PatentDe  


Dokumentenidentifikation DE3810244C2 10.02.1994
Titel Ferromagnetfilm und dessen Verwendung
Anmelder Hitachi, Ltd., Tokio/Tokyo, JP
Erfinder Kobayashi, Toshio, Tokio/Tokyo, JP;
Nakatani, Ryoichi, Akigawa, JP;
Otomo, Shigekazu, Sayama, JP;
Kumasaka, Noriyuki, Ome, JP
Vertreter Beetz, R., Dipl.-Ing. Dr.-Ing.; Timpe, W., Dr.-Ing.; Siegfried, J., Dipl.-Ing.; Schmitt-Fumian, W., Prof. Dipl.-Chem. Dr.rer.nat.; Mayr, C., Dipl.-Phys.Dr.rer.nat., Pat.-Anwälte, 80538 München
DE-Anmeldedatum 25.03.1988
DE-Aktenzeichen 3810244
Offenlegungstag 06.10.1988
Veröffentlichungstag der Patenterteilung 10.02.1994
Veröffentlichungstag im Patentblatt 10.02.1994
IPC-Hauptklasse H01F 10/14
IPC-Nebenklasse G11B 5/31   

Beschreibung[de]

Die Erfindung betrifft einen Ferromagnetfilm und seine Verwendung als Kernmaterial eines Magnetkopfs für einen Magnettonplattenspieler oder ein Video-Bandaufnahmegerät und insbesondere einen Ferromagnetfilm mit hoher magnetischer Sättigungsinduktion, hoher Permeabilität, niedriger Magnetostriktionskonstante und hoher Korrosionsbeständigkeit, sowie einen Magnetkopf, der unter Verwendung dieses Ferromagnetfilms hergestellt wird.

Die Technologie der Magnetaufnahme hat in den letzten Jahren bemerkenswerte Fortschritte gemacht, die Aufnahmedichte von Magnetaufnahmen ist jetzt so erhöht, daß ein Heimvideo-Bandaufnahmegerät sowohl von der Größe als auch vom Gewicht her klein ist und die Speicherkapazität einer Magnetplatte hoch ist. Um die Aufnahmedichte zu erhöhen, muß ein Ferromagnetfilm, der in einem Magnetkopf verwendet wird, eine hohe magnetische Sättigungsinduktion haben, so daß eine hohe Aufnahmedichte mit einem Aufnahmemedium mit hoher Koerzivität erreicht werden kann.

Außerdem muß das Material eines in einem Magnetkopf verwendeten Ferromagnetfilms eine hohe Permeabilität aufweisen, um den Aufnahme/Wiedergabe-Wirkungsgrad zu verbessern. Um diesen Wirkungsgrad stabil zu halten, hat das Material vorzugsweise eine Magnetostriktionskonstante von praktisch gleich Null.

Als Magnetmaterial mit diesen magnetischen Eigenschaften wurden eine Fe-Al-Si-Legierung (die sog. "sendust", vgl. JP-A-60-74,110) und eine Fe-Si-Legierung (vgl. JP-A-52-112,797 und JP-A-59-182,938) entwickelt. Jede dieser Legierungen enthält Eisen als Hauptbestandteil und hat eine hohe magnetische Sättigungsinduktion, sie können daher als Magnetkopfmaterial verwendet werden.

Die Fe-Al-Si-Legierung hat allerdings eine relativ niedrige magnetische Sättigungsinduktion von etwa 1 T. Die Fe-Si-Legierung hat zwar eine hohe magnetische Sättigungsinduktion von 1,8 T, jedoch nur eine geringe Korrosionsbeständigkeit. Wird beispielsweise Ruthenium (Ru) der Fe-Si-Legierung zur Verbesserung der Korrosionsbeständigkeit zugegeben, so sinkt ihre magnetische Sättigungsinduktion auf etwa 1,4 T.

JP 62-37914 beschreibt einen ferromagnetischen Permalloyfilm, der außer Ni und Fe wenigstens eines der Elemente Zr, Nb, Ta, Cr, Mo, W, Ti, V, Co und Cu enthält.

IEEE Trans. Magnetics, Vol. MAG-20 (1984), S. 1451-1453 beschreibt einen ferromagnetischen Film aus Eisennitridverbindungen.

Aufgabe der Erfindung war, einen Ferromagnetfilm anzugeben, in dem die oben beschriebenen Nachteile nicht mehr vorhanden sind, der eine hohe magnetische Sättigungsinduktion, eine hohe Permeabilität, eine niedrige Magnetostriktionskonstante und eine hohe Korrosionsbeständigkeit hat und der als Kernmaterial eines Magnetkopfs verwendet werden kann.

Diese Aufgabe wird erfindungsgemäß durch den Ferromagnetfilm gemäß Patentanspruch 1 gelöst.

Vorteilhafte Ausgestaltungen dieses Ferromagnetfilms und seine Verwendung sind in den Unteransprüchen gekennzeichnet.

Der erfindungsgemäße Ferromagnetfilm hat eine hohe magnetische Sättigungsinduktion und eine hohe Permeabilität, seine Korrosionsbeständigkeit ist verbessert, und der Absolutwert der Magnetostriktionskonstante ist vermindert, ohne Beeinträchtigung seiner magnetischen Eigenschaften.

Werden der erfindungsgemäße Ferromagnetfilm als Hauptmagnetfilm und ein Metallfilm abwechselnd zu einem Mehrschichtfilm laminiert, so kann die Permeabilität des Mehrschichtfilms deutlich verbessert werden.

Somit kann durch Zugabe eines weiteren Elements, das in dem Eisen als Hauptbestandteil interstitiell löslich ist, ein Ferromagnetfilm erhalten werden, dessen Permeabilität verbessert und dessen Koerzivität verringert ist, ohne Beeinträchtigung der magnetischen Sättigungsinduktion. Auch die weichmagnetischen Eigenschaften des Magnetfilms werden verbessert. Der Grund dafür ist noch nicht klar. Jedoch wird bei einem Magnetfilm, der neben dem Eisen noch ein weiteres in dem Eisen interstitiell lösliches Element enthält, die Röntgenbeugungslinie des Magnetfilms breit, das Elektronenmikroskopbild des Magnetfilms zeigt Kristallkörner, die kleiner sind als die eines Magnetfilms, der kein in dem Eisen interstitiell lösliches Element enthält. Daher wird vermutet, daß die Zugabe eines in dem Eisen interstitiell löslichen Elements zum Magnetfilm die Magnetokristallanisotropiekonstante verringert oder die Dispersion der magnetischen Anisotropie senkt und daher die weichmagnetischen Eigenschaften des Magnetfilms verbessert. Außerdem tritt selbst bei einer Zugabe des in dem Eisen interstitiell löslichen Elements zum Magnetfilm in einer Konzentration von 10 bis 20 Mol-% fast keine Reduktion der magnetischen Sättigungsinduktion des Magnetfilms auf, die eine Eigenschaft des interstitiell löslichen Elements ist. Die Anzahl an in einer Volumeneinheit enthaltenen Eisenatome bleibt unverändert, da das Element in dem Eisengitter interstitiell löslich ist; es wird vermutet, daß dies einen günstigen Einfluß hat.

Es wurde weiter festgestellt, daß bei Zugabe mindestens eines Elements aus der Gruppe Ni, Rh, Ru, Pd, Zr, Nb, Ta, Ag, Os, Ir, Pt, Au, Cr, Mo, W, Ti, Bi, V, Co und Cu zu einem Magnetfilm, der zusätzlich zum Eisen als Hauptbestandteil ein in dem Eisen interstitiell lösliches Element enthält, die Korrosionsbeständigkeit des Magnetfilms stark verbessert werden kann, ohne Beeinträchtigung der weichmagnetischen Eigenschaften des Magnetfilms. Es wurde außerdem festgestellt, daß die Korrosionsbeständigkeit des Magnetfilms mit zunehmender Menge des dem Magnetfilm zur Verbesserung der Korrosionsbeständigkeit zugegebenen Elements zunimmt. Jedoch mit zunehmender Menge dieses Elements ändert sich die Magnetostriktionskonstante des Magnetfilms von einem negativen zu einem positiven Wert. Damit der Magnetfilm eine Magnetostriktionskonstante mit einem sehr geringen Absolutwert und außerdem eine ausgezeichnete Korrosionsbeständigkeit hat, wird das Element zur Verbesserung der Korrosionsbeständigkeit dem Magnetfilm vorzugsweise in einer Konzentration von 0,5 bis 5 Mol-% zugegeben.

Wird ferner ein Element, das in Eisen interstitiell löslich ist, einem Magnetfilm zugegeben, der Eisen als Hauptbestandteil enthält, so nimmt die Magnetostriktionskonstante des Magnetfilms zu. Dementsprechend enthält ein Magnetfilm, der eine Magnetostriktionskonstante von praktisch gleich Null und ausgezeichnete weichmagnetische Eigenschaften und eine ausgezeichnete Korrosionsbeständigkeit hat, das im Eisen interstitiell lösliche Element in einer Menge von 1 bis 15 Mol-% und das Element zur Verbesserung der Korrosionsbeständigkeit vorzugsweise in einer Konzentration von 0,5 bis 5 Mol-%.

Bei einem Mehrschichtfilm mit einer vorbestimmten Dicke nimmt die Permeabilität des Mehrschichtfilms zu und seine Koerzivität mit zunehmender Anzahl der Schichten ab, das heißt, die Dicke jedes Hauptmagnetfilms wird geringer. Es wird vermutet, daß die auf der Mehrschicht-Struktur beruhende Verbesserung der weichmagnetischen Eigenschaften von der auf die Mehrschichtstruktur zurückgehenden Begrenzung des Kristallkornwachstums, abhängt, was wiederum eine Dispersionsabnahme der magnetischen Anisotropie bedingt.

Die Erfindung wird durch die Abbildungen erläutert; es zeigen:

Fig. 1 den Einfluß des Rhodiumgehalts auf die Korrosionsbeständigkeit und die Magnetostriktionskonstante eines Magnetfilms aus Eisen, der 5 Mol-% Kohlenstoff und außerdem Rhodium enthält;

Fig. 2 einen Querschnitt eines erfindungsgemäßen Magnetkopfs, der unter Verwendung eines erfindungsgemäßen Magnetfilms als Hauptmagnetpol hergestellt worden ist.

Dabei wird der erfindungsgemäße Ferromagnetfilm als einzelne Schicht oder als Mehrschichtfilm für den Hauptmagnetpol eines senkrechten Magnetaufnahmekopfs verwendet.

Gemäß Fig. 2 besteht ein magnetisches Aufnahmemedium 1 aus einem nichtmagnetischen Substrat 2, einem Grundfilm 3, wie Permalloy, auf dem Substrat 2 und einem senkrecht magnetisierbaren Film 4 auf dem Grundfilm 3, der eine leicht magnetisierbare Achse senkrecht zum Film 4 hat. Der Film 4 besteht aus einer Co-Cr-Legierung.

Der Magnetkopf besteht aus einem Hauptmagnetpol 5 auf einem Substrat 6, einem spaltbegrenzenden Material 7, einem Hilfsmagnetpol 9, einer Spule 10, einem Dichtungsteil 8 aus einem Isoliermaterial und einem Schutzfilm 11 auf dem Hilfsmagnetpol 9. Der Hauptmagnetpol 5 wird durch einen durch die Spule 10 fließenden Schwachstrom magnetisiert und erzeugt ein senkrechtes Magnetfeld an der Spitze des Pols 5, wodurch ein Signal in dem senkrecht magnetisierbaren Film 4 des magnetischen Aufnahmemediums 1 aufgenommen wird.

Mit einem Magnetkopf mit einer einzigen Schicht des erfindungsgemäßen Ferromagnetfilms als Hauptmagnetpol wird eine Aufnahmedichte gleich oder über 40 kbit/cm (100 kbit/inch) erreicht. Dieser Wert ist um 32 kbit/cm (80 kbit/inch) größer als bei einem herkömmlichen Magnetkopf. Wird ein Magnetkopf mit einem erfindungsgemäßen Mehrschicht-Ferromagnetfilm als Hauptmagnetpol verwendet, so ist die Aufnahmedichte größer oder gleich 48 kbit/cm (120 kbit/inch).

Die Erfindung wird durch die folgenden Beispiele näher erläutert.

Beispiel 1

Ein Eisen als Hauptbestandteil enthaltender Magnetfilm wird durch Ionenstrahl-Zerstäubung hergestellt. Die Ionenstrahl-Zerstäubungsvorrichtung besteht aus einer Doppel-Ionenstrahl-Vorrichtung mit zwei Ionenquellen, wobei die eine ein Targetmaterial zur Ablagerung zerstäubter Teilchen auf einem Substrat besprüht. Die andere Ionenquelle wird zum Bombardieren des Substrats mit emittierten Ionen verwendet. Das heißt, die zweite Ionenquelle emittiert Ionen mit einer Energie nicht über 500 eV, das Substrat wird mit diesen Ionen mit niedriger Energie bombardiert, um die Struktur des auf dem Substrat niedergeschlagenen Films zu kontrollieren.

Die Zerstäubungsbedingungen zur Herstellung eines Magnetfilms mit einer hohen magnetischen Sättigungsinduktion, einer hohen Permeabilität, einer geringen Magnetostriktionskonstante und einer hohen Korrosionsbeständigkeit sind wie folgt:

Ionenbeschleunigende Spannung der ersten Ionenquelle 1000 bis 1400 V, Ionenbeschleunigende Spannung der zweiten Ionenquelle 200 bis 400 V, Argondruck 2 bis 3 · 10-2 Pa, Temperatur der Substratoberfläche 50 bis 100°C, Drehgeschwindigkeit des Substrats 20 bis 60 U/min.


Unter den angegebenen Zerstäubungsbedingungen wurden verschiedene Magnetfilme mit Eisen als Hauptbestandteil und Kohlenstoff als interstitiell lösliches Element auf einem Glassubstrat zu einem Film mit einer Dicke von 0,5 bis 1 µm aufgebracht, wobei Eisentargets verwendet wurden, die mit den verschiedenen, in Tabelle 1 angegebenen Materialien beladen wurden. Die Zusammensetzung jedes so erhaltenen Magnetfilms wurde durch die induktiv gekoppelte Argon-Plasmaspektroskopie und die Auger-Elektronenspektroskopie bestimmt. Die Magnetfilme wurden auf 300°C erhitzt. Die magnetische Sättigungsinduktion, Permeabilität, Koerzivität und Magnetostriktionskonstante jedes Magnetfilms wurden mit einem Vibrationsprobenmagnetometer, einem Vektorimpedanzmeter, einem B-H-Kurvenschreiber bzw. einem Drehmomentmesser bestimmt. Die Korrosionsbeständigkeit jedes Magnetfilms wurde an Hand der Verminderung der magnetischen Sättigungsinduktion bestimmt, die durch 7tägiges Aufbewahren jedes Films bei 30°C unter Besprühen mit einer 1%igen NaCl-Lösung entstand. Das heißt, die magnetische Sättigungsinduktion wird vor dem Besprühen mit 1%iger NaCl-Lösung gemessen und als σ&sub0; angegeben; die magnetische Sättigungsinduktion nach dem 7-tägigen Besprühen mit 1%iger NaCl-Lösung wird mit σ angegeben, die Korrosionsbeständigkeit ist dann (σ/σ&sub0;) × 100%.

Die Ergebnisse sind in Tabelle 1 angegeben. Fig. 1 zeigt die Veränderung der Korrosionsbeständigkeit und der Magnetostriktionskonstante eines Magnetfilms aus Eisen mit 5 Mol-% Kohlenstoff, die durch die Zugabe von Rhodium (Rh) zum Magnetfilm erfolgt.

Tabelle 1


Aus Tabelle 1 ist ersichtlich, daß bei Zugabe mindestens eines Elements, ausgewählt unter Ni, Rh, Ru, Pd, Zr, Nb, Ta, Ag, Os, Ir, Pt, Au, Cr, Mo, W, Ti, Bi, V, Co und Cu, zu einem Magnetfilm aus Eisen mit 8 Mol-% Kohlenstoff die Korrosionsbeständigkeit des Magnetfilms verbessert wird. Aus Fig. 1 ist ersichtlich, daß die Korrosionsbeständigkeit eines Magnetfilms aus Eisen mit 5 Mol-% Kohlenstoff, der außerdem noch Rhodium (Rh) enthält, mit steigendem Rhodiumgehalt größer wird und daß seine Magnetostriktionskonstante entsprechend der Zunahme des Rhodiumgehaltes von einem negativen zu einem positiven Wert steigt. Liegt somit der Rhodiumgehalt im Bereich von 0,5 bis 5 Mol-%, so beträgt die Korrosionsbeständigkeit über 80%, der Absolutwert der Magnetostriktionskonstante liegt unter 2 × 10-6. Aus Tabelle 1 ist außerdem ersichtlich, daß andere Zusätze als Rhodium die gleiche Wirkung wie Rhodium haben können; deshalb wird vorzugsweise mindestens einer dieser Zusätze dem Magnetfilm in einer Konzentration von 0,5 bis 5 Mol-% zugegeben.

Die so hergestellten Fe-C-Magnetfilme werden an Hand der Röntgenbeugung untersucht, es wird eine Beugungslinie der (110)-Ebene des α-Eisens beobachtet. Somit wird bestätigt, daß jeder Magnetfilm kristallisiert ist und eine zur kristallographischen (110)-Ebene parallele Fläche hat.

Beispiel 2

Andere, in Eisen interstitiell lösliche Elemente als Kohlenstoff wurden zur Herstellung von Magnetfilmen verwendet. Ein drittes Element, wie Nickel, wurde den Magnetfilmen zur Verbesserung der Korrosionsbeständigkeit zugegeben.

Die magnetischen Eigenschaften und die Korrosionsbeständigkeit der so hergestellten Magnetfilme, die eine Dicke von 0,5 bis 1 µm hatten, sind in Tabelle 2 angegeben.

Tabelle 2


Aus Tabelle 2 ist ersichtlich, daß bei Zugabe eines anderen in Eisen interstitiell löslichen Elements als Kohlenstoff zu einem Magnetfilm aus Eisen die Permeabilität des Magnetfilms erhöht wird und der Magnetfilm günstige weichmagnetische Eigenschaften aufweist, wie dies der Fall ist, wenn dem Magnetfilm Kohlenstoff zugegeben wird. Wird dem Magnetfilm außerdem ein Element, wie Ni, Rh, Ru, Pd, Zr, Nb, Ta, Ag, Os, Ir, Pt, Au, Cr, Mo, W, Ti und Cu zugegeben, so ist seine Korrosionsbeständigkeit erhöht. Außerdem steigt wie in Beispiel 1 die Magnetostriktionskonstante des Magnetfilms mit zunehmender Menge des zur Verbesserung der Korrosionsbeständigkeit zugesetzten Elements. Um zu einem Magnetfilm mit einer ausgezeichneten Korrosionsbeständigkeit und einer Magnetostriktionskonstante mit einem sehr geringen Absolutwert zu gelangen, wird dem Magnetfilm vorzugsweise ein Element zur Verbesserung der Korrosionsbeständigkeit in einer Konzentration von 0,5 bis 5 Mol-% zugegeben.

Werden dem Magnetfilm aus Eisen als Hauptbestandteil jedoch in Eisen interstitiell lösliche Elemente, wie C, B, N und P in einer Menge über 15 Mol-% zugegeben, so nimmt die Beständigkeit des Magnetfilms abrupt ab. In einem solchen Fall ist es unmöglich, sogar bei Zugabe eines Elements zur Verbesserung der Korrosionsbeständigkeit, wie beispielsweise Nickel oder Rhodium, die Korrosionsbeständigkeit des Films zu verbessern. Das heißt, um einen Magnetfilm mit hoher Korrosionsbeständigkeit zu erhalten, muß dem Magnetfilm ein in Eisen interstitiell lösliches Element in einer Konzentration unter oder gleich 15 Mol-% zugegeben werden. Um die Permeabilität des Magnetfilms zu verbessern, muß der Magnetfilm das oben angegebene Element in einer Konzentration gleich oder größer 1 Mol-% enthalten.

Beispiel 3

Ein Target gemäß Beispiel 1, das Eisen als Hauptbestandteil enthält, wird durch einen Targethalter einer Ionenstrahl-Zerstäubungsvorrichtung mit drehbaren Targethaltern gehalten, ein Target aus Nickel und 19 Masse-% Eisen oder Kobalt und 7 Masse-% Zirkon wird durch einen anderen Targethalter gehalten. Unter den Zerstäubungsbedingungen des Beispiels 1 wird ein Magnetfilm aus Eisen als Hauptbestandteil in einer Dicke von 46 mm (460 Å) als Hauptmagnetfilm und ein Film aus Nickel und 19 Masse-% Eisen oder Kobalt und 7 Masse-% Zirkon in einer Dicke von 4 nm (40 Å) als Zwischenschicht aufgebracht. Der Hauptmagnetfilm und die Zwischenschicht werden abwechselnd zu einem Mehrschicht-Magnetfilm mit 19 Filmen und Schichten aufgebracht.

Die magnetischen Eigenschaften dieser Mehrschicht-Magnetfilme sind in Tabelle 3 angegeben.

Tabelle 3


Aus Tabelle 3 ist ersichtlich, daß die Mehrschicht-Magnetfilme eine wesentlich bessere Permeabilität als die Einschicht-Magnetfilme aufweisen, das heißt, sie haben eine relative Permeabilität, die größer als 1500 ist. Es wird vermutet, daß die hohe Permeabilität der Mehrschicht-Magnetfilme auf folgendem Phänomen beruht: Bei der Herstellung eines Magnetfilms mit einer Mehrschichtstruktur werden die säulenartigen Kristallkörner durch die dazwischengeschobenen Zwischenschichten in feine Körner geteilt, die Dispersion der Magnetanisotropie nimmt ab.

Die Korrosionsbeständigkeit der Mehrschicht-Magnetfilme entspricht der von Einschicht-Magnetfilmen gemäß Beispiel 1 und 2. Aus Tabelle 3 ist jedoch ersichtlich, daß die Mehrschicht-Magnetfilme mit einem Film aus Nickel und 19 Masse-% Eisen als Zwischenschicht korrosionsbeständiger sind als Mehrschicht-Magnetfilme mit einem Film aus Kobalt und 7 Masse-% Zirkon als Zwischenschicht.

In den Beispielen 1, 2 und 3 wurden die Megnetfilme durch Ionenstrahlzerstäubung hergestellt, ihre Eigenschaften werden angegeben. Es wurde festgestellt, daß gleiche Magnetfilme durch Hochfrequenzzerstäubung erhalten werden können, das heißt, Magnetfilme mit den gleichen magnetischen Eigenschaften und der gleichen Korrosionsbeständigkeit wie durch Ionenstrahlzerstäubung, nur durch Einstellen der Substrattemperatur auf etwa 200°C. In anderen Worten, ein erfindungsgemäßer Magnetfilm kann unabhängig von filmbildenden Verfahren hergestellt werden.

Wie oben angegeben, hat ein erfindungsgemäßer Ferromagnetfilm mit Eisen als Hauptbestandteil eine hohe magnetische Sättigungsinduktion von 1,8 T oder mehr, eine relativ hohe Permeabilität von 500 oder darüber bei einer Einschichtstruktur und von 1500 oder darüber bei einer Mehrschichtstruktur, eine niedrige Koerzivität von 3978,85 A/m oder darunter bei einer Einschichtstruktur und von 795,77 A/m oder darunter bei einer Mehrschichtstruktur, eine kleine Magnetostriktionskonstante mit einem Absolutwert unter oder gleich 2 × 10-6 und einen hohen Korrosionsbeständigkeitswert (σ/σ&sub0;) von 0,8 oder mehr. Wird der erfindungsgemäße Magnetfilm als Magnetpol eines Magnetkopfes verwendet, so kann, sogar bei einer Magnetfilmdicke von etwa 0,2 µm, ein starkes Magnetfeld an der Spitze des Magnetpols gebildet werden, ohne magnetische Sättigung des Magnetfilms zu erzeugen. Das heißt, es kann eine außerordentlich hohe Magnetaufnahmedichte erreicht werden.

Der Grund für die ausgezeichneten Eigenschaften des erfindungsgemäßen Magnetfilms ist nicht klar; sie scheinen jedoch auf folgendem Phänomen zu beruhen: Wird ein in Eisen interstitiell lösliches Element dem Eisen zugegeben, so verdünnt es nicht das Magnetmoment des Eisens, sondern verhindert das Wachstum der Kristallkörner. Sogar dann, wenn der Magnetfilm ein Element zur Verbesserung der Korrosionsbeständigkeit in sehr geringer Konzentration enthält, ist seine Korrosionsbeständigkeit deutlich erhöht. Das heißt, die dem Eisen zugesetzten Elemente zeigen verschiedene Wirkungen.

Der Grund, warum eine Mehrschichtstruktur die weichmagnetischen Eigenschaften eines Magnetfilms verbessert, ist nicht klar, es wird jedoch vermutet, daß bei Bildung eines Mehrschicht-Magnetfilms die Kristallkörner eines einschichtigen Films in feine Körner durch Einschieben der Zwischenschicht verteilt werden und daß die Bildung der feinen Kristallkörner zur Verbesserung der weichmagnetischen Eigenschaften führt.


Anspruch[de]
  1. 1. Ferromagnetfilm aus einem ferromagnetischen Material, das Eisen als Hauptbestandteil enthält, dadurch gekennzeichnet, daß das ferromagnetische Material außerdem mindestens ein unter B, C, N und P ausgewähltes Element in einer Konzentration von 1 bis 15 Mol-% in einer interstitiell löslichen Form und mindestens ein unter Ni, Rh, Ru, Pd, Zr, Nb, Ta, Ag, Os, Ir, Pt, Au, Cr, Mo, W, Ti, Bi, V, Co und Cu ausgewähltes Element in einer Konzentration von wenigstens 0,5 Mol-% enthält.
  2. 2. Ferromagnetfilm nach Anspruch 1, dadurch gekennzeichnet, daß die Konzentration an mindestens einem unter Ni, Rh, Ru, Pd, Zr, Nb, Ta, Ag, Os, Ir, Pt, Au, Cr, Mo, W, Ti, Bi, V, Co und Cu ausgewählten Element 0,5 bis 5 Mol-% ist.
  3. 3. Ferromagnetfilm nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in einem Mehrschicht-Ferromagnetfilm der Ferromagnetfilm nach Anspruch 1 oder 2 als Hauptmagnetfilm und ein Zwischenfilm abwechselnd angeordnet sind und daß der Zwischenfilm aus einem vom Hauptmagnetfilm verschiedenen Metallfilm besteht.
  4. 4. Verwendung eines Ferromagnetfilms nach Anspruch 1 oder 2 für zumindest einen Teil des Magnetpols (5) eines Magnetkopfes (5 bis 11).
  5. 5. Verwendung eines Mehrschicht-Ferromagnetfilms nach Anspruch 3 für zumindest einen Teil des Magnetpols (5) eines Magnetkopfes (5 bis 11).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com