 3 und der Begrenzungsfläche 5B gehalten wird, nimmt ab. Aufgrund der sich entspannenden Tellerfeder 4 wird die Kontaktfeder 3 in Richtung auf den Stift 6 gedrückt, bis sie auf der Oberfläche desselben aufliegt. Hierdurch wird eine elektrisch leitende, niederohmige Verbindung zwischen der elektrisch leitenden Begrenzungsfläche 5A und der ebenfalls elektrisch leitenden Begrenzungsfläche 5B gebildet.

Bei den beiden in den Fig. 2 und 3 beschriebenen Ausführungsformen besteht die Möglichkeit, die verwendeten Halbleiterbauelemente 2 als Zenerdioden auszubilden, so daß das Überbrückungselement den Strom durch die Speicherzelle nicht nur dann übernimmt, wenn die Speicherzelle defekt ist, sondern auch dann, wenn die Speicherzelle auf ihre maximale Kapazität aufgeladen bzw. ihre Spannung den Wert Null erreicht hat. Vorzugsweise werden Zenerdioden verwendet, deren Nennspannung der maximalen Ladespannung der Speicherzellen entspricht, und deren Durchlaß-Spannung sehr sehr klein ist, so daß das Überbrückungselement beim Vorliegen der oben genannten Bedingungen auch zeitweilig den Strom übernehmen kann.

In Fig. 4 sind drei in Reihe geschaltete Speicherzellen 20 dargestellt. Jeder Speicherzelle 20 ist ein Überbrückungselement 1 parallel geschaltet. Zwei der Speicherzellen 20, sind mit je einem Überbrückungselement ausgerüstet, das in Fig. 2 dargestellt und in der dazugehörigen Beschreibung näher erläutert ist, während die dritte Speicherzelle 20 mit dem in Fig. 3 dargestellten und in der dazugehörigen Beschreibung erläuterten Überbrückungselement 1 verbunden ist. Beide Ausführungsformen sind gleichwertig, und können bei Bedarf in der Weise, wie in Fig. 3 dargestellt, benutzt werden. Jede Speicherzelle 20 ist nach außen hin von einem metallischen becherförmigen Gehäuse 21 begrenzt. Innerhalb desselben ist ein ebenfalls becherförmiger Festelektrolyt 22 aus Betaaluminiumoxid angeordnet. Zwischen dem Festelektrolyten 22 und dem metallischen Gehäuse 1 ist bei den hier dargestellten Ausführungsformen der Kathodenraum 23 angeordnet, während sich im Inneren des Festelektrolyten 22 der Anodenraum 24 befindet. Dieser ist mit Natrium (hier nicht dargestellt) ausgefüllt. Innerhalb des Kathodenraums 23 befindet sich der als zweiter Reaktand dienende Schwefel (hier nicht dargestellt). In jeden Reaktandenraum 23, 24 ragt ein Stromabnehmer 25, 26. Mit dem Stromabnehmer 25 ist das jeweilige Anschlußelement 7 und mit dem Stromabnehmer 26 das jeweilige Anschlußelement 8 des Überbrückungselements elektrisch leitend verbunden. Solange die Speicherzellen 20 voll funktionsfähig sind, fließt der Strom durch diese hindurch. Die Überbrückungselemente 1 sind wie bereits oben erwähnt, so installiert, daß bei voller Funktionsfähigkeit der Speicherzelle durch sie nur ein sehr sehr kleiner Sperrstrom fließt. Sind die in den Überbrückungselementen 1 enthaltenen Halbleiterbauelemente 2 als Zenerdioden ausgebildet, so können die Überbrückungselemente den Strom auch dann übernehmen, wenn die Speicherzelle voll aufgeladen bzw. voll entladen ist. Diese Stromübernahme ist jedoch nur kurzzeitig. Erst beim Auftreten eines Defektes innerhalb der Speicherzelle 20 wird der Stromkreis dauerhaft durch das Überbrückungselement 1 überbrückt.


Anspruch[de]
  1. 1. Überbrückungselement mit einem Halbleiterbauelement (2) und zwei elektrischen Anschlußpolen (7, 8) zur Überbrückung eines elektrischen Bauteils, insbesondere einer wiederaufladbaren elektrochemischen Speicherzelle (20), dadurch gekennzeichnet, daß das Halbleiterbauelement (2) elektrisch leitend auf der Innenfläche eines metallischen Gehäuses (5) angeordnet ist, und über ein scheibenförmiges Bauteil (3) aus einer Aluminiumlegierung elektrisch leitend mit einer vorgespannten Kontaktfeder (4) in Verbindung steht, deren zweites Ende aus dem Gehäuse (5) isoliert herausgeführt und mit dem ersten Anschlußpol (7) verbunden ist, und daß das Bauteil (3) bei einer Temperaturerhöhung auf Werte von 570°C und mehr mit dem Halbleiterbauelement (2) zu einem niederohmigen Kurzschlußelement zusammenfügbar ist.
  2. 2. Überbrückungselement mit einem Halbleiterbauelement (2) und zwei elektrischen Anschlußpolen (7, 8) zur Überbrückung eines elektrischen Bauteils, insbesondere einer wiederaufladbaren elektrochemischen Speicherzelle (20), dadurch gekennzeichnet, daß das Halbleiterbauelement (2) elektrisch leitend mit der ersten elektrisch leitenden Begrenzungsfläche (5A) eines Gehäuses (5) und mit der zweiten elektrisch leitenden Begrenzungsfläche (5B) über eine Kontaktfeder (3) und über die Kontaktfeder (3) und eine Tellerfeder (4) verbunden, daß der Rand der Kontaktfeder (3) bereichsweise auf einem in den Innenraum des Gehäuses (5) weisenden hakenförmig gebogenen Arm (5E) der zweiten Begrenzungsfläche (5B) auf liegt, und daß je ein elektrischer Anschlußpol (7, 8) elektrisch leitend mit der ersten bzw. zweiten elektrisch leitenden Begrenzungsfläche (5A, 5B) des Gehäuses (5) verbunden ist.
  3. 3. Überbrückungselement nach Anspruch 2, dadurch gekennzeichnet, daß der erste Anschlußpol (2B) des Halbleiterbauelements (2) in eine Ausnehmung der Kontaktfeder (3) und der zweite Anschlußpol (2A) des Halbleiterbauelements (2) in eine Ausnehmung der ersten elektrisch leitenden Begrenzungsfläche (5A) eingesetzt ist, und daß ein mit der ersten Begrenzungsfläche (5A) verbundener elektrisch leitender Stift (6) in den Innenraum des Gehäuses (5) ragt, und in geringem Abstand unterhalb der Kontaktfeder (3) endet.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com