PatentDe  


Dokumentenidentifikation EP1092559 23.05.2001
EP-Veröffentlichungsnummer 1092559
Titel Oranger Farbstoff für thermische Farbauszüge
Anmelder Eastman Kodak Co., Rochester, N.Y., US
Erfinder Chapman, Derek D., Rochester, New York 14650-2201, US;
Kaszczuk, Linda A., Rochester, New York 14650-2201, US;
Harris, Mark A., Rochester, New York 14650-2201, US
Vertreter derzeit kein Vertreter bestellt
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 04.10.2000
EP-Aktenzeichen 002034569
EP-Offenlegungsdatum 18.04.2001
Veröffentlichungstag im Patentblatt 23.05.2001
IPC-Hauptklasse B41M 5/38
IPC-Nebenklasse G03F 3/10   C09B 67/22   

Beschreibung[en]

This invention relates to use of a mixture of dyes for thermal dye transfer imaging which is used to obtain a color proof that accurately represents the hue of a printed color image obtained from a printing press.

In order to approximate the appearance of continuous-tone (photographic) images via ink-on-paper printing, the commercial printing industry relies on a process known as halftone printing. In halftone printing, color density gradations are produced by printing patterns of dots or areas of varying sizes, but of the same color density, instead of varying the color density continuously as is done in photographic printing.

There is an important commercial need to obtain a color proof image before a printing press run is made. It is desired that the color proof will accurately represent at least the details and color tone scale of the prints obtained on the printing press. In many cases, it is also desirable that the color proof accurately represent the image quality and halftone pattern of the prints obtained on the printing press. In the sequence of operations necessary to produce an ink-printed, full-color picture, a proof is also required to check the accuracy of the color separation data from which the final three or more printing plates or cylinders are made. Traditionally, such color separation proofs have involved silver halide photographic, high-contrast lithographic systems or non-silver halide light-sensitive systems which require many exposure and processing steps before a final, full-color picture is assembled.

Colorants that are used in the printing industry are insoluble pigments. By virtue of their pigment character, the spectrophotometric curves of the printing inks are often unusually sharp on either the bathochromic or hypsochromic side. This can cause problems in color proofing systems in which dyes, as opposed to pigments, are being used. It is very difficult to match the hue of a given ink using a single dye.

In US-A-5,126,760, a process is described for producing a direct digital, halftone color proof of an original image on a dye-receiving element. The proof can then be used to represent a printed color image obtained from a printing press. The process described therein comprises:

  • a) generating a set of electrical signals which is representative of the shape and color scale of an original image;
  • b) contacting a dye-donor element comprising a support having thereon a dye layer and an infrared-absorbing material with a first dye-receiving element comprising a support having thereon a polymeric, dye image-receiving layer;
  • c) using the signals to imagewise-heat by means of a diode laser the dye-donor element, thereby transferring a dye image to the first dye-receiving element; and
  • d) retransferring the dye image to a second dye image-receiving element which has the same substrate as the printed color image.

In the above process, multiple dye-donors are used to obtain a complete range of colors in the proof. For example, for a full-color proof, four colors: cyan, magenta, yellow and black are normally used.

By using the above process, the image dye is transferred by heating the dye-donor containing the infrared-absorbing material with the diode laser to volatilize the dye, the diode laser beam being modulated by the set of signals which is representative of the shape and color of the original image, so that the dye is heated to cause volatilization only in those areas in which its presence is required on the dye-receiving layer to reconstruct the original image.

Similarly, a thermal transfer proof can be generated by using a thermal head in place of a diode laser as described in US-A-4,923,846. Commonly available thermal heads are not capable of generating halftone images of adequate resolution but can produce high quality continuous tone proof images which are satisfactory in many instances. US-A-4,923,846 also discloses the choice of mixtures of dyes for use in thermal imaging proofing systems. The dyes are selected on the basis of values for hue error and turbidity. The Graphic Arts Technical Foundation Research Report No. 38, "Color Material" (58-(5) 293-301, 1985) gives an account of this method.

An alternative and more precise method for color measurement and analysis uses the concept of uniform color space known as CIELAB in which a sample is analyzed mathematically in terms of its spectrophotometric curve, the nature of the illuminant under which it is viewed and the color vision of a standard observer. For a discussion of CIELAB and color measurement, see Principles of Color Technology, 2nd Edition, F. W. Billmeyer, p. 25-110, Wiley-Interscience and Optical Radiation Measurements, Volume 2, F. Grum, p. 33-145, Academic Press.

In using CIELAB, colors can be expressed in terms of three parameters: L*, a* and b*, where L* is a lightness function, and a* and b* define a point in color space. Thus, a plot of a* vs. b* values for a color sample can be used to accurately show where that sample lies in color space, i.e., what its hue is. This allows different samples to be compared for hue if they have similar density and L* values.

In color proofing in the printing industry, it is important to be able to match the printing inks. For additional information on color measurement of inks for web offset proofing, see "Advances in Printing Science and Technology", Proceedings of the 19th International Conference of Printing Research Institutes, Eisenstadt, Austria, June 1987, J. T. Ling and R. Warner, p.55.

JP 53/014734 and JP 52/099379 disclose indoline dyes for dyeing polyester fibers. However, there is no disclosure in these references that these dyes may be used in thermal dye transfer.

US-A-5,866,509 discloses a magenta dye-donor element comprising a mixture of magenta dyes and a small amount of yellow dye for color proofing. However, there is no disclosure in this reference of how to make an orange dye-donor element.

US-A-4,757,046 discloses a merocyanine dye-donor element used in thermal dye transfer. However, there is no disclosure in this reference of how to make an orange dye-donor element.

DE 196 50 958 A1 relates to relates to trifluormethylpyridone-based indolenine methine dyes and DE 44 40 066 A1 relates to methine and azamethine dyes based on trifluoromethylpyridones. However, there is no disclosure in these references of how to make an orange dye-donor element.

It is an object of this invention to provide an orange dye donor element comprising a mixture of a pink and yellow dyes for color proofing which will match an orange, pigmented printing ink.

This and other objects are obtained by this invention which relates to an orange dye-donor element for thermal dye transfer comprising a support having thereon a dye layer comprising a mixture of a pink dye and a first and second yellow dye dispersed in a polymeric binder, said pink dye having the formula A:

wherein:
  • R1, R2 and R3 each independently represents a substituted or unsubstituted alkyl group having from 1 to 10 carbon atoms; a substituted or unsubstituted cycloalkyl group having from 5 to 7 carbon atoms; a substituted or unsubstituted allyl group, such as cinnamyl or methallyl; a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms, such as phenyl, naphthyl, p-tolyl, m-chlorophenyl, p-methoxyphenyl, m-bromophenyl, o-tolyl, etc; or a substituted or unsubstituted hetaryl group of from 5 to 10 atoms, such as 2-thienyl, 2-pyridyl or 2-furyl;
  • X represents C(CH3)2, S, O or NR1; and
  • Y represents the atoms necessary to complete a 5- or 6-membered ring which may be fused to another ring system;
said first yellow dye having the formula C having the structure:
wherein:
  • R6 and R7 each independently represents the same groups as R1, R2 and R3 above;
  • K represents C(CH3)2, S, O or NR6; or
  • G represents a substituted or unsubstituted alkoxy group having from 1 to 10 carbon atoms, such as methoxy, ethoxy, methoxyethoxy or 2-cyanoethoxy; a substituted or unsubstituted aryloxy group having from 6 to 10 carbon atoms, such as phenoxy, m-chlorophenoxy, or naphthoxy; NHR6; NR6R7;
said second yellow dye having the formula F or G, said formula F having the structure:
wherein:
  • R12 represents methyl or a substituted or unsubstituted alkoxy group having from 1 to 10 carbon atoms, such as methoxy, ethoxy, methoxyethoxy or 2-cyanoethoxy; or a substituted or unsubstituted aryloxy group having from 6 to 10 carbon atoms such as phenoxy, m-chlorophenoxy or naphthoxy;
  • R13 represents a substituted or unsubstituted alkyl group of from 1 to 10 carbon atoms; a cycloalkyl group of from 5 to 7 carbon atoms; or a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms;
  • R14 and R15 each independently represents hydrogen or a substituted or unsubstituted alkyl or alkoxy group having from 1 to 4 carbon atoms; and
said formula G having the structure:
wherein:
  • R17, R18 and R19 each independently represents the same groups as R1, R2 and R3 above;
  • R16 represents any of the groups for R17, R18 and R19 or represents the atoms which when taken together with Z forms a 5-or 6-membered ring;
  • Z represents hydrogen; a substituted or unsubstituted alkyl group having from 1 to 10 carbon atoms; alkoxy; halogen; or represents the atoms which when taken together with R16 forms a 5- or 6-membered ring;
  • each W independently represents a substituted or unsubstituted alkyl group having from 1 to 10 carbon atoms; alkoxy having from 1 to 10 carbon atoms; halogen; or two adjacent W's together represent the atoms necessary to complete a 5- or 6-membered ring, thus forming a fused ring system; and
  • n represents an integer from 0 to 2.

Useful pink dyes within the scope of the invention include the following:

Dye R1 R2 R3 X A1 C2H5 CH2CH3 CH3 S A2 C3H7 C4H9 C2H5 C(CH3)2 A3 C4H9 C2H4OCH3 CH3 C(CH3)2 A4 C4H9 C4H9 C2H5 C(CH3)2 A5 C2H5 C2H4OC2H5 CH3 C(CH3)2 A6 CH3 CH2C6H5 CH3 C(CH3)2 A7 CH3 CH2C6H5 CH3 S

The above dyes and synthetic procedures for making them are disclosed in JP 53/014734. In a preferred embodiment of the invention, R1 is butyl, R2 is 2-methoxyethyl, R3 is methyl, X represents C(CH3)2 and Y is a 6-membered aromatic ring.

Useful yellow dyes within the scope of formula C include:

Dye R6 R7 G K C1 C2H5 C6H5 OCH3 S C2 C2H5 C6H5 N(CH3)2 C(CH3)2 C3 CH3 C6H5 OC2H5 C(CH3)2

The above dyes and synthetic procedures for making them are disclosed in US-A-4,757,046. In a preferred embodiment of the invention, R6 is ethyl, R7 is phenyl, G is dimethylamino and K is C(CH3)2.

Useful yellow dyes within the scope of formula F include:

Dye R14 R15 R12 R13 F1 3-CH3O 4-CH3O CH3 C6H5 F2 3-CH3O H CH3 C6H5 F3 H 4-CH3O CH3 C6H5 F4 CH3 4-CH3O CH3 C6H5 F5 CH3 CH3 CH3 C6H5 F6 CH3 CH3 CH3O C6H5 F7 CH3 CH3 CH3O C6H5 F8 H 4-CH3O CH3O C6H5

The above dyes are disclosed in US-A-5,866,509. In a preferred embodiment of the invention, R13 is phenyl, R12 is methyl, R14 is 3-methoxy and R15 is 4-methoxy.

Useful yellow dyes within the scope of formula G include:

Dye R17 R16 R19 R18 W G1 CH3 CH3 C2H5 H H G2 C2H5 C2H5 H C3H7 H G3 C2H5 C2H5 CH2C6H5 H H G4 C2H5 CH2C6H5 CH2C6H5 H H G5 CH3 C4H9 C6H5 CH3 2-CH3 G6 C4H9 C4H9 C3H7 C3H7 H G7 CH3 CH3 CH2Ph CH3 2-CH3

The above dyes are disclosed in US-A-5,081,101. In a preferred embodiment of the invention, R16 is benzyl, R17 is ethyl, R18 is hydrogen, R19 is benzyl, Z is hydrogen and n is 0.

The use of dye mixtures in the dye-donor of the invention permits a wide selection of hue and color that enables a closer hue match to a variety of printing inks to be achieved and also permits easy transfer of images to a receiver one or more times if desired. The use of dyes also allows easy modification of image density to any desired level. The dyes of the dye-donor element of the invention may be used at a coverage of from 0.02 to 1 g/m2.

The dyes in the dye-donor of the invention are dispersed in a polymeric binder such as a cellulose derivative, e.g., cellulose acetate hydrogen phthalate, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose triacetate or any of the materials described in US-A-4,700,207; a polycarbonate; poly(vinyl acetate); poly(styrene-co-acrylonitrile); a polysulfone or a poly(phenylene oxide). The binder may be used at a coverage of from 0.1 to 5 g/m2.

The dye layer of the dye-donor element may be coated on the support or printed thereon by a printing technique such as a gravure process.

Any material can be used as the support for the dye-donor element of the invention provided it is dimensionally stable and can withstand the heat of the laser or thermal head. Such materials include polyesters such as poly(ethylene terephthalate); polyamides; polycarbonates; cellulose esters such as cellulose acetate; fluorine polymers such as poly(vinylidene fluoride) or poly(tetrafluoroethylene-co-hexafluoropropylene); polyethers such as polyoxymethylene; polyacetals; polyolefins such as polystyrene, polyethylene, polypropylene or methylpentene polymers; and polyimides such as polyimide-amides and polyether-imides. The support generally has a thickness of from 5 to 200 µm. It may also be coated with a subbing layer, if desired, such as those materials described in US-A-4,695,288 or US-A-4,737,486.

The reverse side of the dye-donor element may be coated with a slipping layer to prevent the printing head from sticking to the dye-donor element. Such a slipping layer would comprise either a solid or liquid lubricating material or mixtures thereof, with or without a polymeric binder or a surface-active agent. Preferred lubricating materials include oils or semicrystalline organic solids that melt below 100°C such as poly(vinyl stearate), beeswax, perfluorinated alkyl ester polyethers, polycaprolactone, silicone oil, polytetrafluoroethylene, carbowax, poly(ethylene glycols), or any of those materials disclosed in US-A-4,717,711; US-A-4,717,712; US-A-4,737,485; and US-A-4,738,950. Suitable polymeric binders for the slipping layer include poly(vinyl alcohol-co-butyral), poly(vinyl alcohol-co-acetal), polystyrene, poly(vinyl acetate), cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate or ethyl cellulose.

The amount of the lubricating material to be used in the slipping layer depends largely on the type of lubricating material, but is generally in the range of 0.001 to 2 g/m2. If a polymeric binder is employed, the lubricating material is present in the range of 0.1 to 50 weight %, preferably 0.5 to 40 %, of the polymeric binder employed.

The dye-receiving element that is used with the dye-donor element of the invention usually comprises a support having thereon a dye image-receiving layer. The support may be a transparent film such as a poly(ether sulfone), a polyimide, a cellulose ester such as cellulose acetate, a poly(vinyl alcohol-co-acetal) or a poly(ethylene terephthalate). The support for the dye-receiving element may also be reflective such as baryta-coated paper, polyethylene-coated paper, an ivory paper, a condenser paper or a synthetic paper such as DuPont Tyvek®. Pigmented supports such as white polyester (transparent polyester with white pigment incorporated therein) may also be used.

The dye image-receiving layer may comprise, for example, a polycarbonate, a polyurethane, a polyester, poly(vinyl chloride), poly(styrene-co-acrylonitrile), polycaprolactone, a poly(vinyl acetal) such as poly(vinyl alcohol-co-butyral), poly(vinyl alcohol-co-benzal), poly(vinyl alcohol-co-acetal) or mixtures thereof. The dye image-receiving layer may be present in any amount which is effective for the intended purpose. In general, good results have been obtained at a concentration of from 1 to 5 g/m2.

As noted above, the dye-donor elements of the invention are used to form a dye transfer image. Such a process comprises imagewise-heating a dye-donor element as described above and transferring a dye image to a dye-receiving element to form the dye transfer image.

The dye-donor element of the invention may be used in sheet form or in a continuous roll or ribbon. If a continuous roll or ribbon is employed, it may have only the dyes thereon as described above or may have alternating areas of other different dyes or combinations, such as sublimable cyan and/or yellow and/or black or other dyes. Such dyes are disclosed in US-A-4,541,830. Thus, one-, two-, three- or four-color elements (or higher numbers also) are included within the scope of the invention.

Thermal printing heads which can be used to transfer dye from the dye-donor elements of the invention are available commercially. There can be employed, for example, a Fujitsu Thermal Head (FTP-040 MCSOO1), a TDK Thermal Head F415 HH7-1089 or a Rohm Thermal Head KE 2008-F3.

A laser may also be used to transfer dye from the dye-donor elements of the invention. When a laser is used, it is preferred to use a diode laser since it offers substantial advantages in terms of its small size, low cost, stability, reliability, ruggedness, and ease of modulation. In practice, before any laser can be used to heat a dye-donor element, the element must contain an absorbing material which absorbs at the emitting wavelength of the laser. When an infrared laser is employed, then an infrared-absorbing material may be used, such as carbon black, cyanine infrared-absorbing dyes as described in US-A-4,973,572, or other materials as described in the following US-A-4,948,777; US-A-4,950,640; US-A-4,950,639; US-A-4,948,776; US-A-4,948,778; US-A-4,942,141; US-A-4,952,552; US-A-5,036,040; and US-A-4,912,083. The laser radiation is then absorbed into the dye layer and converted to heat by a molecular process known as internal conversion. Thus, the construction of a useful dye layer will depend not only on the hue, transferability and intensity of the image dyes, but also on the ability of the dye layer to absorb the radiation and convert it to heat.

Lasers which can be used to transfer dye from dye-donors employed in the invention are available commercially. There can be employed, for example, Laser Model SDL-2420-H2 from Spectra Diode Labs, or Laser Model SLD 304 V/W from Sony Corp.

A thermal printer which uses the laser described above to form an image on a thermal print medium is described and claimed in US-A-5,268,708.

Spacer beads may be employed in a separate layer over the dye layer of the dye-donor in the above-described laser process in order to separate the dye-donor from the dye-receiver during dye transfer, thereby increasing the uniformity and density of the transferred image. That invention is more fully described in US-A-4,772,582. Alternatively, the spacer beads may be employed in the receiving layer of the dye-receiver as described in US-A-4,876,235. The spacer beads may be coated with a polymeric binder if desired.

The use of an intermediate receiver with subsequent retransfer to a second receiving element may also be employed in the invention. A multitude of different substrates can be used to prepare the color proof (the second receiver) which is preferably the same substrate as that used for the printing press run. Thus, this one intermediate receiver can be optimized for efficient dye uptake . without dye-smearing or crystallization.

Examples of substrates which may be used for the second receiving element (color proof) include the following: Flo Kote Cover® (S. D. Warren Co.), Champion Textweb® (Champion Paper Co.), Quintessence Gloss® (Potlatch Inc.), Vintage Gloss® (Potlatch Inc.), Khrome Kote® (Champion Paper Co.), Consolith Gloss® (Consolidated Papers Co.), Ad-Proof Paper® (Appleton Papers, Inc.) and Mountie Matte® (Potlatch Inc.).

As noted above, after the dye image is obtained on a first dye-receiving element, it may be retransferred to a second dye image-receiving element. This can be accomplished, for example, by passing the two receivers between a pair of heated rollers. Other methods of retransferring the dye image could also be used such as using a heated platen, use of pressure and heat, external heating, etc.

Also as noted above, in making a color proof, a set of electrical signals is generated which is representative of the shape and color of an original image. This can be done, for example, by scanning an original image, filtering the image to separate it into the desired additive primary colors, i.e., red, blue and green, and then converting the light energy into electrical energy. The electrical signals are then modified by computer to form the color separation data which are used to form a halftone color proof. Instead of scanning an original object to obtain the electrical signals, the signals may also be generated by computer. This process is described more fully in Graphic Arts Manual, Janet Field ed., Arno Press, New York 1980 (p. 358ff).

A thermal dye transfer assemblage of the invention comprises

  • a) a dye-donor element as described above, and
  • b) a dye-receiving element as described above,
the dye-receiving element being in a superposed relationship with the dye-donor element so that the dye layer of the donor element is in contact with the dye image-receiving layer of the receiving element.

The above assemblage comprising these two elements may be preassembled as an integral unit when a monochrome image is to be obtained. This may be done by temporarily adhering the two elements together at their margins. After transfer, the dye-receiving element is then peeled apart to reveal the dye transfer image.

The following example is provided to illustrate the invention.

Dye-Donor Element 1

On a 100 µm poly(ethylene terephthalate) support was coated a dye layer containing pink dye A3 illustrated above (0.168g/m2), yellow dye C2 illustrated above (0.109 g/m2), yellow dye F1 illustrated above (0.087 g/m2), the cyanine infrared-absorbing dye disclosed in US-A-5,024,990 (column 13, lines 1-15) at 0.041 g/m2 in a cellulose acetate binder (CAP 480-20 from Eastman Chemical Company) (0.41 g/m2) from a solvent mixture of methyl isobutyl ketone and ethyl alcohol (70/30 wt./wt).

Dye-Donor Element 2

This element was the same as Dye-Donor Element 1 except that instead of dye F1, there was used dye G4 at the same coverage.

Control Orange Ink

A sample of orange ink manufactured by the Flint Ink Corporation drawn down on paper was used as a reference material and its CIELAB color coordinates measured at a status T density of 1.49. This ink is representative of an orange pigmented ink used in offset printing.

Printing

An intermediate dye-receiving element, Kodak APPROVAL®. Intermediate Color Proofing Film, CAT # 831 5582, was used with the above dye-donor elements to print an image. The power to the laser array was modulated to produce a continuous tone image consisting of uniform "steps" of varying density as described in US-A-4,876,235. After the laser array had finished scanning the image area, the laser exposure device was stopped and the intermediate receiver containing the transferred image was laminated to Quintessence ® (Potlatch Corp.) paper stock that had been previously laminated with Kodak APPROVAL ® Prelaminate, CAT # 173 9671.

Color and density measurements were made using a Gretag SPM100-II portable spectrophotometer set for D50 illuminant and 2 degree observer angle. Readings were made with black backing behind the samples. The CIELAB L* a* b* coordinates reported are interpolated to a status T density of 1.49.

In using CIELAB, colors can be expressed in terms of three parameters: L*, a* and b*, where L* is a lightness function, and a* and b* define a point in color space. Thus, a plot of a* vs. b* values for a color sample can be used to accurately show where that sample lies in color space, i.e., what its hue is. This allows different samples to be compared for hue if they have similar L* values.

The color differences between the samples can be expressed as ΔE, where ΔE is the vector difference in CIELAB color space between the laser thermal generated image and the orange ink color aim, according to the following formula: ΔE =square root [(L*e-L*s)2 +(a*e-a*s)2+(b*e-b*s)2] wherein subscript e represents the measurements from the experimental material and subscript s represents the measurements from the orange ink color aim.

The color differences can also be expressed in terms of a hue angle and saturation C* according to the following formulas: Hue angle = arctan b*/a* C* =square root (a*2 +b*2)

The results are shown in the following table: Orange Element L* a* b* ΔE Hue angle ΔHue angle C* ΔC* Control 68.2 53.2 80.9 56.7 - 96.9 - 1 68.4 54.7 81.4 1.6 56.1 -0.6 98.1 1.2 2 68.8 52.7 81.2 1 57.1 0.4 97.1 0.2

The above results show that the orange dye-donor element of the invention provided a close match to the orange printing ink control.


Anspruch[de]
  1. Oranges Farbstoff-Donorelement für die thermische Farbstoffübertragung mit einem Träger, auf dem sich eine Farbstoffschicht befindet mit einer Mischung aus einem pinken Farbstoff sowie einem ersten und einem zweiten gelben Farbstoff, dispergiert in einem polymeren Bindemittel, wobei der pinke Farbstoff der Formel A entspricht:
    worin: R1, R2 und R3 jeweils unabhängig voneinander stehen für eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen; eine substituierte oder unsubsituierte Cycloalkylgruppe mit 5 bis 7 Kohlenstoffatomen; eine substituierte oder unsubstituierte Allylgruppe; eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 10 Kohlenstoffatomen; oder eine substituierte oder unsubstituierte Hetarylgruppe mit 5 bis 10 Atomen;

    X steht für C(CH3)2, S, O oder NR1; und

    Y steht für die Atome, die zur Vervollständigung eines 5- oder 6-gliedrigen Ringes erforderlich sind, der an ein anderes Ringsystem ankondensiert sein kann;

    wobei der erste gelbe Farbstoff mit der Formel C der Struktur entspricht:
    worin: R6 und R7 jeweils unabhängig voneinander für die gleichen Gruppen stehen, wie R1, R2 und R3 oben;

    K steht für C(CH3)2, S, O oder NR6; oder

    G steht für eine substituierte oder unsubstituierte Alkoxygruppe mit 1 bis 10 Kohlenstoffatomen; eine substituierte oder unsubstituierte Aryloxygruppe mit 6 bis 10 Kohlenstoffatomen; NHR6; NR6R7;

    wobei der zweite gelbe Farbstoff der Formel F oder G entspricht, wobei die Formel F die Struktur hat:
    worin: R12 steht für Methyl oder eine substituierte oder unsubstituierte Alkoxygruppe mit 1 bis 10 Kohlenstoffatomen; oder eine substituierte oder unsubstituierte Aryloxygruppe mit 6 bis 10 Kohlenstoffatomen;

    R13 steht für eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen; eine Cycloalkylgruppe mit 5 bis 7 Kohlenstoffatomen; oder eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 10 Kohlenstoffatomen;

    R14 und R15 jeweils unabhängig voneinander stehen für Wasserstoff oder eine substituierte oder unsubstituierte Alkyl- oder Alkoxygruppe mit 1 bis 4 Kohlenstoffatomen; und worin

    die Formel G die Struktur hat:
    worin: R17, R18 und R19 jeweils unabhängig voneinander eine Gruppe darstellen wie oben für R1, R2 und R3 angegeben;

    R16 für eine der Gruppen steht, wie für R17, R18 und R19 angegeben oder die Atome darstellt, die gemeinsam mit Z einen 5- oder 6-gliedrigen Ring bilden;

    Z steht für Wasserstoff; eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen; eine Alkoxygruppe; Halogen; oder die Atome darstellt, die gemeinsam mit R16 einen 5- oder 6-gliedrigen Ring bilden;

    W jeweils unabhängig voneinander steht für eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen; eine Alkoxygruppe mit 1 bis 10 Kohlenstoffatomen; Halogen; oder wobei zwei benachbarte Gruppen W gemeinsam die Atome darstellen, die erforderlich sind zur Vervollständigung eines 5- oder 6-gliedrigen Ringes, unter Erzeugung eines kondensierten Ringsystems; und worin

    n steht für eine Zahl von 0 bis 2.
  2. Element nach Anspruch 1, in dem das Farbstoff-Donorelement einen infrarote Strahlung absorbierenden Farbstoff in der Farbstoffschicht enthält.
  3. Element nach Anspruch 1, in dem in Formel A R1 steht für Butyl, R2 steht für 2-Methoxyethyl, R3 steht für Methyl, X steht für C(CH3)2 und Y ist ein 6-gliedriger aromatischer Ring.
  4. Element nach Anspruch 1, in dem in Formel C R6 steht für Ethyl, R7 steht für Phenyl, G steht für Dimethylamino und K steht für steht für C(CH3)2.
  5. Element nach Anspruch 1, in dem in Formel F R13 steht für Phenyl, R12 steht für Methyl, R14 steht für 3-Methoxy und R15 ist 4-Methoxy.
  6. Element nach Anspruch 1, in dem in Formel G R16 steht für Benzyl, R17 steht für Ethyl, R18 steht für Wasserstoff, R19 steht für Benzyl, Z steht für Wasserstoff und n ist 0.
  7. Verfahren zur Herstellung eines Farbstoff-Übertragungsbildes, bei dem man ein oranges Farbstoff-Donorelement gemäß Anspruch 1 bildweise erhitzt, das aufweist einen Träger, auf dem sich eine Farbstoffschicht befindet mit einer Mischung aus in einem polymeren Bindemittel dispergierten Farbstoffen, und bei dem man ein Farbstoffbild auf ein Farbstoff-Empfangselement überträgt, unter Erzeugung des Farbstoff-Übertragungsbildes.
  8. Verfahren nach Anspruch 7, bei dem das Farbstoff-Donorelement einen infrarote Strahlung absorbierenden Farbstoff in der Farbstoffschicht enthält.
  9. Zusammenstellung für die thermische Farbstoffübertragung mit:
    • a) einem orangen Farbstoff-Donorelement nach Anspruch 1 mit einem Träger, auf dem sich eine Farbstoffschicht befindet mit einer Mischung aus Farbstoffen, die in einem polymeren Bindemittel dispergiert sind, und
    • b) einem Farbstoff-Empfangselement mit einem Träger, auf dem sich eine Farbbild-Empfangsschicht befindet, wobei sich das Farbstoff-Empfangselement in übergeordneter Beziehung zu dem orangen Farbstoff-Donorelement nach Anspruch 1 befindet, so dass die Farbstoffschicht in Kontakt mit der Farbbild-Empfangsschicht gelangt.
  10. Zusammenstellung nach Anspruch 9, in der das Farbstoff-Donorelement einen infrarote Strahlung absorbierenden Farbstoff in der Farbstoffschicht enthält.
Anspruch[en]
  1. An orange dye-donor element for thermal dye transfer comprising a support having thereon a dye layer comprising a mixture of a pink dye and a first and second yellow dye dispersed in a polymeric binder, said pink dye having the formula A:
       wherein:
    • R1, R2 and R3 each independently represents a substituted or unsubstituted alkyl group having from 1 to 10 carbon atoms; a substituted or unsubstituted cycloalkyl group having from 5 to 7 carbon atoms; a substituted or unsubstituted allyl group; a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms; or a substituted or unsubstituted hetaryl group of from 5 to 10 atoms;
    • X represents C(CH3)2, S, O or NR1; and
    • Y represents the atoms necessary to complete a 5- or 6-membered ring which may be fused to another ring system;
    said first yellow dye having the formula C having the structure:
    wherein:
    • R6 and R7 each independently represents the same groups as R1, R2 and R3 above;
    • K represents C(CH3)2, S, O or NR6; or
    • G represents a substituted or unsubstituted alkoxy group having from 1 to 10 carbon atoms; a substituted or unsubstituted aryloxy group having from 6 to 10 carbon atoms; NHR6; NR6R7;
    said second yellow dye having the formula F or G, said formula F having the structure:
       wherein:
    • R12 represents methyl or a substituted or unsubstituted alkoxy group having from 1 to 10 carbon atoms; or a substituted or unsubstituted aryloxy group having from 6 to 10 carbon atoms;
    • R13 represents a substituted or unsubstituted alkyl group of from 1 to 10 carbon atom; a cycloalkyl group of from 5 to 7 carbon atoms; or a substituted or unsubstituted aryl group of from 6 to 10 carbon atoms;
    • R14 and R15 each independently represents hydrogen or a substituted or unsubstituted alkyl or alkoxy group having from 1 to 4 carbon atoms; and
    said formula G having the structure:
       wherein:
    • R17, R18 and R19 each independently represents the same groups as R1, R2 and R3 above;
    • R16 represents any of the groups for R17, R18 and R19 or represents the atoms which when taken together with Z forms a 5-or 6-membered ring;
    • Z represents hydrogen; a substituted or unsubstituted alkyl group having from 1 to 10 carbon atoms; alkoxy; halogen; or represents the atoms which when taken together with R16 forms a 5- or 6-membered ring;
    • each W independently represents a substituted or unsubstituted alkyl group having from 1 to 10 carbon atoms; alkoxy having from 1 to 10 carbon atoms; halogen; or two adjacent W's together represent the atoms necessary to complete a 5- or 6-membered ring, thus forming a fused ring system; and
    • n represents an integer from 0 to 2.
  2. The element of Claim 1 wherein said dye-donor element contains an infrared-absorbing dye in said dye layer.
  3. The element of Claim 1 wherein in formula A, R1 is butyl, R2 is 2-methoxyethyl, R3 is methyl, X represents C(CH3)2 and Y is a 6-membered aromatic ring.
  4. The element of Claim 1 wherein in formula C, R6 is ethyl, R7 is phenyl, G is dimethylamino and K is C(CH3)2.
  5. The element of Claim 1 wherein in formula F, R13 is phenyl, R12 is methyl, R14 is 3-methoxy and R15 is 4-methoxy.
  6. The element of Claim 1 wherein in formula G, R16 is benzyl, R17 is ethyl, R18 is hydrogen, R19 is benzyl, Z is hydrogen and n is 0.
  7. A process of forming a dye transfer image comprising imagewise-heating an orange dye-donor element according to Claim 1 comprising a support having thereon a dye layer comprising a mixture of dyes dispersed in a polymeric binder. and transferring a dye image to a dye-receiving element to form said dye transfer image.
  8. The process of Claim 7 wherein said dye-donor element contains an infrared-absorbing dye in said dye layer.
  9. A thermal dye transfer assemblage comprising:
    • a) an orange dye-donor element according to Claim 1 comprising a support having thereon a dye layer comprising a mixture of dyes dispersed in a polymeric binder, and
    • b) a dye-receiving element comprising a support having thereon a dye image-receiving layer, said dye-receiving element being in a superposed relationship with said orange dye-donor element according to Claim 1 so that said dye layer is in contact with said dye image-receiving layer.
  10. The assemblage of Claim 9 wherein said dye-donor element contains an infrared-absorbing dye in said dye layer.
Anspruch[fr]
  1. Elément donneur de colorant orange pour transfert thermique de colorant comprenant un support revêtu d'une couche de colorant comprenant un mélange d'un colorant rose et d'un premier et second colorants jaunes dispersés dans un liant polymère, ledit colorant rose ayant la formule A :
    dans laquelle :
    • R1, R2 et R3 représentent chacun séparément un groupe alkyle substitué ou non substitué ayant 1 à 10 atomes de carbone ; un groupe cycloalkyle substitué ou non substitué ayant 5 à 7 atomes de carbone ; un groupe allyle substitué ou non substitué ; un groupe aryle substitué ou non substitué ayant 6 à 10 atomes de carbone ; ou un groupe hétaryle substitué ou non substitué ayant 5 à 10 atomes ;
    • X représente C(CH3)2, S, O ou NR1 ; et
    • Y représente les atomes nécessaires pour compléter un noyau à 5 ou 6 membres qui peut être condensé à un autre système cyclique ;
    ledit premier colorant jaune répondant à la formule C ayant la structure :
    dans laquelle :
    • R6 et R7 représentent chacun séparément les mêmes groupes que R1, R2 et R3 ci-dessus ;
    • K représente C(CH3)2, S, O ou NR6 ; ou
    • G représente un groupe alcoxy substitué ou non substitué ayant 1 à 10 atomes de carbone ; un groupe aryloxy substitué ou non substitué ayant 6 à 10 atomes de carbone ; NHR6 ; NR6R7 ;
    ledit second colorant jaune répondant à la formule F ou G, ladite formule F ayant la structure :
    dans laquelle :
    • R12 représente un groupe méthyle ou un groupe alcoxy substitué ou non substitué ayant 1 à 10 atomes de carbone ; ou un groupe aryloxy substitué ou non substitué ayant 6 à 10 atomes de carbone ;
    • R13 représente un groupe alkyle substitué ou non substitué ayant 1 à 10 atomes de carbone ; un groupe cycloalkyle ayant 5 à 7 atomes de carbone ; ou un groupe aryle substitué ou non substitué ayant 6 à 10 atomes de carbone ;
    • R14 et R15 représentent chacun séparément un atome d'hydrogène ou un groupe alkyle ou alcoxy, substitué ou non substitué, ayant 1 à 4 atomes de carbone ; et
    ladite formule G ayant la structure :
    dans laquelle :
    • R17, R18 et R19 représentent chacun séparément les mêmes groupes que R1, R2 et R3 ci-dessus ;
    • R16 représente l'un quelconque des groupes mentionnés pour R17, R18 et R19 ou représente les atomes qui, pris ensemble avec Z, forment un noyau à 5 ou 6 membres ;
    • Z représente un atome d'hydrogène ; un groupe alkyle substitué ou non substitué ayant 1 à 10 atomes de carbone ; un groupe alcoxy ; un atome d'halogène ; ou représente les atomes qui, pris ensemble avec R16, forment un noyau à 5 ou 6 membres ;
    • chaque substituant W représente séparément un groupe alkyle substitué ou non substitué ayant 1 à 10 atomes de carbone ; un groupe alcoxy ayant 1 à 10 atomes de carbone ; un atome d'halogène ; ou deux substituants W adjacents représentent ensemble les atomes nécessaires pour compléter un noyau à 5 ou 6 membres, en formant ainsi un système cyclique condensé ; et
    • n est un nombre entier compris entre 0 et 2.
  2. Elément selon la revendication 1, dans lequel ledit élément donneur de colorant contient un colorant absorbant l'infrarouge dans ladite couche de colorant.
  3. Elément selon la revendication 1, dans lequel, dans la formule A, R1 représente un groupe butyle, R2 représente un groupe 2-méthoxyéthyle, R3 représente un groupe méthyle, X représente C(CH3)2 et Y représente un noyau aromatique à 6 membres.
  4. Elément selon la revendication 1, dans lequel, dans la formule C, R6 représente un groupe éthyle, R7 représente un groupe phényle, G représente un groupe diméthylamino et K représente C(CH3)2.
  5. Elément selon la revendication 1, dans lequel, dans la formule F, R13 représente un groupe phényle, R12 représente un groupe méthyle, R14 représente un groupe 3-méthoxy et R15 représente un groupe 4-méthoxy.
  6. Elément selon la revendication 1, dans lequel, dans la formule G, R16 représente un groupe benzyle, R17 représente un groupe éthyle, R18 représente un atome d'hydrogène, R19 représente un groupe benzyle, Z représente un atome d'hydrogène et n est égal à 0.
  7. Procédé de formation d'une image par transfert de colorant comprenant le chauffage conformément à l'image d'un élément donneur de colorant orange selon la revendication 1, comprenant un support revêtu d'une couche de colorant comprenant un mélange de colorants dispersés dans un liant polymère, et le transfert d'une image de colorant vers un élément récepteur de colorant pour former ladite image par transfert de colorant.
  8. Procédé selon la revendication 7, dans lequel ledit élément donneur de colorant contient un colorant absorbant l'infrarouge dans ladite couche de colorant.
  9. Assemblage pour transfert thermique de colorant comprenant :
    • a) un élément donneur de colorant orange selon la revendication 1 comprenant un support revêtu d'une couche de colorant comprenant un mélange de colorants dispersés dans un liant polymère, et
    • b) un élément récepteur de colorant comprenant un support revêtu d'une couche réceptrice d'image de colorant, ledit élément récepteur de colorant étant dans une relation superposée avec ledit élément donneur de colorant orange selon la revendication 1 de manière à ce que ladite couche de colorant soit en contact avec ladite couche réceptrice d'image de colorant.
  10. Assemblage selon la revendication 9, dans lequel ledit élément donneur de colorant contient un colorant absorbant l'infrarouge dans ladite couche de colorant.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com