PatentDe  


Dokumentenidentifikation EP0500744 27.04.1995
EP-Veröffentlichungsnummer 0500744
Titel Verfahren zum Behandeln von Kohlenstoffmaterial.
Anmelder K-Fuel Partnership, Denver, Col., US
Erfinder KOPPELMAN, Edward, Encino, CA 91316, US
Vertreter Rechts- und Patentanwälte Lorenz Seidler Gossel, 80538 München
DE-Aktenzeichen 69018091
Vertragsstaaten AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE
Sprache des Dokument En
EP-Anmeldetag 30.10.1990
EP-Aktenzeichen 909175572
WO-Anmeldetag 30.10.1990
PCT-Aktenzeichen US9006297
WO-Veröffentlichungsnummer 9106617
WO-Veröffentlichungsdatum 16.05.1991
EP-Offenlegungsdatum 02.09.1992
EP date of grant 22.03.1995
Veröffentlichungstag im Patentblatt 27.04.1995
IPC-Hauptklasse C10F 5/00
IPC-Nebenklasse C10L 9/00   

Beschreibung[en]

The present invention is particularly applicable, but not necessarily restricted, to the processing of carbonaceous materials under high pressures at elevated temperatures, whereby the energy introduced to effect a heating of the feed material and to effect the desired reaction is substantially recovered, providing for improved efficiency and economies in the practice of the process. Typical of processes to which the present invention is applicable is the treating of various naturally occurring organic carbonaceous materials, such as wood or peat, to effect a removal of a predominant portion of moisture therefrom, and the treatment of sub-bituminous coals, such as lignite, to render them more suitable as solid fuel, for example.

GB-A-2 067 732 describes a process for drying and modifying organic solid materials by treatment in a steam atmosphere at elevated temperatures.

In each of the aforementioned processes, the carbonaceous material is subjected to high pressure steam to reach an elevated temperature while in a controlled environment for a period of time to achieve the desired thermal treatment. A variety of process equipment and processing techniques have heretofore been used or proposed for treating carbonaceous material so as to render it more suitable as a solid fuel. These processes have presented problems in the efficient utilization of energy introduced and/or evolved, the difficulty and complexity of controls necessary in many instances to enable operation of such processes on a continuous basis, and a general lack of flexibility and versatility of such equipment for adaptation for the processing of other materials at different temperatures and/or pressures.

The process of the present invention overcomes many of the problems and disadvantages associated with prior art equipment and techniques by providing a unit which is of simple design, of durable construction, which is versatile in use and can be readily adapted for processing different feed materials under different temperatures and/or pressures to produce different products. The method of the present invention is further characterized as being simple to control and efficient in the utilization and recovery of heat energy, thereby providing for economical operation and a conservation of resources.

SUMMARY OF THE INVENTION

The benefits and advantages of the present invention are achieved by a process and apparatus in which carbonaceous materials in a substantially as-mined condition containing from 20% up to 80% moisture are charged into an autoclave and injected with steam at a high pressure and temperature for a controlled period of time to effect a controlled thermal restructuring of the carbonaceous material and to effect a conversion of the moisture and a portion of the volatile organic constituents therein into a gaseous phase. Water, wax and tar are recovered during the autoclaving process. At the conclusion of the autoclaving step, the carbonaceous material is allowed to cool, and then removed from the autoclave.

In an alternative arrangement, carbonaceous material containing from 20% up to 80% moisture is charged into a separate pre-heating chamber, wherein the feed material is heated under a relatively low pressure (in the range of from 13.7 bar to 41.4 bar (200 to 600 psig), with 34.5-37.9 bar (500-550 psig) being preferred) to a temperature of from 204°C to 260°C (400°F to 500°F) (240-246°C (465°F-475°F) preferred). Water which is substantially free of coal tar and other impurities is recovered from the preheating chamber, degassed and returned to the boiler as steam generating feedwater. The preheated feed material is then vented to the atmosphere and transferred to a second autoclave where it is subjected to steam under pressure for a controlled period of time to effect controlled thermal restructuring. Water, wax and tar are recovered during the autoclaveing process, with at least a portion of the water under pressure being filtered and some of its BTU content scavenged via flash pots and recirculated to the preheating chamber to assist in the preheating of a second charge of feed material which has been introduced into the preheating chamber. The wax and tar products which have been recovered from the second autoclave can be utilized as a heat source for the steam generator, thereby forming a self-sustaining steam generating treatment system.

The upgraded product has an internal structure which is visibly transformed from the original carbonaceous material charged and possesses increased heating values of a magnitude generally ranging from 26.68 to 31.32 kJ/g (11,500 up to 13,500 BTU per pound). In contrast, sub-bituminous coal, for example, on an as-mined basis has a heating value of about 18.56 kJ/g (8,000 BTU per pound), while on a moisture-free basis has a heating value ranging from 23.9 to 26.68 kJ/g (10,300 up to 11,500 BTU per pound). This same increase in heating value is seen with other carbonaceous materials as well. Further, the tar and wax recovered during the autoclaving operation has a heating value from 24.82 to 25.52 kJ/g (10,700 up to 11,000 BTU per pound).

BRIEF DESCRIPTION OF THE DRAWING

Additional benefits and advantages of the present invention will become apparent upon the reading of a description of a preferred embodiment taken in conjunction with the specific examples provided and the drawing, in which:

  • Fig. 1 is a functional schematic of an autoclave-based processing system arranged in accordance with the principles of the present invention; and
  • Fig. 2 is a functional schematic of an alternative processing system arranged in accordance with the principles of the invention.

DETAILED DESCRIPTION

The process of the present invention is applicable for upgrading carbonaceous materials including but not limited to, brown coal, lignite, and sub-bituminous coals of the type broadly ranging between wood, peat and bituminous coals which are found in deposits similar to higher grade coals. Such carbonaceous materials as-mined generally contain from 20% up to 80% moisture and can be directly employed without any preliminary treatment other than a screening operation as a charge to an autoclave 101 of Fig. 1. It is usually preferred to effect a screening and/or crushing of the carbonaceous material as-mined to remove any large particles which may be attached thereto so as to facilitate a better handling of the charge and improve the packing thereof in the autoclave 101. The size and configuration of the carbonaceous material, however, is not critical in achieving the benefits of the process of the present invention.

With reference to Fig. 1, the autoclave 101 employed may comprise any of the types known in the art capable of withstanding the temperatures and pressures required, and while the present description is directed particularly to batch-type autoclaves, it will be understood that continuous autoclaves can also be employed for the practice of the invention. The carbonaceous material is charged to an inlet at one end of the autoclave 101 by opening a valve 102, and high pressure steam from a boiler 108 is then introduced through a valve 109 into an opening 103 in the autoclave 101 at a position in the vicinity of inlet valve 102.

After the high pressure steam is introduced into the autoclave 101, the steam comes into contact with the carbonaceous material in the autoclave and condenses almost immediately. This condensed steam (water) travels downward to the bottom of the autoclave 101 and begins to heat the carbonaceous material as the high pressure steam continues to be introduced into the top of autoclave 101 until a predetermined temperature and pressure are reached throughout the entire volume of antoclave 101. Hence, it is seen that the charge is subjected to a moving atmosphere of high pressure steam from the top of the charge of feed material to the bottom.

The pressure in the autoclave 101 is monitored by a pressure sensor 116 and is allowed to reach a predetermined level and then a relief valve 104 at the bottom of the autoclave 101 is opened to maintain that pressure. The temperature of the steam inside the autoclave 101 is monitored by a thermocouple array 107 until it reaches a preselected temperature at the bottom relief valve 104. Alternatively, the temperature may be monitored in the autoclave's output conduit rather than inside the autoclave itself. When this steam temperature is reached, the bottom relief valve 104 is closed and the carbonaceous material is allowed to soak for a period of time sufficient to allow a desired degree of thermal restructuring and/or decomposition.

Steam temperatures and pressures can be utilized in a range of from 271°C (520°F) at a pressure of 55.2 bar (800 psig), to 343°C (650°F) at a pressure of 165.5 bar (2400 psig), to obtain a thermal restructuring of the carbonaceous material. However, the best results in treating coal have been obtained when the steam temperature is allowed to reach on the order of 326.7°C (620°F) and the pressure in the autoclave 101 is allowed to reach on the order of 124.1 bar (1800 psig).

The residence time of the carbonaceous material charge in the autoclave 101 will vary, depending upon the amount of thermal reconstructuring desired and the heating value that is desired. This residence time will generally range from 5 to 15 minutes in length after the bottom relief valve reaches a steam temperature of about 326.7°C (620°F).

The required residence time decreases as the temperature and pressure in the autoclave 101 increase. Conversely, increased residence times are required when lower temperatures and pressures are used.

The pressurization of the interior of the autoclave 101 can be controlled by a relief valve 104 located at the bottom of the autoclave 101. When the pressure inside the autoclave 101 reaches 124.1 bar (1800 psig), the relief valve 104 can be opened to maintain that pressure. This pressure of 124.1 bar (1800 psig) is maintained until the steam reaches the bottom relief valve 104 at a temperature of 326.7°C (620°F). When the steam of valve 104 reaches a temperature of 326.7°C (620°F) the bottom relief valve 104 is closed and the carbonaceous material is allowed to soak with the high pressure steam at 326.7°C (620°F) for a period of time preferably between from 5 to 15 minutes. The process time - the time during which the high pressure steam is introduced until the desired temperature and pressure are reached and the bottom relief valve 104 is closed - can range from 5 minutes to 60 minutes.

At the conclusion of the autoclaving step, in accordance with one embodiment of the present invention, the autoclave 101 is then vented to the atmosphere or into an adjoining or available holding tank and a valve 105 at the bottom of the autoclave 101 is opened. The carbonaceous material is then extracted through a filter, such as a Johnson screen, 115 from the autoclave 101 via an extruder 106.

It is also contemplated in accordance with the present invention that during the autoclaving operation, water, wax and tar that are formed can be recovered through a pressure relief valve 104 at the bottom of the autoclave 101 and transported to an adjoining conventional separator 110. Once in the separator 110, the tar and wax can be separated from the water, for example, by centrifugal force and transported to an adjoining tank 111 for later use. The water can then be recovered through a valve 112 and transported to an adjoining tank 113 as waste until the water reaches a temperature of about 121.1°C (250°F). When the water temperature reaches 121.1°C (250°F), it is recovered for later use and transported to an adjoining holding tank 114. Alternatively, the hot water at above about 121.1°C (250°F) could be fed to another autoclave for use in preheating the charge of feed material therein.

With reference to Fig. 2, a processing system arranged in accordance with the principles of the invention in an alternative form is set forth and features the use of a separate preheating pressurized chamber for the feed material prior to the feed material's introduction into the high pressure autoclave such as autoclave 101 of Fig. 1. As seen from Fig. 2, feed material such as sub-bituminous coal is directed from a feed conveyor at line 250 via high pressure valve 230 into a preheating chamber 201. Output conduit 251 of vessel 201 is coupled to a filter 203 (such as a Johnson screen) and then is passed via high pressure valve 231 to input conduit 252 leading into high pressure autoclave 205.

Material treated in vessel 205 is then fed via output conduit 253 and filter 207 (also for example a Johnson screen) and valve 232 to an output conveyor or extruder via line 254.

Steam generator 213 produces high pressure steam at its output 255 which is directed via valve 233, thermal compressor 219, valve 234 and input conduit 256 to the interior of preheating chamber 201. Additionally, generated steam at output 255 is coupled via valve 235 to an input 260 to filter 203, via valve 236 to input conduit 259 of autoclave 205 and via valve 239 to input conduit 261 to filter 207.

One output of filter 207 is coupled via valve 240 to a primary flash pot 209. One output of flash pot 209 is coupled via valve 238 to input conduit 256 of preheating chamber 201, while a second output of primary flash pot 209 is coupled via valve 241 to an input of a secondary flash pot 211. One output of flash pot 211 is coupled via valve 242 to input 258 to a conventional wax and tar removal system 217, while a second output of flash pot 211 is coupled via valve 237 to thermal compressor 219.

Wax and tar which have been removed from the output water of flash pot 211 via system 217 may then be fed via line 261 to steam generator 213 for use as a heat source in effecting steam generation therein.

An output of filter 203 is coupled via valve 243 to input 257 to a conventional degassing and storage system 215. The water fed to degassing and storage system 215 via filter 203 is then processed and passed in a substantially clean state via line 262 to steam generator 213 for use as feedwater therein.

The internal pressure developed within preheating chamber 201 is monitored via pressure sensor 223, while the temperature of the preheating medium utilized in vessel 201 is monitored by a temperature sensor (such as a thermocouple) 221 which has been placed in the output conduit 251 of vessel 201. In a similar manner, pressure within main processing autoclave 205 is monitored via pressure sensor 227, and the temperature of the heating medium of vessel 205 is monitored via a temperature sensor (such as a thermocouple) 225 which has been positioned in output conduit 253 of vessel 205.

By utilizing a separate preheating chamber 201, the system of Fig. 2 operates the preheating vessel 201 at a relatively low pressure such that water exiting the preheating chamber via filter 203 is clean enough to be reusable in steam generator 213. This greater efficiency may be achieved at no substantial added cost, since the top vessel 201 can be of a cheaper construction due to the use of lower pressures therein.

In using the system of Fig. 2, a charge of feed material is introduced via line 250 and high pressure valve 230 into vessel 201. Valve 230 is then closed and steam at a pressure of on the order of 13.7 to 41.4 bar (200 to 600 psig), (preferably 34.5-37.9 bar (500-550 psig)) is introduced into preheating chamber 201. Condensed water then exits vessel 201 via filter 203 and valve 243 to a degassing and storage system 215 for processing and return to steam generator 213 via line 262 for use in generating further steam requirements of the system.

After preheating the charge in vessel 201 to a predetermined temperature (preferably 240-246°C (465°-475°F)), vessel 201 is vented to the atmosphere and mid-lock valve 231 is opened thereby emptying the feed charge into main autoclave 205 under atmospheric pressure.

Valve 231 is then closed and a new feed charge can at that time be fed into preheating vessel 201 via line 250 and valve 230. Simultaneously, high pressure steam 124.1 bar ((1800 psig) preferred) is introduced into main autoclave 205 via valve 236 for contact with the preheated feed material which has been introduced from the upper preheating chamber 201.

Condensed hot water exits the autoclave at output 253 after the vessel 205 reaches preferably 1800 psig and is directed from filter 207 to a primary flash tank 209 via valve 240. Due to the pressure drop experienced by the water entering flash tank 209, steam with its accompanying BTU value is scavenged back to preheating vessel 201 via valve 238 and input conduit 256 to assist in preheating the subsequently fed charge introduced into vessel 201.

Then the balance of the water from primary flash pot 209 is directed to a secondary flash pot 211 where additional steam is scalped due to yet a further pressure drop experienced by creating a vacuum at thermal compressor 219. This additional steam is likewise fed via valve 237 and compressor 219 and valve 234 and input conduit 256 into preheating vessel 201 to further assist in the preheating process.

The water and tar and wax mixture remaining in flash pot 211 is then directed via valve 242 to input 258 of conventional wax and tar removal system 217. In system 217, water is separated from the wax and tar by conventional methods and the wax and tar may then be passed via line 261 to steam generator 213 for use as fuel for boiling the feed water to generate the steam required by the arrangement of Fig. 2.

When the water exiting autoclave 205 changes to steam at the preselected temperature and pressure, valves 232 and 240 are closed and the feed material is allowed to soak with the high pressure steam at the predetermined temperature for a predetermined period of time (preferably 5-15 minutes) in a manner similar to the approach described with reference to the autoclave 101 of Fig. 1.

In order to further illustrate the present invention, the following specific examples are provided. It will be understood that these examples are provided as being illustrative of usable variations in the time, temperature and pressure relationships employed in the invention and are not intended to limit the scope of the invention as herein described and as set forth in the sub-joining claims.

EXAMPLE 1

Coal having an as-mined moisture content of 30% by weight and a heating value of about 18.79 kJ/g (8100 BTU per pound) was charged into an autoclave. High pressure steam was then introduced into the autoclave for a period of 15 minutes while the pressure inside the autoclave was maintained at 124.1 bar (1800 psig) and the temperature of the steam inside the autoclave was allowed to reach 326.7°C (620°F). The autoclave was then closed off and the coal was allowed to soak at a pressure of 1800 psig at a temperature of 326.7°C (620°F) for a period of 15 minutes. At the completion of the autoclaving operation, a valve at the bottom of the autoclave was opened and the charge was removed. The upgraded coal product had a moisture content of .04% by weight and had a measured heating value of 28.94 kJ/g (12475 BTU per pound).

EXAMPLE 2

Coal having an as-mined moisture content of 30% by weight and a heating value of about 18.79 kJ/g (8100 BTU per pound) was charged into an autoclave. High pressure steam was then introduced into the autoclave for a period of 16 minutes while the pressure inside the autoclave was maintained at 1600 psig and the temperature of the steam inside the autoclave was allowed to reach 315.6°C (600°F). The autoclave was then closed off and the coal was allowed to soak at a pressure of 110.3 bar (1600 psig) and a steam temperature of 315.6°C (600°F) for a period of 20 minutes. At the completion of the autoclaving operation, a valve at the bottom of the autoclave was opened and the charge was removed. The upgraded coal product had a moisture content of 3.17% by weight and had a measured heating value of 28.19 kJ/g (12149 BTU per pound).

EXAMPLE 3

Coal having an as-mined moisture content of 30% by weight and a heating value of about 18.79 kJ/g (8100 BTU per pound) was charged into an autoclave. High pressure steam was then introduced into the autoclave for a period of 15 minutes while the pressure inside the autoclave was maintained at 79.3 bar (1150 psig) and the temperature of the steam inside the autoclave was allowed to reach 293.3°C (560°F). The autoclave was then closed off and the coal was allowed to soak at a pressure of 79.3 bar (1150 psig) and a steam temperature of 293.3°C (560°F) for a period of 10 minutes. At the conclusion of the autoclaving operation, the charge was removed from the autoclave. The upgraded coal product had a moisture content of 3.9% by weight and a measured heating valve of 26.98 kJ/g (11631 BTU per pound).

EXAMPLE 4

Coal having an as-mined moisture content of 30% by weight and a heating value of 18.79 kJ/g (8100 BTU per pound) was charged into an autoclave. High pressure steam was then introduced into the autoclave for a period of 15 minutes while the pressure inside the autoclave was maintained at 124.1 bar (1800 psig) and the temperature of the steam inside the autoclave as allowed to reach 326.7°C (620°F). During this autoclaving operation, tar was recovered through a valve and transported to a separator along with the water that was forming as condensed steam. The tar was then separated from the water and the tar had a measured heating value of 25.11 kJ/g (10824 BTU per pound).

EXAMPLE 5

Coal having an as-mined moisture content of approximatey 30% by weight and a heating value of 18.56 kJ/g (8000 BTU per pound) was charged into a preheating chamber. Steam at 34.5 bar (500 psig) was fed into the preheating chamber until steam exiting the bottom of the preheating chamber reached a temperature of approximately 240°C (465°F). The preheating chamber was vented to the atmosphere and the charge was then placed in a main processing autoclave, and steam at 124.1 bar (1800 psig) was introduced therein. When the temperature of the steam at the bottom of the main processing autoclave reached 326.7°C (620°F), the autoclave was closed off and the coal charge was allowed to soak for a period of 10-15 minutes. At the completion of the autoclaving operation the autoclave was vented to atmosphere and the coal charge removed. The upgraded coal product had a moisture content of 0.4-2.0% by weight and a measured heating value of approximately 28.54 kJ/g (12,300 BTU per pound).


Anspruch[de]
  1. Verfahren zur Dampfbehandlung von kohlenstoffhaltigem Material, umfassend die folgenden Schritte:

    Einfüllen von kohlenstoffhaltigem Material in ein Gefäß;

    Einleiten von Hochdruckdampf in das Gefäß, bis die Innenseite des Gefäßes einen Druck zwischen 55 bar (800 psig) und 165 bar (2400 psig) erreicht;

    Messen der Temperatur des aus dem kohlenstoffhaltigen Material ausgetriebenen Dampfes und Wassers und des kondensierten Dampfes in dem Gefäß;

    Abziehen des Wassers und des kondensierten Dampfes aus dem Gefäß;

    Verschließen des Gefäßes, wenn die gemessene Temperatur des Dampfes zwischen 271°C und 343°C (520°F und 650°F) liegt, und das kohlenstoffhaltige Material solange in dem unkondensierten Dampf einweichen lassen, bis eine weitere thermische Umstrukturierung des kohlenstoffhaltigen Materials möglich ist; und

    anschließend Herausnehmen des kohlenstoffhaltigen Materials aus dem Gefäß.
  2. Verfahren nach Anspruch 1, bei dem das Gefäß einen Autoklaven umfaßt, der Hochdruckdampf in ein erstes Ende des Autoklaven eingeleitet wird, und man den Dampf über eine Ladung kohlenstoffhaltiges Material zu einem zweiten Ende des Autoklaven wandern läßt.
  3. Verfahren nach Anspruch 2, bei dem der Autoklav verschlossen wird, wenn die gemessene Temperatur des Dampfes zwischen 316°C und 327°C (600°F und 620°F) liegt.
  4. Verfahren nach Anspruch 1, 2 oder 3, bei dem Hochdruckdampf eingeleitet wird, bis die Innenseite des Gefäßes einen Druck zwischen 110 bar und 124 bar (1600 psig und 1800 psig) erreicht.
  5. Verfahren nach Anspruch 3, bei dem Hochdruckdampf eingeleitet wird, bis die Innenseite des Autoklaven einen Druck zwischen 117 bar und 124 bar (1700 psig und 1800 psig) erreicht.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das kohlenstoffhaltige Material mindestens 5 Minuten in unkondensiertem Dampf einweicht.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das kohlenstoffhaltige Material mindestens 15 Minuten in dem unkondensierten Dampf einweicht.
  8. Verfahren nach Anspruch 2, bei dem:

    das kohlenstoffhaltige Material in den Autoklaven gefüllt wird, indem ein oberes Ventil desselben geöffnet wird;

    das erste Ende des Autoklaven einen oberen Abschnitt desselben umfaßt, und das zweite Ende des Autoklaven einen unteren Abschnitt desselben umfaßt,

    der Dampfdruck aufrechterhalten wird, indem ein Überdruckventil im unteren Abschnitt des Autoklaven geöffnet wird;

    das abgezogene Wasser und der abgezogene kondensierte Dampf zu einem angrenzenden Tank befördert wird;

    die Dampftemperatur an dem Überdruckventil im Boden des Autoklaven gemessen wird;

    der Autoklav durch Schließen des oberen und des unteren Ventils verschlossen wird; und

    der Autoklav vor dem Herausnehmen des kohlenstoffhaltigen Materials an die Atmosphäre entlüftet wird.
  9. Verfahren nach Anspruch 8, bei dem der Autoklav verschlossen wird, wenn die gemessene Dampftemperatur 327°C (620°F) und der Dampfdruck 124 bar (1800 psig) beträgt.
  10. Verfahren nach Anspruch 8 oder 9, bei dem der Zeitraum im Bereich von 5 Minuten bis 15 Minuten liegt.
  11. Verfahren nach Anspruch 8, bei dem der Zeitraum im Bereich von 15 Minuten bis 20 Minuten liegt.
  12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem vor dem Einfüllen von kohlenstoffhaltigem Material in das Gefäß weiterhin die folgenden Vorstufen stattfinden:

    Einbringen des kohlenstoffhaltigen Materials in eine Vorheizkammer;

    Einleiten von Dampf mit einem Druck zwischen 13,8 bar und 41,3 bar (200 psig und 600 psig) in die Vorheizkammer;

    Überwachen der Temperatur des aus der Vorheizkammer austretenden kondensierten Wassers; und

    Unterbrechen der Dampfzufuhr und Entlüften der Vorheizkammer an die Atmosphäre, wenn der aus der Vorheizkammer austretende Dampf eine Temperatur zwischen 204°C und 260°C (400°F und 500°F) erreicht.
  13. Verfahren nach Anspruch 12, bei dem die Dampfzufuhr zu der Vorheizkammer unterbrochen wird und die Vorheizkammer an die Atmosphäre entlüftet wird, wenn der aus der Vorheizkammer austretende Dampf eine Temperatur zwischen 241°C und 246°C (465°F und 475°F) erreicht, und wenn der Dampfdruck in der Vorheizkammer zwischen 34,5 bar und 37,9 bar (500 psig und 550 psig) liegt.
  14. Verfahren nach Anspruch 12 oder 13, bei dem des weiteren als Vorstufe das aus der Vorheizkammer austretende Wasser zu einem Dampfgenerator zurückgeleitet wird, wo es als Speisewasser verwendet wird.
  15. Verfahren nach Anspruch 12, 13 oder 14, bei dem weiterhin das aus dem Gefäß austretende Wasser mit vermindertem Druck in einen Verdampfungstopf eingeleitet wird, um weiteren Dampf von dem Wasser abzutreiben und den abgetriebenen Dampf zu der Vorheizkammer zurückzuschicken, wo er verwendet wird.
  16. Verfahren nach einem der Ansprüche 12 bis 15, bei dem des weiteren Wachs und Teer von dem aus dem Gefäß austretenden Wasser abgetrennt und zu einem Dampfgenerator geschickt werden, um dort als Brennstoff verwendet zu werden.
  17. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das umstrukturierte kohlenstoffhaltige Material über einen Extruder gewonnen wird, um das umstrukturierte kohlenstoffhaltige Material zu Kügelchen zu formen.
  18. Verfahren nach einem der Ansprüche 1 bis 15, bei dem des weiteren Teer sowie Wasser und kondensierter Dampf aus dem Gefäß abgelassen werden und Wasser und Teer zu einer Trenneinrichtung befördert werden, um Teer und Wasser getrennt zu gewinnen.
Anspruch[en]
  1. A method of steam treating carbonaceous material comprising the steps of:

       charging carbonaceous material into a vessel;

       introducing high pressure steam into the vessel until the inside of the vessel reaches a pressure of between 55 bar (800 psig) and 165 bar (2400 psig);

       sensing the temperature of the steam and water driven from the carbonaceous material and condensed steam in the vessel;

       removing the water and condensed steam from the vessel;

       sealing the vessel when the sensed temperature of the steam is between 271°C and 343°C (520°F and 650°F) and allowing the carbonaceous material to soak in uncondensed steam for a time period sufficient to effect further thermal restructuring of the carbonaceous material; and

       thereafter recovering the carbonaceous material from the vessel.
  2. The method of claim 1, wherein the vessel comprises an autoclave, the high pressure steam is introduced into a first end of the autoclave, and the steam is allowed to migrate along a charge of carbonaceous material toward a second end of the autoclave.
  3. The method of claim 2, wherein the autoclave is sealed when the sensed temperature of the steam is between 316°C and 327°C (600°F and 620°F).
  4. The method of claim 1, 2 or 3, wherein high pressure steam is introduced until the inside of the vessel reaches a pressure between 110 bar and 124 bar (1600 psig and 1800 psig).
  5. The method of claim 3, wherein high pressure steam is introduced until the inside of the autoclave reaches a pressure between 117 bar and 124 bar (1700 psig and 1800 psig).
  6. The method of any preceding claim, wherein the carbonaceous material soaks in uncondensed steam for at least 5 minutes.
  7. The method of any preceding claim, wherein the carbonaceous material soaks in the uncondensed steam for at least 15 minutes.
  8. The method of claim 2, wherein:

       the carbonaceous material is charged into the autoclave by opening an upper valve thereof,

       the first end of the autoclave comprises a top portion thereof and the second end of the autoclave comprises a bottom portion thereof,

       the pressure of the steam is maintained by opening a relief valve at the bottom portion of the autoclave;

       the removed water and condensed steam is transported to an adjoining tank,

       the temperature of the steam is sensed at the relief valve at the bottom of the autoclave,

       the autoclave is sealed by closing the upper and lower valves, and

       the autoclave is vented to the atmosphere prior to recovering the carbonaceous material.
  9. The method of claim 8, wherein the autoclave is sealed when the sensed steam temperature is 327°C (620°F) and the steam pressure is 124 bar (1800 psig).
  10. The method of claim 8 or 9, wherein the time period is in the range of from 5 minutes to 15 minutes.
  11. The method of claim 8, wherein the time period is in the range of from 15 minutes to 20 minutes.
  12. The method of any preceding claim, wherein, prior to charging carbonaceous material into the vessel, the method further comprises the preliminary steps of:

       placing the carbonaceous material into a preheating chamber;

       introducing steam at a pressure between 13.8 bar and 41.3 bar (200 psig and 600 psig) into the preheating chamber;

       monitoring the temperature of condensed water exiting the preheating chamber; and

       cutting off the steam introduced and venting the preheating chamber to atmosphere when steam exiting the preheating chamber reaches a temperature between 204°C and 260°C (400°F and 500°F).
  13. The method of claim 12, wherein the steam introduced to the preheating chamber is cut off and the preheating chamber is vented to atmosphere when steam exiting the preheating chamber reaches a temperature between 241°C and 246°C (465°F and 475°F), when the pressure of the steam in the preheating chamber is between 34.5 bar and 37.9 bar (500 psig and 550 psig).
  14. The method of claim 12 or 13, including the further preliminary step of conducting water exiting the preheating chamber back to a steam generator for use as feedwater therein.
  15. The method of claim 12, 13 or 14, including the further steps of introducing water exiting the vessel into flash pot means at reduced pressure to flash off further steam from the water and sending the flashed-off steam back to the preheating chamber for use therein.
  16. The method of any one of claims 12 to 15, including the further steps of separating wax and tar from water exiting the vessel and sending the wax and tar to a steam generator for use as fuel therewith.
  17. The method of any preceding claim, wherein the restructured carbonaceous material is recovered via an extruder for pelletising the restructured carbonaceous material.
  18. The method of any one of claim 1 to 15, including the further step of removing tar along with the water and condensed steam from the vessel and transporting the water and tar to separator means for separately recovering the tar and water.
Anspruch[fr]
  1. Procédé de traitement d'une matière carbonée avec de la vapeur d'eau, qui comporte les étapes consistant à :
    • introduire la matière carbonée dans un récipient ;
    • introduire de la vapeur d'eau sous haute pression dans le récipient, jusqu'à ce que la pression régnant à l'intérieur du récipient atteigne une valeur située entre 55 bar (800 psig) et 165 bar (2400 psig) ;
    • mesurer la température de la vapeur et de l'eau chassée de la matière carbonée et celle de la vapeur condensée dans le récipient :
    • enlever du récipient l'eau et la vapeur condensée ;
    • fermer hermétiquement le récipient quand la température mesurée de la vapeur se trouve entre 271°C (520°F) et 343°C (650°F) et laisser la matière carbonée baigner dans la vapeur non condensée pendant un laps de temps suffisant pour que s'effectue une restructuration thermique poussée de la matière carbonée ; et
    • retirer ensuite la matière carbonée du récipient.
  2. Procédé conforme à la revendication 1, dans lequel le récipient est un autoclave, on introduit de la vapeur d'eau sous haute pression par une première extrémité de l'autoclave, et on laisse la vapeur se déplacer, le long d'une charge de matière carbonée, vers une seconde extrémité de l'autoclave.
  3. Procédé conforme à la revendication 2, dans lequel on ferme hermétiquement l'autoclave quand la température mesurée de la vapeur d'eau se trouve entre 316°C (600°C) et 327°C (620°F).
  4. Procédé conforme à la revendication 1, 2 ou 3, dans lequel on introduit de la vapeur d'eau sous haute pression dans le récipient, jusqu'à ce que la pression régnant à l'intérieur du récipient atteigne une valeur située entre 110 bar (1600 psig) et 124 bar (1800 psig).
  5. Procédé conforme à la revendication 3, dans lequel on introduit de la vapeur d'eau sous haute pression dans le récipient, jusqu'à ce que la pression régnant à l'intérieur du récipient atteigne une valeur située entre 117 bar (1700 psig) et 124 bar (1800 psig).
  6. Procédé conforme à l'une des revendications précédentes, dans lequel la matière carbonée baigne pendant au moins 5 minutes dans la vapeur non condensée.
  7. Procédé conforme à l'une des revendications précédentes, dans lequel la matière carbonée baigne pendant au moins 15 minutes dans la vapeur non condensée.
  8. Procédé conforme à la revendication 2, dans lequel
    • on introduit la matière carbonée dans l'autoclave en ouvrant une vanne supérieure de celui-ci,
    • la première extrémité de l'autoclave comprend la partie supérieure de celui-ci et la seconde extrémité de l'autoclave comprend la partie inférieure de celui-ci,
    • on maintient la pression de la vapeur d'eau en ouvrant une vanne de détente située dans la partie inférieure de l'autoclave,
    • l'eau et la vapeur d'eau condensée éliminées sont envoyées dans une cuve annexe,
    • la température de la vapeur d'eau est mesurée au niveau de la vanne de détente située dans la partie inférieure de l'autoclave,
    • on ferme hermétiquement l'autoclave en fermant les vannes supérieure et inférieure, et
    • on remet l'autoclave en communication avec l'atmosphère avant de récupérer la matière carbonée.
  9. Procédé conforme à la revendication 8, dans lequel on ferme hermétiquement l'autoclave quand la température mesurée de la vapeur d'eau vaut 327°C (620°F) et la pression de la vapeur d'eau vaut 124 bar (1800 psig).
  10. Procédé conforme à la revendication 8 ou 9, dans lequel le laps de temps vaut de 5 à 15 minutes.
  11. Procédé conforme à la revendication 8, dans lequel le laps de temps vaut de 15 à 20 minutes.
  12. Procédé conforme à l'une des revendications précédentes, qui comporte en outre, avant l'introduction de la matière carbonée dans le récipient, les étapes préliminaires consistant à :
    • mettre la matière carbonée dans une chambre de préchauffage ;
    • introduire, dans la chambre de préchauffage, de la vapeur d'eau sous une pression située entre 13,8 bar (200 psig) et 41,3 bar (600 psig) ;
    • surveiller la température de l'eau de condensation qui sort de la chambre de préchauffage ; et
    • arrêter d'introduire de la vapeur d'eau et remettre la chambre de préchauffage en communication avec l'atmosphère quand la température de la vapeur d'eau sortant de la chambre de préchauffage atteint une valeur située entre 204°C (400°F) et 260°C (500°F).
  13. Procédé conforme à la revendication 12, dans lequel on arrête d'introduire de la vapeur d'eau et on remet la chambre de préchauffage en communication avec l'atmosphère quand la température de la vapeur d'eau sortant de la chambre de préchauffage atteint une valeur située entre 241°C (465°F) et 246°C (475°F), alors que la pression de la vapeur d'eau dans la chambre de préchauffage se situe entre 34,5 bar (500 psig) et 37,9 bar (550 psig).
  14. Procédé conforme à la revendication 12 ou 13, qui comporte l'étape préliminaire supplémentaire consistant à envoyer l'eau qui sort de la chambre de préchauffage dans un générateur de vapeur, pour l'y utiliser comme eau d'alimentation.
  15. Procédé conforme à la revendication 12, 13 ou 14, qui comporte les étapes supplémentaires consistant à introduire l'eau qui sort du récipient dans un ballon de détente où règne une pression réduite, pour séparer de l'eau, par détente, une quantité supplémentaire de vapeur d'eau, et à renvoyer la vapeur d'eau séparée par détente dans la chambre de préchauffage pour l'y utiliser.
  16. Procédé conforme à l'une des revendications 12 à 15, qui comporte les étapes supplémentaires consistant à séparer les cires et goudrons de l'eau qui sort du récipient et à envoyer ces cires et goudrons dans un générateur de vapeur pour les y utiliser comme combustible.
  17. Procédé conforme à l'une des revendications précédentes, dans lequel on récupère la matière carbonée restructurée en la faisant passer par une extrudeuse, pour mettre cette matière carbonée restructurée sous forme de pastilles.
  18. Procédé conforme à l'une des revendications 1 à 15, qui comporte l'étape supplémentaire consistant à enlever du récipient les goudrons, ainsi que l'eau et la vapeur d'eau condensée, et à transférer l'eau et les goudrons dans un séparateur, pour récupérer séparément l'eau et les goudrons.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com