Warning: fopen(111data/log202005250352.log): failed to open stream: No space left on device in /home/pde321/public_html/header.php on line 107

Warning: flock() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 108

Warning: fclose() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 113
Hydrophobe oleophile mikroporöse Farbwalzen. - Dokument EP0394559
 
PatentDe  


Dokumentenidentifikation EP0394559 04.05.1995
EP-Veröffentlichungsnummer 0394559
Titel Hydrophobe oleophile mikroporöse Farbwalzen.
Anmelder Rockwell International Corp., Pittsburgh, Pa., US
Erfinder Fadner, Thomas A., La Grange Illinois 60532, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 68921978
Vertragsstaaten CH, DE, FR, GB, LI, SE
Sprache des Dokument En
EP-Anmeldetag 28.12.1989
EP-Aktenzeichen 891240632
EP-Offenlegungsdatum 31.10.1990
EP date of grant 29.03.1995
Veröffentlichungstag der Übersetzung europäischer Ansprüche 28.02.1991
Veröffentlichungstag im Patentblatt 04.05.1995
IPC-Hauptklasse B41N 7/06

Beschreibung[en]

In the practice of keyless inking for lithographic printing whereby ink is metered into the printed system by means of a metering roller and a cooperating scraping blade, Fadner in U.S. Patent 4,601,242, Fadner and Hycner in U.S. Patent 4,537,127 and Fadner in U.S. Patent 4,603,634 have disclosed advantageous method and means wherein the surface of an ink metering roller will possess the dual property of being both hydrophobic and oleophilic, that is water-repelling and oil attracting. This dual property can be present whether the lithographic ink metering roller surface is formed with ink retaining dimensioned cells or is formed with a surface possessing irregularly spaced cavities capable of retaining ink. In practicing keyless inking the presence of oleophilic and hydrophobic properties at the surface of the ink metering roller is vital, since lithography requires the presence of water in the films of ink being used. The presence of hydrophilic, or water attracting regions on the ink metering roller surface will allow water to displace or debond ink from those regions, thereby disrupting the roller's ink carrying and ink metering capabilities.

The above-named Fadner, et al, prior art references also teach that even when consistent ink metering is assured by providing a metering roller surface that is both hydrophobic and oleophilic, the water contents of the ink films on the inking rollers may vary across the press width, depending upon the relative amounts of ink and water consumed in satisfying the format being printed. To accomplish uniform ink availability across the press during a printing run, it is necessary to assure that a constant ink composition is continuously available to all portions of the printing plate. Unless constant ink composition is available across the press width, the water content tends to increase in regions of low print density and undesirable print quality occurs. Means for obtaining press wide uniformity of ink composition are disclosed in the Fadner, et al U.S. Patent 4,690,055.

When hydrophilic regions are purposefully included in either a random or in geometrically uniform manner, such as the land areas of the celled metering roller disclosed in U.S. Patent 4,637,310 by Sato and Harada or as in the non-celled or smooth-surfaced metering roller disclosed in U.S. Patent 4,287,827 by Warner, it might be reasoned that predictability of Ink metering will be achieved because any water interference due to debonding of ink from the hydrophilic regions would be in accord with the pattern selected when forming the hydrophilic regions. However, the through-puts of water and ink across the press width and therefore the relative amounts of each required, are determined by the image and non-image format on the printing plate being used at any given time. Printing formats are not uniform generally and are rarely the same from press-run to press-run. Consequently, the extent of ink debonding by water when operating an apparatus utilizing the oleophilic and hydrophilic technology will depend upon the instantaneous amounts of water present in the ink at various locations on the metering roller. These locations correspond in turn to the various cross-press ink and water amounts required to print the format on the printing plate. The higher the water content in the ink at a hydrophilic region, the greater will be the propensity for loss of ink carrying capability because of debonding of ink in the corresponding localized region. The result is variable ink input from press-run to press-run as the printed format is changed, with concomitant printed regions of unexpectedly low or unexpectedly high optical density.

Hard ceramic materials, such as chromium and aluminum oxides and tungsten carbide are naturally high energy materials and correspondingly tend to be hydrophilic in the presence of water and tend to be oleophilic in the presence only of oily materials. Metering rollers manufactured using these materials, while often used successfully in conjunction with either water based inks or with oil based inks in letterpress printing, fail to deliver consistent quantities of ink during lithographic printing utilizing oil-based inks having water present. The extent of ink delivery inconsistency is determined by whether water present in the ink has displaced or debonded ink from the roller's ceramic surface. As previously noted, the extent of debonding depends upon the water content of the ink at any selected cross-press location, which water content in turn depends upon the format being printed.

The previously referred to Fadner U.S. Patent 4,601,242 discloses one means to use the advantageously hard and wear-resistant ceramic property to obtain reasonably long lithographic ink metering roller lifetimes. Specifically, ceramic powder, and in particular alumina, is flame sprayed in a purposefully thin layer of less than about 50.8 µm (2 mils) thickness over a copper-plated metering roller base. Copper is naturally hydrophobic and oleophilic. This procedure results in a hard, wear-resistant surface that has sufficient inter-particle porosity relative to ink and water interactions that the surface acts as if it was copper, therefore retaining ink in preference to water, yet simultaneously acts as a wear-resistant ceramic material relative to scraping blade wearing action. Although commercially viable, this type of roll has a lifetime on a printing press of about 20 to 30 million printing impressions, because the ceramic layer must be kept relatively thin to assure that the oleophilic property of the underlying copper is not negated by the hydrophilic properties exhibited by the ceramic layer. Further, the ceramic layer, which is naturally hydrophilic, may become increasing hydrophilic due to accumulation of contaminants associated with use and cleaning of printing presses.

A primary object of this invention is to provide a simple, inexpensive ink metering roller that ensures long operational lifetimes in keyless lithographic printing press systems where the presence of water in the ink is involved.

An additional object of this invention is to provide a process for producing an ink metering roll having a micro-porous wear-resistant surface layer that is infused with an organic material that reacts to form a reaction product that is oleophilic and hydrophobic.

Still another object of this invention is to provide means whereby hard and wear-resistant but naturally hydrophilic ceramic materials can be used as part of a composite layer that has hydrophobic and oleophilic properties without detracting from their naturally excellent wear-resistant quality.

A further object of this invention is to provide an improved inking roller having a composite structure that combines high degrees of wear resistance with a preferential attraction for and retention of oil inks in the presence of water.

According to the present invention, there is provided an ink metering roller for use in keyless printing utilizing an oil based ink and water mixture as the print forming medium comprising:

  • a) a base roller of preselected strength, diameter and length having an outer surface of substantially cylindrical shape;
  • b) a continuous microporous ceramic layer integral to the outer surface of said base roller, said microporous layer defining an interconnecting network of openings that permeate substantially the entire volume of said ceramic layer; and
  • c) an oleophilic and hydrophobic reaction product formed in said interconnecting network by reaction of a self-reactive organic material selected from the group consisting of monomers, copolymers and pre-polymers of hydrocarbons or hydrocarbons having chemically reactive groups, with the organic material being polymerization or coupling-reactive, said oleophilic and hydrophobic reaction product being defined by a water contact angle of not less than 90° and an ink oil contact angle of not higher than 10° and spreading of ink.

A further embodiment of the invention is directed to a process for producing a wear resistant ink metering roller possessing oleophilic and hydrophobic properties comprising the steps of:

  • a) providing a roll having a substantially cylindrical surface layer formed of a microporous ceramic material which defines an interconnecting network of openings that permeate substantially the entire volume of the microporous layer;
  • b) infusing the interconnecting network with a solute of a self-reactive organic material selected from the group consisting of monomers,copolymers and pre-polymers of hydrocarbons or hydrocarbons having chemically reactive groups, with the organic material being polymerization or coupling-reactive; and
  • c) subjecting said reactive organic material to a treatment causing it to react and form a substance in the interconnecting network that is oleophilic and hydrophobic, and that has a water contact angle of not less than 90° and an ink oil contact angle of not higher than 10° and spreading of ink.

A preferred embodiment according to the invention is an inking system for use in printing utilizing an oil based ink and water mixture as the print forming medium comprising a plurality of coating inking rollers, one of said inking rollers being an ink metering roller comprising:

  • a) a base roller of preselected strength, diameter and length having an outer surface of substantially cylindrical shape;
  • b) a continuous microporous ceramic layer integral to the outer surface of said base roller, said microporous layer defining an interconnecting network of openings that permeate substantially the entire volume of said ceramic layer;
  • c) an oleophilic and hydrophobic reaction product formed in the interconnecting network by reaction of a self-reactive organic material selected from the group consisting of polystyrenes, polyisobutylenes, acrylonitrile-butadiene-styrenes, polybutadienes and nitrile rubbers; said olephilic and hydrophobic reaction product having a water contact angle of not less than 90° and an ink oil contact angle of not higher than 10° and spreading of ink; and
  • d) scraper means mounted in reverse-angle relationship contact with said microporous ceramic coated base roller to remove excess ink therefrom.

Other objects and advantages of this invention will be in part obvious and in part explained by reference to the accompanying specification and drawing in which:

  • Fig. 1 is a schematic side elevation of keyless lithography printing system configuration illustrating a lithographic printing arrangement incorporating an ink metering roll of the present invention;
  • Fig. 2 is a sectional view through a portion of the roll of this invention showing the infused, wear resistant surface in which recesses to hold ink are provided;
  • Fig. 3 is a sectional view similar to Fig. 2 but with a roller having no individually formed ink receiving recesses;
  • Fig. 4 is a sectional view similar to Fig. 3 showing a variation in the shape of individually formed ink receiving recesses;
  • Fig. 5 is a plan view of Fig. 4; and
  • Fig. 6 is an enlarged illustration of a section through the microporous ceramic layer to show the location of the oleophilic and hydrophobic reaction product.

This invention relates to an improved ink metering roll for metering ink in modern, high-speed lithographic printing press systems, and to an inking system wherein keyless means are provided to simplify the inking system and to simplify the degree of operator control or attention required during operation of the printing press.

Typically, a press using a keyless inking system will comprise an ink reservoir or sump 10, a pump 11 and piping 12 interconnecting an ink pan 13, within which a metering roller 13' is located, to supply ink to a frictionally driven ink transfer roller 15. A reverse angle scraping or metering blade 16 operates against the metering roller 13' to remove all of the ink on the metering roller 13' except that in cells, when present. Ink from transfer roller 15 is passed onto a substantially smooth inking drum 20 where it is combined with water supplied from dampener 21. Dampening fluid can be supplied by any appropriate means, either to the ink roll 20 as shown or directly to the plate roll 25, as indicated by the phantom lines at 26. The scraping blade 16 (or other ink removal means) operating against the metering roll 13 is present to continuously remove substantially all of the excess ink film therefrom. All of the aforesaid elements function to supply a uniform film of ink to the printing plate 28 mounted on press driven plate cylinder 25. The plate on cylinder 25 in turn supplies ink in the form of an image, for example, to a paper web 30 being fed through the printing nip formed by the coacting blanket cylinder 31 and impression cylinder 32. All of the rollers in Figs. 1 and 2 are configured substantially axially parallel.

Many other press configurations can be visualized by those skilled in the art and science of keyless lithographic printing, the primary features that are important for proper operation of this invention are discussed below.

The amount of ink reaching the printing plate may be controlled by the dimensions of depressions or of ink receiving cells formed in the surface of the ink metering roller in conjunction with a coextensive scraping or doctor blade that continuously removes virtually all of the ink from the celled metering roller except that carried in the cells or recesses.

The ink metering roller is composed of a steel or aluminum or comparable core material of suitable strength, length and diameter that is suitably coated with a relatively thick wear-resistant ceramic material. While the roll surface need not be engraved in all instances laser engraving can be used to form accurately dimensioned and positioned cells or recesses, which cells together with a scraping doctor blade serve to precisely meter a required volume of ink. To ensure accurate and continuous metering of ink by all regions of the roller surface for the wear-related useful lifetime of the roller, the ceramic materials are infused with organic materials that react with their individual components to form a hydrophobic and oleophilic reaction product.

Fig. 2 is a cross-sectional view of one form of this invention in which the base roller used to produce metering roller 14 is engraved before application of the ceramic coating indicated by numeral 35.

The celled metering roller 13' illustrated in the drawings, may be, as previously mentioned, mechanically-engraved and then coated or may be first coated and then laser-engraved to form patterned cells of depressions in the coated surface of the roller. The volume and frequency of the depressions are selected based on the volume of ink required to meet the printed optical density specifications and in accordance with known practices. Alternatively, the roller may have a nominally smooth face with the hard, oleophilic and hydrophobic surface properties added as herein described.

Roller 13' is employed typically together with a scraping or doctoring blade 16 to meter the input of ink into the press system. Roller 20 may instead be typically employed as the metering roller in a position closer to the printing plate and function together with a scraping blade (not shown) that removes from the printing system virtually all of used return ink that exists at that location. Rollers 13 and 15 are then not needed. In either case the return film of ink, that is the unused portion of the input ink, is continuously scraped off and led to sump 10 for subsequent continuous recirculation by pump 11 back to the celled metering roller 13'. Many of these keyless lithography press operational elements are described in more detail in Fadner, et al U.S. Patent 4,690,055.

I have found that the commonly available hard, wear-resistant ceramic and ceramic-like materials such as alumina, tungsten carbide or chromium oxide, all of which are available for manufacture of an inking roller, prefer to have a layer of water rather than a layer of oil-based ink on their surfaces when both liquids are present. Although various ceramic materials are known to function as the hard, wear-resistant uppermost surface of ink metering rollers either for a printing system such as letterpress involving a single oil-based printing fluid or for flexographic printing systems using a single water-based inking fluid, these same ceramic surfaces when used in lithographic printing will become debonded of an oil or resin-based ink whenever sufficient dampening water penetrates through the ink to the roller. This is more readily understood if one considers that hydrophilic or water-loving surfaces such as ceramic materials are, in the absence of water, oleophilic or oil loving. When fresh, unused, water-free lithographic ink is applied to a ceramic, the ink initially exhibits good adhesion to and wetting of the roller surface. Under these initial conditions, normal ink-metering performance is observed. However, during lithographic printing operations, as the water content in the ink increases, a condition is reached where a combination of roller nip pressure and increasing water content in the ink force water through the ink layer to the ceramic metering roller surface. By adhering preferentially to the rollers' surface, the water debonds the Ink from that surface, thereby disallowing subsequent pickup of ink from the ink input means.

I have found that water-interference problems associated with using state-of-the-art ceramic-covered rollers to meter ink in keyless lithographic inking system can be avoided by fixedly applying to the ceramic roller's surface and infusing into the interstices of a microporous layer of ceramic material organic materials that react within their individual components to form a reaction product that possesses oleophilic and hydrophobic properties. Ceramic rollers thus treated function as metering rollers in lithographic printing systems without the aforementioned chemically-related ink metering failure.

In one form of this invention a steel or aluminum or other suitable roller may be mechanically engraved in patterns similar for instance to those shown in Fig. 2, then flame-spray ceramic coated to the maximum thickness that substantially retains the cell structure originally present in the core's surface, about 127 to 203.2 µm (5 to 8 mils). In the case of a base roller manufactured of aluminum, the roller can be given a hard anodizing treatment to form the ceramic-like layer in situ. The deposition process normally requires repeated thin-application passes of the ceramic coating apparatus, and may be followed by infusion with a selected organic substance, as elsewhere described herein.

Alternatively, the roller core is similarly mechanically engraved, then one-pass flame-spray coated with a thin film of ceramic powder to a coating thickness typically less than about 2.54 to 5.08 µm (0.1 to 0.2 mil), then infused with the organic substances that are reacted to form the oleophilic and hydrophobic material, then given another ceramic coating pass, then another infusion treatment and so on until the desired 127 to 203.2 µm (5 to 8 mil) thick ceramic coating is built-up by successive coating and Infusion treatments.

The desired microporous layer can be obtained also by subjecting a steel or aluminum roller core to a multiple-pass flame-spray coating with the selected ceramic particles to build up a thick, from 76.2 to about 254 µm (3 to about 10 mil) or more coating. This coating, such as indicated by numeral 40 in Figs. 4 and 5, is then laser engraved to create cell patterns 41 for instance as depicted in Fig. 3, after which the organic materials are infused into the ceramic surface.

The same sort of structure can be obtained where the organic is applied after each flame-spray coating pass in a series of about 6 to 20 or so sequences, to achieve the desired organic/ceramic coating thickness, then laser engraved to create the required ink carrying capacity.

Several types of oleophilic and hydrophobic material forming agents can be used. Oleophilic and hydrophobic material forming agents are here intended to mean those organic substances that can be infused into the microporous ceramic and then reacted or cured, as by heating, ultraviolet radiation or the like, to form an immobilized solid that has oleophilic and hydrophobic properties. These are generally dissolvable solids and are liquids that can therefore be applied by mist, spray, dip or other well known application methods. One primary objective in providing the oleophilic and hydrophobic material is to render as much as possible of the microporous ceramic powder coating surfaces oil attracting and water repellant by penetration of the oleophilic and hydrophobic material forming agents as deep into the coating as possible. Highly mobile liquid systems are preferred. Simple spray-painting techniques are appropriate as are dip-coating with roller rotation. Dilute solutions of the reactive agent in solvents that allow seconds to minutes open-time will help to provide penetration deep into the interstices of the ceramic coating.

In all cases, the oleophilic and hydrophobic material must be rendered essentially immobile and firmly adhered to or entrapped within the ceramic powder coating's voids and surfaces. The objects of this invention are achieved through the infusion of organic materials that are chemically self-reactive to form hydrophobic and oleophilic materials. Generally, these will be long chain hydrocarbons or substantially hydrocarbon polymeric materials having chemically reactive groups incorporated thereto. Self-reactive organic materials which fulfill the requirements are all polymerization or coupling-reactive, substantially hydrocarbon, monomer, copolymer, prepolymer and the like that satisfy the finished roller contact angle criteria discussed hereafter. Specifically, the organic materials are reactive polystyrenes, polyisobutylenes, acrylonitrile-butadiene-styrenes, polybutadienes, nitrile rubbers and the like. Another suitable organic material is the two part chemically reactive epoxy/amine system designated as 492X6215 produced and sold by the Paulert Chemical Co. Other useful organic materials of these classes will be apparent to those skilled in the chemical and polymeric sciences and based on the elements of this invention herein disclosed.

Fig. 6 of the drawings illustrates the manner in which the oleophilic and hydrophobic material is located within the interstitial voids formed by the ceramic coating. In Fig. 6, numeral 50 indicates generally the composite wear resistant layer, while numeral 51 identifies the particles of ceramic material and numeral 52 the infused organic material which is reacted by appropriate means to form the required oleophilic and hydrophobic reaction product. For a maximum useful life it is preferred that the entire interconnecting network of voids formed by the deposited ceramic layer be infused substantially completely throughout the volume of the layer.

Notwithstanding certain general or specific material disclosure of organic materials which can be reacted to form oleophilic and hydrophobic materials according to the practice of this invention, the important criterion for the resulting roller's use as a lithographic inking roller can be more-or-less predicted by measuring the degree to which droplets of ink oil and of water will spontaneously spread out on the surface of the treated roller. The sessile drop technique as described in standard surface chemistry textbooks is suitable for measuring this quality. Generally, oleophilic and hydrophobic roller materials will have an ink oil (Flint Ink Co.) contact angle of nearly 0° and a distilled water contact angle of about 90° or higher and these values serve to define an oleophilic and hydrophobic material.

I have found, for instance, that the following rules are constructive in but not restrictive for selecting materials according to this principle:

Best
Water contact angle 90° or higher.

Ink Oil contact angle 10° or lower and spreading.
Maybe Acceptable
Water contact angle 80° or higher.

Ink Oil contact angle 10° or lower and spreading.
Probably Not Acceptable
Water contact angle less than about 80°

Ink Oil contact angle greater than 10° and/or non-spreading.

Materials that have this oleophilic and hydrophobic property as defined herein will in practice in a lithographic printing press configuration accept, retain and maintain lithographic ink on their surface in preference to water or dampening solution when both ink and water are presented to or forced onto that surface. And it is this combined oleophilic and hydrophobic property that allows rollers used in lithographic press inking roller trains to assist in the transport of ink from an ink reservoir to the substrate being printed without loss of printed-ink density control due to deboding of the ink by water from one or more of the inking rollers.


Anspruch[de]
  1. Farbdosierwalze zum zonenschraubenlosen Drucken unter Verwendung eines Gemischs aus Druckfarbe auf Ölgrundlage und Wasser als den Druck bildendes Medium, umfassend:
    • a) eine Grund- bzw. Kernwalze vorbestimmter Festigkeit, vorbestimmten Durchmessers und vorbestimmter Länge mit einer äußeren Oberfläche von im wesentlichen Zylindrischer Form;
    • b) eine durchgehende mikroporöse keramische Schicht, die mit der äußeren Oberfläche der Kernwalze einen integralen Verbund bildet und die ein zusammenhängendes Netzwerk von Öffnungen definiert, die im wesentlichen das gesamte Volumen der keramischen Schicht durchdringen; und
    • c) ein oleophiles und hydrophobes Reaktionsprodukt, das in dem Zusammenhängenden Netzwerk durch Reaktion eines selbstreaktiven organischen Materials gebildet worden ist, welches aus der aus monomeren, copolymeren und pre-polymeren Kohlenwasserstoffen oder chemisch reaktive Gruppen tragenden Kohlenwasserstoffen bestehenden Gruppe ausgewählt ist, wobei das organische Material polymerisationsreaktiv oder kupplungsreaktiv ist und wobei das oleophile und hydrophobe Reaktionsprodukt durch einen Wasserkontaktwinkel von nicht weniger als 90° und einen Farbölkontaktwinkel von nicht mehr als 10° und durch Farbausbreitung gekennzeichnet ist.
  2. Farbdosierwalze nach Anspruch 1, bei der das selbstreaktive organische Material ausgewählt ist aus der aus
    • (a) Polystyrolen;
    • (b) Polyisobutylenen;
    • (c) Acrylnitril-Butadien-Styrolen;
    • (d) Polybutadienen; und
    • (e) Nitrilkautschuken
    bestehenden Gruppe.
  3. Farbdosierwalze nach Anspruch 2, bei der das selbstreaktive organische Material Polystyrol ist.
  4. Farbdosierwalze nach Anspruch 2, bei der das selbstreaktive organische Material Polyisobutylen ist.
  5. Farbdosierwalze nach Anspruch 2, bei der das selbstreaktive organische Material Acrylnitril-Butadien-Styrol ist.
  6. Farbdosierwalze nach Anspruch 2, bei der das selbstreaktive organische Material Polybutadien ist.
  7. Farbdosierwalze nach Anspruch 2, bei der das selbstreaktive organische Material Nitrilkautschuk ist.
  8. Verfahren zur Herstellung einer verschleißfesten Farbdosierwalze mit oleophilen und hydrophoben Eigenschaften, gekennzeichnet durch die folgenden Schritte:
    • a) es wird eine Walze mit einer aus einem mikroporösen keramischen Material gebildeten, im wesentlichen zylindrischen Oberflächenschicht bereitgestellt, die ein zusammenhängendes Netzwerk von Öffnungen definiert, welche im wesentlichen das gesamte Volumen der mikroporösen Schicht durchdringen;
    • b) das zusammenhängende Netzwerk wird mit einem in Lösung gebrachten selbstreaktiven organischen Material infundiert, das aus der aus monomeren, copolymeren und pre-polymeren Kohlenwasserstoffen oder chemisch reaktive Gruppen tragenden Kohlenwasserstoffen bestehenden Gruppe ausgewählt ist, wobei das organische Material polymerisationsreaktiv oder kupplungsreaktiv ist; und
    • c) das ausgewählte organische Material wird einer Behandlung unterworfen, die zur Reaktion und zur Bildung einer Substanz in dem zusammenhängenden Netzwerk führt, die oleophil und hydrophob ist und die einen Wasserkontaktwinkel von nicht weniger als 90° und einen Farbölkontaktwinkel von nicht mehr als 10° sowie Farbausbreitung aufweist.
  9. Verfahren nach Anspruch 8, bei dem die mikroporöse keramische Oberflächenschicht auf der Kernwalze durch aufwachsende Aufträge abgeschieden wird und wobei jede aufwachsende Schicht mit dem selbstreaktiven organischen Material infundiert wird, bevor der nächste aufwachsende Teil der Keramikschicht abgeschieden wird.
  10. Druckfarbwerk, bei dem ein Gemisch aus Druckfarbe auf Ölgrundlage und Wasser als den Druck bildendes Medium verwendet wird, mit einer Vielzahl von Farbbeschichtungswalzen, von denen eine eine Farbdosierwalze ist, welche umfaßt:
    • a) eine Grund- bzw. Kernwalze vorbestimmter Festigkeit, vorbestimmten Durchmessers und vorbestimmter Länge mit einer äußeren Oberfläche von im wesentlichen zylindrischer Form;
    • b) eine durchgehende mikroporöse keramische Schicht, die mit der äußeren Oberfläche der Kernwalze einen integralen Verbund bildet und die ein zusammenhängendes Netzwerk von Öffnungen definiert, die im wesentlichen das gesamte Volumen der keramischen Schicht durchdringen; und
    • c) ein oleophiles und hydrophobes Reaktionsprodukt, das in dem zusammenhängenden Netzwerk durch Reaktion eines selbstreaktiven organischen Materials gebildet worden ist, welches aus der aus Polystyrolen, Polyisobutylenen, Acrylnitril-Butadien-Styrolen, Polybutadienen und Nitrilkautschuken bestehenden Gruppe ausgewählt ist; wobei das oleophile und hydrophobe Reaktionsprodukt einen Wasserkontaktwinkel von nicht weniger als 90° und einen Farbölkontaktwinkel von nicht mehr als 10° sowie Farbausbreitung aufweist; und
    • d) Mittel zum Abschaben bzw. Entfernen überschüssiger Druckfarbe von der Walze, die unter einem stumpfen Winkel gegen die mit dem mikroporösen keramischen Material beschichtete Kernwalze angestellt sind.
Anspruch[en]
  1. An ink metering roller for use in keyless printing utilizing an oil based ink and water mixture as the print forming medium comprising:
    • a) a base roller of preselected strength, diameter and length having an outer surface of substantially cylindrical shape;
    • b) a continuous microporous ceramic layer integral to the outer surface of said base roller, said microporous layer defining an interconnecting network of openings that permeate substantially the entire volume of said ceramic layer; and
    • c) an oleophilic and hydrophobic reaction product formed in said interconnecting network by reaction of a self-reactive organic material selected from the group consisting of monomers, copolymers and pre-polymers of hydrocarbons or hydrocarbons having chemically reactive groups, with the organic material being polymerization or coupling-reactive, said oleophilic and hydrophobic reaction product being defined by a water contact angle of not less than 90° and an ink oil contact angle of not higher than 10° and spreading of ink.
  2. An ink metering roller as defined in claim 1, wherein said self-reactive organic material is selected from the group consisting of:
    • a) polystyrenes;
    • b) polyisobutylenes;
    • c) acrylonitrile-butadiene-styrenes;
    • d) polybutadienes; and
    • e) nitrile rubbers.
  3. An ink metering roller as defined in claim 2, wherein said self-reactive organic material is polystyrene.
  4. An ink metering roller as defined in claim 2, wherein said self-reactive organic material is polyisobutylene.
  5. An ink metering roller as defined in claim 2, wherein said self-reactive organic material is acrylonitrile-butadiene-styrene.
  6. An ink metering roller as defined in claim 2, wherein said self-reactive organic material is polybutadiene.
  7. An ink metering roller as defined in claim 2, wherein said self-reactive organic material is nitrile rubber.
  8. A process for producing a wear resistant ink metering roller possessing oleophilic and hydrophobic properties comprising the steps of:
    • a) providing a roll having a substantially cylindrical surface layer formed of a microporous ceramic material which defines an interconnecting network of openings that permeate substantially the entire volume of the microporous layer;
    • b) infusing the interconnecting network with a solute of a self-reactive organic material selected from the group consisting of monomers, copolymers and pre-polymers of hydrocarbons or hydrocarbons having chemically reactive groups, with the organic material being polymerization or coupling-reactive; and
    • c) subjecting said reactive organic material to a treatment causing it to react and form a substance in the interconnecting network that is oleophilic and hydrophobic, and that has a water contact angle of not less than 90° and an ink oil contact angle of not higher than 10° and spreading of ink.
  9. A process as defined in claim 8, wherein the microporous ceramic surface layer is deposited on the base roll in incremental applications and wherein each incremental layer is infused with the self-reactive organic material prior to deposition of the next incremental part of the ceramic layer.
  10. An inking system for use in printing utilizing an oil based ink and water mixture as the print forming medium comprising a plurality of coating inking rollers, one of said inking rollers being an ink metering roller comprising:
    • a) a base roller of preselected strength, diameter and length having an outer surface of substantially cylindrical shape;
    • b) a continuous microporous ceramic layer integral to the outer surface of said base roller, said microporous layer defining an interconnecting network of openings that permeate substantially the entire volume of said ceramic layer;
    • c) an oleophilic and hydrophobic reaction product formed in the interconnecting network by reaction of a self-reactive organic material which is selected from the group consisting of polystyrenes, polyisobutylenes, acrylonitrile-butadiene-styrenes, polybutadienes and nitrile rubbers; said olephilic and hydrophobic reaction product having a water contact angle of not less than 90° and an ink oil contact angle of not higher than 10° and spreading of ink; and
    • d) scraper means mounted in reverse-angle relationship contact with said microporous ceramic coated base roller to remove excess ink therefrom.
Anspruch[fr]
  1. Rouleau de raclage d'encrage à utiliser dans l'impression sans touches utilisant un mélange d'encre à base d'huile et d'eau comme milieu formant l'impression, comprenant :
    • a) un rouleau de base de solidité, diamètre et longueur prédéterminés ayant une surface externe de forme sensiblement cylindrique ;
    • b) une couche continue de céramique microporeuse solidaire de la surface externe dudit rouleau de base, ladite couche microporeuse définissant un réseau interconnecté d'ouvertures qui traversent pratiquement la totalité du volume de ladite couche de céramique ; et
    • c) un produit de réaction oléophile et hydrophobe formé dans ledit réseau d'interconnexion par réaction d'une matière organique autoréactive sélectionnée dans le groupe constitué de monomères, copolymères et prépolymères d'hydrocarbures ou d'hydrocarbures ayant des groupes chimiquement réactifs, avec la matière organique réactive à la polymérisation ou au couplage, ledit produit de réaction oléophile et hydrophobe étant défini par un angle de contact avec l'eau d'au moins 90° et un angle de contact avec l'huile-encre d'au plus 10° et des propriétés d'étalement de l'encre.
  2. Rouleau de raclage d'encrage tel que défini dans la revendication 1, dans lequel ladite matière organique autoréactive est sélectionnée dans le groupe constitué de :
    • a) polystyrènes ;
    • b) polyisobutylènes ;
    • c) acrylonitriles-butadiènes-styrènes ;
    • d) polybutadiènes ; et
    • e) caoutchoucs nitrile.
  3. Rouleau doseur d'encrage tel que défini dans la revendication 2, dans lequel ladite matière organique autoréactive est du polystyrène.
  4. Rouleau doseur d'encrage tel que défini dans la revendication 2, dans lequel ladite matière organique autoréactive est du polyisobutylène.
  5. Rouleau de raclage d'encrage tel que défini dans la revendication 2, dans lequel ladite matière organique autoréactive est de l'acrylonitrile-butadiène-styrène.
  6. Rouleau de raclage d'encrage tel que défini dans la revendication 2, dans lequel ladite matière organique autoréactive est du polybutadiène.
  7. Rouleau de raclage d'encrage tel que défini dans la revendication 2, dans lequel ladite matière organique autoréactive est du caoutchouc nitrile.
  8. Procédé de production d'un rouleau de raclage d'encrage résistant à l'usure possédant des propriétés oléophiles et hydrophobes, comprenant les étapes consistant en :
    • a) la fourniture d'un rouleau ayant une couche superficielle sensiblement cylindrique formée d'une matière céramique microporeuse qui définit un réseau interconnecté d'ouvertures qui traversent pratiquement la totalité du volume de la couche microporeuse ;
    • b) l'infusion dans le réseau interconnecté d'un soluté de matière organique autoréactive choisie dans le groupe constitué de monomères, copolymères et prépolymères d'hydrocarbures ou des hydrocarbures ayant des groupes chimiquement réactifs, avec la matière organique réactive à la polymérisation ou au couplage ; et
    • c) la soumission de ladite matière organique réactive à un traitement la faisant réagir et former une substance dans le réseau interconnecté qui est oléophile et hydrophobe et qui a un angle de contact avec l'eau d'au moins 90° et un angle de contact avec l'huile-encre d'au plus 10° et des propriétés d'étalement de l'encre.
  9. Procédé tel que défini dans la revendication 8, suivant lequel la couche superficielle de céramique microporeuse est déposée sur le rouleau de base par applications successives et suivant lequel chaque couche successive est infusée avec la matière organique autoréactive avant le dépôt de la partie additionnelle suivante de la couche de céramique.
  10. Dispositif d'encrage à utiliser dans l'impression utilisant un mélange d'encre à base d'huile et d'eau comme milieu formant l'impression, comprenant plusieurs rouleaux encreurs par enduction, l'un desdits rouleaux encreurs étant un rouleau de d'encrage de raclage comprenant :
    • a) un rouleau de base de solidité, diamètre et longueur prédéterminés ayant une surface externe de forme sensiblement cylindrique ;
    • b) une couche de céramique microporeuse continue solidaire de la surface externe dudit rouleau de base, ladite couche microporeuse définissant un réseau interconnecté d'ouvertures qui traversent pratiquement la totalité du volume de ladite couche de céramique ;
    • c) un produit de réaction oléophile et hydrophobe formé dans le réseau interconnecté par réaction d'une matière organique autoréactive sélectionnée dans le groupe constitué de polystyrènes, polyisobutylènes, acrylonitriles-butadiènes-styrènes, polybutadiènes et caoutchoucs nitrile ; ledit produit de réaction oléophile et hydrophobe ayant un angle de contact avec l'eau d'au moins 90° et un angle de contact avec l'huile-encre d'au plus 10° et des propriétés d'étalement de l'encre ; et
    • d) des moyens de raclage montés en contact selon une relation d'angle inversé avec ledit rouleau de base revêtu de céramique microporeuse pour en enlever l'excès d'encre.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com