PatentDe  


Dokumentenidentifikation EP0518673 01.04.1999
EP-Veröffentlichungsnummer 0518673
Titel Schnelle Pufferschaltung
Anmelder STMicroelectronics, Inc., Carrollton, Tex., US
Erfinder Bien, David Edward, Sunnyvale, California 94086, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69228450
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument En
EP-Anmeldetag 11.06.1992
EP-Aktenzeichen 923053805
EP-Offenlegungsdatum 16.12.1992
EP date of grant 24.02.1999
Veröffentlichungstag im Patentblatt 01.04.1999
IPC-Hauptklasse H03F 3/30
IPC-Nebenklasse H03F 3/50   

Beschreibung[en]

This invention relates to improvements in buffer circuits, and more particularly to improvements in open loop type emitter follower and operational, or differential, amplifier types of buffer circuits.

Buffer amplifiers have wide applications, for example, to isolate signal paths, to insure proper signal levels from one stage to another, and so on. One widely used buffer circuit 5 is shown in Figure 1. The circuit 5 of Figure 1 is a so called "diamond configuration" buffer circuit, and includes two emitter follower input stages 10 and 11 and one output amplifier stage 12. The first emitter follower emitter stage 10 includes an NPN transistor 15 and a current source 16 in series with its emitter. Likewise, the second emitter follower circuit 11 includes a PNP transistor 18 with a current source 19 in series with its emitter. The output amplifier stage 12 includes an NPN transistor 21 and a PNP transistor 22, connected with their emitter-collector paths in series, as shown. The input signal to the circuit, denoted VIN is connected to the bases of the NPN transistor 15 and the PNP transistor 18, and the output of the circuit, denoted VOUT is derived at an output node connection between the emitters of the NPN transistor 21 and the PNP transistor 22.

It can be seen that the buffer circuit 5 of Figure 1 is an "open loop" amplifier, that is, it has its input signal directed to the output node with little delay or phase shift, with essentially no signal feedback. The circuit 5 is therefore relatively fast, has wide bandwidth performance, and has a good slew rate. Such circuits, however, nevertheless generally suffer from offset problem, and, since these circuits generally have very low output impedances, their output devices are usually required to be biased at very high currents.

Another type of buffer which is widely used is the "operational amplifier" or "differential amplifier" type buffer circuit 25, as shown in Figure 2. As shown, the circuit 25 includes an operational amplifier 26 having a feedback path 27 connected between the output, VOUT and the negative, or inverting, input terminals. The input signal, VIN is connected to the positive, or non-inverting, input terminal of the operational amplifier 26.

In comparison with the "diamond configuration" buffer of the type shown in Figure 1, the operational amplifier buffer of the type illustrated in Figure 2 has excellent precision with low offset and low output impedance. Operational amplifier type buffers rely on the high gain of the operational amplifier to produce a good replica of VIN at their outputs. The drawback is that the operational amplifier must have usable gain over the entire desired frequency range of the buffer. Since, in practice, operational amplifier buffers often have a buffer similar to the above described open loop buffer as its output in a two stage arrangement with a feedback loop closed around the operational amplifier, the operational amplifier will necessarily be slower than the open loop type buffer.

EDN Electrical Design News, Vol. 32, No, 4, 19th February 1987, Newton, Massachusetts, US, pages 137-151 discloses a buffer circuit in which two difference amplifiers are used to provide feedback inputs to two transistors of an output amplifier.

According to one aspect of the present invention there is provided a buffer circuit comprising a pair of input voltage amplifiers connected to receive an input voltage signal (Vin), each producing a signal representing said input voltage signal (Vin), a pair of output transistors of opposite conductivity types, said pair of output transistors being connected to develop an output voltage signal (Vout) on an interconnection node therebetween, a circuit for producing a difference signal representing the difference between the input (Vin) and output (Vout) voltages, wherein said difference signal and said signal representing said input voltage (Vin) are applied to the base of one of said pair of output transistors characterised in that the other of said pair of output transistors has its base connected to receive only said signal representing said input voltage signal.

Thus the present invention provides a buffer circuit in which an operational amplifier may be used in combination with an open loop type amplifier in such a manner that the operational amplifier controls the signal from within the open loop amplifier, without detracting from the advantages inherent in the open loop amplifer. The combination, therefore, combines the best features of both the open loop amplifier and the operational amplifier type buffers. The resulting buffer circuit has the benefits of both the excellent speed performance of the open loop circuit, and the enhanced accuracy of the operational amplifier type circuit.

One of the benefits of the buffer of the present invention is that an added feedback path is not required to provide gain over the full bandwidth of the buffer. Stated another way, the bandwidth of the amplifier is not limited by the bandwidth of the operational amplifier portion of the circuit. For instance, the required gain of the operational amplifier may need only have a small bandwidth, if all that is to be desired is increased dc performance. Moreover, it is believed that buffers fabricated according to the present invention are more tolerant of highly capacitive loads than, for example, operational amplifier buffers alone.

As will become apparent, the concepts of a preferred embodiment of the invention lend themselves well to different forms of realization; for example, the circuit can be fabricated in field effect transistor (FET), bipolar transistor, or a combination of bipolar and field effect transistor technologies, with accompanying advantages of each. For example, a BICMOS embodiment can be used in conjunction with sensitive capacitive input circuits which can be accommodated easily by FET devices, together with output circuits which require relatively large drive currents, which can be provided by bipolar devices.

The invention is illustrated in the accompanying drawing, in which:

Fiqure 1 is an electrical schematic diagram of an open loop, or "diamond configuration" buffer amplifier of the prior art.

Figure 2 is an electrical schematic diagram of an operational amplifier feedback type buffer amplifier of the prior art.

Figure 3 is an electrical schematic and block diagram of a buffer amplifier, illustrating the principles of the present invention.

Figure 4 is an electrical schematic diagram of a buffer amplifier, according to a preferred embodiment of the present invention, fabricated with bipolar transistors.

In the various figures of the drawing, like reference numerals are used to denote like or similar parts.

In accordance with one embodiment of the present invention, it has been found that by adding a feedback circuit around an open loop type buffer, its performance can be improved. Moreover, the buffer can have reduced offset, as well as a lower output impedance. In the circuit according to the invention, an extra shunt-series feedback loop is introduced in such a way that the wide unity gain bandwidth of the open loop type input amplifier can be used to amplify signals unimpaired by a gain roll-off in the added feedback path. In this way it is possible to improve the accuracy of the buffer while maintaining an extremely wide bandwidth.

Conceptually, as shown in Figure 3, the buffer circuit, in accordance with an embodiment of the invention has an input amplifier 30 and an output amplifier 31. A differential input/output gain block 33 is provided, together with an input loop 35 and output loop 36. The input loop 35 includes the input amplifier 30, having a gain of a1, having VIN on its input. The input signal, VIN is connected to a non-inverting input terminal of the differential input/out gain block 33, and the output the amplifier is connected to an inverting terminal of the differential input/out gain block 33.

On the other hand, the output current loop 36 is connected with the output of the amplifier 31, which has a gain of a2, delivering the output signal, VOUT. The output of the amplifier 31 is also connected to an inverting input of the differential input/out gain block 33. A non-inverting output of the differential input/out gain block 33 is connected to the input of the amplifier 31 to complete the current path.

The differential input/out gain block 33 has a transfer function which serves to maintain equality, or other desired relationship, between the input signal, VIN, and the output signal, VOUT.

One manner in which this circuit can be realized in bipolar transistors is illustrated in Figure 4. Thus, the "diamond configuration" amplifier will be realized in the form of two emitter follower input amplifiers, 40 and 41, and an output amplifier 42. The first input amplifier 40 has an NPN transistor 45 with a collector-emitter path connected in series between VCC and a current source 46, to VEE. The second input amplifier 41 includes an PNP transistor 48, having an emitter-collector path connected in series with a current source 49 and resistor 50, between VCC and VEE. The current sources 46 and 49 each provide a current I1.

The output amplifier 42 includes an NPN transistor 54 and a PNP transistor 55, having their emitter collector paths connected in series between VCC and VEE, as shown. A resistor 56 may be provided to provide a voltage drop between the output node 57 and the emitter of the transistor 55, if needed. As shown, the input signal VIN is connected to the bases of input transistors 45 and 48, and the output signal, VOUT, is derived at the node 57 of the output amplifier 42. The inputs to the bases of the output transistors 54 and 55 are from the outputs of respective emitter follower input amplifiers 41 and 40, as below described.

The function of the differential input/out gain block is provided by a differential pair amplifier 60. The differential pair amplifier 60 includes two NPN transistors 61 and 62. The NPN transistor 61 has its collector-emitter path connected between the output of emitter follower amplifier 41 and a current source 64. On the other hand, the NPN transistor 62 has its collector-emitter path connected between the input of one of the output transistors, such as the base of transistor 54, as shown, and the current source 64. A second current source 65 is provided to supply current to the differential pair transistors 61 and 62 via resistors 50 and 67. The input signal, VIN, is connected to the base of the first differential pair transistor 61, and the output node 57 is connected to the base of the second differential pair transistor 62. The current sources 64 and 65 each provide a current I2.

In operation, as mentioned, transistors 45, 48, 54 and 55 function as a "diamond configuration" buffer. The differential pair transistors 61 and 62 amplify the difference between the input and output signals, VIN and VOUT, and the amplified difference is summed into the circuit at the base of the transistor 54. This has the effect of reducing any differences between VOUT and VIN. As mentioned, a resistor 56 may be used to allow the transistors 61 and 62 to influence VOUT without causing large changes in the bias currents of the transistors 54 and 55. It will be appreciated that the gain of the differential power stage can approach zero, and wide band signal paths still exists to VOUT.

It will be appreciated that the bipolar embodiment of the invention has been described with respect to certain NPN and PNP type transistors; however, it is not intended to limit the invention to constructions with transistors only of the conductivity types illustrated, as those skilled in the art can easily substitute transistors of different conductivity types, with appropriate changes in the biasing voltages.

Moreover, the invention can be realized in circuits other than those fabricated only with bipolar devices, depending upon the desired application.

Although the invention has been described and illustrated with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example, and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the scope of the invention, as hereinafter claimed.


Anspruch[de]
  1. Pufferschaltung mit:
    • einem Paar von Eingangsspannungsverstärkern (40, 41), welche so angeschlossen sind, daß sie ein Eingangsspannungssignal (Vin) empfangen, und welche jeweils ein Signal erzeugen, welches das Eingangsspannungssignal (Vin) repräsentiert;
    • einem Paar (42) von Ausgangstransistoren (54, 55) von entgegengesetztem Leitfähigkeitstyp, wobei das Paar von Ausgangstransistoren (54, 55) so verdrahtet ist, daß an einem dazwischenliegenden Verbindungsknoten (57) ein Ausgangsspannungssignal (Vout) erzeugt wird;
    • einer Schaltung (60) zum Erzeugen eines Differenzsignals, welches die Differenz zwischen der Eingangsspannung (Vin) und der Ausgangsspannung (Vout) repräsentiert, wobei das Differenzsignal und das Signal, welches die Eingangsspannung (Vin) repräsentiert, an der Basis des einen Transistors des Paars von Ausgangstransistoren (54, 55) angelegt wird;
       dadurch gekennzeichnet, daß die Basis des anderen Transistors des Paars von Ausgangstransistoren (54, 55) so angeschlossen ist, daß sie nur das Signal, welches das Eingangsspannungssignal repräsentiert, empfängt.
  2. Pufferschaltung nach Anspruch 1, bei welcher das Eingangsspannungssignal (Vin) und das Ausgangsspannungssignal (Vout) im wesentlichen gleich gehalten werden.
  3. Pufferschaltung nach Anspruch 1 oder 2, welche außerdem einen Widerstand aufweist, welcher zwischen einem Ausgang von einem der Eingangsverstärker (40, 41), und der Basis von einem der Ausgangstransistoren (54, 55) angeschlossen ist, um über den Ausgang des einen Eingangsverstärkers das Differenzsignal dem einen Ausgangstransistor zuzuführen.
  4. Pufferschaltung nach einem der Ansprüche 1 bis 3, bei welcher jeder des Paares von Eingangsverstärkern (40, 41) einen Transistor (45, 48) aufweist, welcher in einer Emitterfolgeanordnung angeschlossen ist, wobei bei jedem Transistor (45, 48) eine entsprechende Stromquelle (46, 49) an seinem Emitter angeschlossen ist, und wobei an der Basis der Eingangstransistoren (45, 48) das Eingangssignal (Vin) angelegt wird.
  5. Pufferschaltung nach einem der Ansprüche 1, 2, 3 oder 4, bei welcher die Schaltung (60) zum Erzeugen eines Differenzsignals einen Differenzverstärker aufweist.
  6. Pufferschaltung nach einem der Ansprüche 1, 2, 3 oder 4, bei welcher die Schaltung (60) zum Erzeugen eines Differenzsignals einen Operationsverstärker aufweist, wobei der Operationsverstärker ein gewünschtes Verstärkungsverhältnis zwischen dem Eingangssignal (Vin) und dem Ausgangssignal (Vout) hält.
  7. Pufferschaltung nach Anspruch 6, bei welcher der Operationsverstärker ein Verstärkungsverhältnis von Eins hält.
  8. Pufferschaltung nach Anspruch 6 oder 7, bei welcher der Operationsverstärker ein Differenz- bzw. Differenzschaltungspaar von Transistoren ist, von welchen der eine (61) das Eingangssignal (Vin) empfängt, und der andere (62) das Ausgangssignal (Vout) empfängt.
  9. Pufferschaltung nach einem der Ansprüche 1, 2, 3 oder 4, bei welcher die Schaltung (6) zum Erzeugen eines Differenzsignals zwei Transistoren (61, 62) aufweist, welche so angeschlossen sind, daß sie jeweils das Eingangssignal (Vin) und das Ausgangssignal (Vout) an ihren Eingangsanschlüssen empfangen, und Widerstandsmittel, über welchen die Ausgänge der Transistoren (61, 62) angeschlossen sind, um ein Differenzsignal zum Zuführen zu der Basis des einen Ausgangstransistors (54, 55) zu erzeugen.
Anspruch[en]
  1. A buffer circuit comprising:
    • a pair of input voltage amplifiers (40,41) connected to receive an input voltage signal (Vin), each producing a signal representing said input voltage signal (Vin);
    • a pair (42) of output transistors (54,55) of opposite conductivity types, said pair (42) of output transistors (54,55) being connected to develop an output voltage signal (Vout) on an interconnection node (57) therebetween;
    • a circuit (60) for producing a difference signal representing the difference between the input (Vin) and output (Vout) voltages, wherein said difference signal and said signal representing said input voltage (Vin) are applied to the base of one of said pair of output transistors (54,55);
       characterised in that the other of said pair of output transistors (54,55) has its base connected to receive only said signal representing said input voltage signal.
  2. The buffer circuit of claim 1 wherein said input (Vin) and output (Vout) voltage signals are maintained substantially equal.
  3. The buffer circuit of claim 1 or claim 2 further comprising a resistor connected between an output of one of said input amplifiers (40,41) and the base of one of said output transistors (54,55) for applying said difference signal to said one output transistor with the output of said one input amplifier.
  4. The buffer circuit of any one of claims 1 to 3 wherein said pair of input amplifiers (40,41) each comprise a transistor (45,48) connected in an emitter-follower configuration, each transistor (45,48) having a respective current source (46,49) connected to the emitter thereof, the input signal (Vin) being applied to the bases of the input transistors (45,48).
  5. The buffer circuit of any one of claims 1, 2, 3 or 4 wherein said circuit (60) for producing a difference signal comprises a differential amplifier.
  6. The buffer circuit of any one of claims 1, 2, 3 or 4 wherein said circuit (60) for producing a difference signal comprises an operational amplifier, wherein said operational amplifier maintains a desired gain relationship between the input (Vin) and the output (Vout) signals.
  7. The buffer circuit of claim 6 wherein said operational amplifier maintains a unity gain relationship.
  8. The buffer circuit of claim 6 or claim 7 wherein said operational amplifier is a differential pair of transistors (61,62), one (61) receiving said input signal (Vin) and another (62) receiving said output signal (Vout).
  9. The buffer circuit of any one of claims 1, 2, 3 or 4 wherein said circuit (6) for producing a difference signal comprises two transistors (61,62) connected to receive, respectively, the input (Vin) and output (Vout) signals on input terminals thereof, and resistance means across which the outputs of said transistors (61,62) are connected to develop a difference signal for application to said base of said one output transistor (54,55).
Anspruch[fr]
  1. Circuit tampon comprenant :
    • une paire d'amplificateurs de tension d'entrée (40, 41) connectée pour recevoir un signal de tension d'entrée (Vin), chacun produisant un signal représentif dudit signal de tension d'entrée (Vin);
    • une paire (42) de transistors de sortie (54, 55) de types de conductivité opposés, ladite paire (42) de transistors de sortie (54, 55) étant connectée pour produire un signal de tension de sortie (Vout) sur un noeud d'interconnexion (57) entre ceux-ci ;
    • un circuit (60) pour produire un signal de différence représentatif de la différence entre les tensions d'entrée (Vin) et de sortie (Vout), dans lequel ledit signal de différence et ledit signal représentatif de ladite tension d'entrée (Vin) sont appliqués à la base d'un transistor de ladite paire de transistors de sortie (54, 55) ;
       caractérisé en ce que l'autre transistor de ladite paire de transistors de sortie (54, 55) a sa base connectée pour recevoir uniquement ledit signal représentant ledit signal de tension d'entrée.
  2. Circuit tampon de la revendication 1, dans lequel lesdits signaux de tension d'entrée (Vin) et de sortie (Vout) sont maintenus sensiblement égaux.
  3. Circuit tampon de la revendication 1 ou de la revendication 2, comprenant en outre une résistance connectée entre une sortie d'un desdits amplificateurs d'entrée (40, 41) et la base d'un desdits transistors de sortie (54, 55) pour appliquer ledit signal de différence audit un transistor de sortie avec la sortie dudit un amplificateur d'entrée.
  4. Circuit tampon de l'une quelconque des revendications 1 à 3, dans lequel les deux amplificateurs d'entrée de ladite paire d'amplificateurs d'entrée (40, 41) comprennent chacun un transistor (45, 48) connecté dans une configuration de montage émetteur-suiveur, chaque transistor (45, 48) ayant une source de courant respective (46, 49) connectée à l'émetteur de celui-ci, le signal d'entrée (Vin) étant appliqué aux bases des transistors d'entrée (45, 48).
  5. Circuit tampon de l'une quelconque des revendications 1, 2, 3 ou 4, dans lequel ledit circuit (60) pour produire un signal de différence comprend un amplificateur différentiel.
  6. Circuit tampon de l'une quelconque des revendications 1, 2, 3 ou 4, dans lequel ledit circuit (60) pour produire un signal de différence comprend un amplificateur opérationnel, dans lequel ledit amplificateur opérationnel maintient une relation de gain souhaitée entre les signaux d'entrée (Vin) et de sortie (Vout).
  7. Circuit tampon de la revendication 6, dans lequel ledit amplificateur opérationnel maintient une relation de gain unité.
  8. Circuit tampon de la revendication 6 ou de la revendication 7, dans lequel ledit amplificateur opérationnel est une paire différentielle de transistors (61, 62), l'un (61) recevant ledit signal d'entrée (Vin) et l'autre (62) recevant ledit signal de sortie (Vout).
  9. Circuit tampon de l'une quelconque des revendications 1, 2, 3 ou 4, dans lequel ledit circuit (6) pour produire un signal de différence comprend deux transistors (61, 62) connectés pour recevoir respectivement les signaux d'entrée (Vin) et de sortie (Vout) sur leurs bornes d'entrée, et des moyens formant résistances à travers lesquels les sorties desdits transistors (61, 62) sont connectées pour produire un signal de différence devant être appliqué à ladite base dudit un transistor de sortie (54, 55).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com