PatentDe  


Dokumentenidentifikation EP0723875 13.12.2001
EP-Veröffentlichungsnummer 0723875
Titel Thermische Übertragungsaufzeichnungsverfahren und thermische Übertragungsbildempfangsblätter
Anmelder Dai Nippon Insatsu K.K., Tokio/Tokyo, JP
Erfinder Yamauchi, M., Shinjuku-ku, Tokyo 162-01, JP;
Oshima, K., Shinjuku-ku, Tokyo 162-01, JP;
Ando, J., Shinjuku-ku, Tokyo 162-01, JP;
Torii, M., Shinjuku-ku, Tokyo 162-01, JP;
Fujimura, H., Shinjuku-ku, Tokyo 162-01, JP;
Iwata, T., Shinjuku-ku, Tokyo 162-01, JP
Vertreter Müller-Boré & Partner, Patentanwälte, European Patent Attorneys, 81671 München
DE-Aktenzeichen 69033853
Vertragsstaaten BE, CH, DE, DK, ES, FR, GB, IT, LI, NL, SE
Sprache des Dokument EN
EP-Anmeldetag 30.01.1990
EP-Aktenzeichen 961054871
EP-Offenlegungsdatum 31.07.1996
EP date of grant 07.11.2001
Veröffentlichungstag im Patentblatt 13.12.2001
IPC-Hauptklasse B41M 5/40
IPC-Nebenklasse B41M 3/14   B42D 15/10   

Beschreibung[en]

The present invention relates to a heat transfer image receiving sheet, which is preferably used for preparing an identification card, etc. The obtained ID card provides greater security against counterfeiting and falsifying.

Conventionally, many types of cards such as identification cards, driving licences and membership cards carry thereon various items of information to provide a disclosure of what the bearers are. Of the most importance for ID cards in particular are literal information such as name and address and a photrographic image of face.

One classical technique for applying a photograph of face to each of various cards involves bonding it to a given region of the card with an adhesive. Problems with this technique are that it is very laborious; it makes the surface of the card uneven and so rids it of flatness; and it allows the card to be easily counterfeited or falsified by the replacement of another photograph of face.

In order to solve the defect of such an old technique as mentioned above, there has been developed a sublimation transfer type of imaging technique.

According to this heat transfer technique, a sublimation type of heat transfer sheet formed by providing onto the surface of a substrate film a layer containing a dye sublimable and transferable by heat is overlaid on a card substrate, and the assembly is heated from the back side of the sublimation transfer sheet with a thermal heat to reproduce a photograph of face on the card substrate simultaneously with printing of various letters, characters and so on. Alternatively, these characters may be printed in a hot meltable ink type of heat transfer manner. In either case, this technique has the advantage of being able to be carried out with a simple thermal printer. Since various items of information obtained by the above heat transfer technique are less than satisfactory in terms of such properties as rub resistance, however, the surface of the photograph, etc. is generally provided with a transparent surface protecting layer excelling in such properties as rub resistance.

Especially because the photograph is formed by fixing the dye in the card substrate, the card obtained by the above technique is of improved flatness and provides greater security against falsifying and counterfeiting. Even with this technique, however, there is not a little fear that the photograph and other information may be falsified or counterfeited by removing the protecting layer by solvents, acids, bases or the like.

Dye Diffusion - Thermal Transfer Technology (August 1988) refers to the technology of thermal dye transfer and discloses a multiroll dye transfer donor device, wherein several colors subsequently are printed from different donor sheets on a single receiving paper.

EP-A-201 323 relates to a transparent-type hologram article comprising a transparent-type hologram formed on the surface or internally of a substrate. Fig. 12 and Fig. 13 of EP-A-201 323 show an example of the case when a transparent-type hologram is formed on a fixed deposit certificate, and Fig. 14 and Fig. 15 of EP-A-201 323 show an example of the case when a transparent-type hologram is formed on a magnetic card such as a credit card.

It is accordingly an object of the present invention to provide a heat transfer image receiving sheet best-suited for making ID cards, etc. to which greater security against counterfeiting and falsifying is imparted.

This object is attainable by the present invention set forth below.

More specifically, the present invention relates to a heat transfer image receiving sheet, characterized in that a hologram sheet is provided on at least one major side with a dye receiving layer for receiving a dye for heat transfer.

Further preferred embodiments are defined in claims 2 to 6.

Figures 16 through 19 and 22 through 24 are each a sectional view illustrating a preferred embodiment of the present invention.

Figures 20 and 21 are each for reference.

The present invention will first be explained generally with reference to the preferred embodiments.

In the following a heat transfer image receiving sheet is described, wherein a dye receiving layer is provided on at least one major side of a hologram sheet.

A hologram sheet, which can hardly be made or forged by either an individual or a small entity, is provided thereon with a dye receiving layer, which is in turn allowed to carry thereon a personal item of information such as a photograph of face. This sheet is then laminated on the surface of a certain certificate, thereby making its counterfeiting or falsifying difficult.

As illustrated in Figs. 16 to 18, the heat transfer image receiving sheet is characterized in that a dye receiving layer 22 is formed on at least one major side of a hologram sheet 21 (see esp. Fig. 17). In another embodiment of this image receiving sheet, an intermediate layer 23 may be interposed between a hologram sheet 21 and a dye receiving layer 22, as illustrated in Fig. 16. The dye receiving layer 22 may then be formed all over Figs. 16 and 17), or on a part of (Fig. 18), the hologram sheet 21. When the dye receiving layer is placed all over the hologram sheet as shown in Figs. 16 or 17, the dye receiving layer should be so transparent or semi-transparent that a holographic image can be seen through it. When provided locally as shown in Fig. 18, however, the dye receiving layer may not always be transparent or semi-transparent.

Furthermore, when the image formed on the dye receiving layer is viewed from the hologram sheet, the hologram sheet and intermediate layer should both be transparent or semi-transparent, whereas when the image is viewed from the dye receiving layer, the hologram sheet may not always be transparent or semi-transparent.

The hologram sheet 21 used for the image receiving sheet carries a holographic image, which is reproducible either by white light such as daylight or illumination light or by specific reproduction light such as a laser beam. One type of holographic image reproduced by white light such as daylight or illumination light has an improved ornamental effect, since it can be viewed even in a normal state. Another type of holographic image reproducible by a laser beam makes it easier to detect forging or counterfeiting.

Such a hologram sheet 21 per se is well-known in the art, as set forth in greater detail in a number of specifications of our prior applications directed to the production and exploitation of holograms or in Takeuchi, "Printing Information", No. 3, pp. 17-24 (1986).

Any known volume or relief types of hologram sheets, if they meet the above-mentioned conditions, can all be useful. One typical example is diagrammatically illustrated in Fig. 19.

Referring to Fig. 19, the hologram sheet illustrated is constructed from an assembly of a holographic effect layer 24, a hologram forming layer 25 and a support 26 laminated together successively.

In order to make such a hologram sheet, the support film 26 such as a polyethylene terephthalate film is first provided on its surface with a layer of resin which is solid at normal temperature and capable of being thermally formed, for instance, a layer 25 (a hologram forming layer) of resin which is solid at normal temperature, thermoplastic and capable of being cured upon exposure to ionizing radiations. Then, a holographic plate (not shown) having thereon an irregular holographic interference pattern is pressed against the surface of the layer 25 to transfer that irregular pattern, shown at 27, onto it, followed by curing. Finally, the thus transferred layer is provided on its surface, now patterned, with the holographic effect layer 24 formed of a thin film (e.g., an aluminized thin film) of material which combines sufficient transparency with high reflecting properties at a certain angle and is different in the index of refraction from the hologram forming layer 25. Thus, the hologram sheet may be formed in conventional known manners started with conventional known materials.

With such a hologram sheet appearing to be transparent or semi-transparent as a whole, the holographic image can be viewed by reflected light through the holographic effect layer or even by transmitted light because of the holographic effect layer 24 being nearly transparent. As a matter of course, this hologram sheet would be made transparent in the absence of that holographic effect layer.

Although not critical, this hologram sheet may generally have a thickness lying between about 10 µm and about 300 µm.

In case the hologram sheet 21 is found to be poor in the adhesion to the dye receiving layer 22 to be formed on its surface, that surface should preferably be primed or otherwise treated with corona discharging.

The dye receiving layer 22 formed on the surface of the above hologram sheet is to receive a sublimable dye coming from a heat transfer sheet and maintain an image formed thereby.

The resins for forming the dye receiving layer, for example, may include polyolefinic resin such as polypropylene; halogenated polymers such as polyvinyl chloride and polyvinylidene chloride; vinyl polymers such as polyvinyl acetate and polyacrylic ester; polyester type resin such as polyethylene terephthalate; polystyrene type resin; polyamide type resin; resin based on copolymers of olefins such as ethylene and propylene with other vinyl monomers; ionomer; cellulosic resin such as cellulose acetate; and polycarbonate. Particular preference is given to vinylic resin and polyester type resin.

In order to obtain the above described heat transfer image receiving sheet, such a resin as mentioned above, together with the required additives, may be either dissolved in a suitable organic solvent into a solution or dispersed in an organic solvent or water into a dispersion. Then, the solution or dispersion is coated on at least one major side of the hologram sheet through the intermediate layer 23, if required, by suitable forming means, e.g., gravure printing, screen printing or reverse roll coating with a gravure plate. Finally, the dye receiving layer is formed by drying.

When forming the above dye receiving layer, use may additionally be made of ultraviolet absorbers or antioxidants in order to improve the light resistance of the image to be formed.

Although not critical, the thus formed dye receiving layer may generally have a thickness lying between 1 µm and 50 µm. Preferably, such a dye receiving layer should be in continuous form. However, it may be in discontinuous form achieved by using a resin emulsion or dispersion.

Basically, the heat transfer image receiving sheet constructed as mentioned above, may sufficiently be used as such. More preferably, however, the dye receiving layer should contain a release agent in order to impart improved releasability to the heat transfer sheet. Preferable release agents may include silicone oil, phosphate type surface active agents, fluorine type surface active agents and so on. The most preference is given to silicone oil.

Furthermore, the intermediate layer 23, if required, may be provided between the hologram sheet 21 and dye receiving layer 22 of the image receiving sheet.

For instance, when there is a poor adhesion between the hologram sheet and the dye receiving layer, that intermediate layer may be formed of a resin of improved adhesion. When the hologram sheet is likely to be attacked on its surface while the dye receiving layer is formed, that intermediate layer may be formed of a water-soluble resin or a water-dispersible resin as a protective layer. Additionally, it may be formed of a resin having improved cushioning properties as a cushioning layer so as to enhance printability at the time of heat transfer. The material, of which the intermediate layer is to be formed, may be selected depending upon its purpose.

The heat transfer sheet is used for carrying out heat transfer with the heat transfer image receiving layer, including a sublimable dye-containing dye layer on paper or a polyester film. Any heat transfer sheet heretofore known in the art may be used as such. Application of heat energy at the time of heat transfer may be achieved by any means hitherto known to this end. For instance, the desired object can be well-attained by the application of a heat energy of about 5 to 100 mJ/mm2 for a controlled period of time with a thermal printer (e.g., Video Printer VY-100 made by Hitachi, Ltd.).

The heat transfer image receiving sheet may be used to prepare a passport or ID card by way of example, to which explanation will now be made.

Referring first to Figure 20, a substrate sheet 28 for a desired passport is provided. Then, general items of common information 29 such as the name and symbol of the country and instructions/articles common to all countries are recorded in the blank. These recordings may be reproduced as by printing in large quantities.

Then, personal items of information 20 such as a photograph of face and a signature as well as the necessary items are recorded on the dye receiving layer 22 of the image receiving sheet with a heat transfer printer. The thus obtained image receiving sheet is bonded onto the surface of the substrate sheet 28 bearing the general items of common information by suitable bonding means such as an adhesive layer 201, thereby obtaining the desired passport.

Alternatively, while the image receiving sheet with the dye receiving layer formed on it is correctly placed in the passport to be prepared, the personal information may be recorded on the dye receiving layer by a heat transfer printer of small size. While the substrate sheet is provided thereon with a transparent heat-sensitive adhesive layer by way of example, on the other hand, the image receiving sheet bearing the personal information may be bonded onto the substrate sheet bearing the common information by making use of that adhesive layer, thereby obtaining the passport.

Turning then to Figure 21, there is shown how to prepare the ID card. In this embodiment, the card substrate 202 used may be made of a hard film of polyvinyl chloride or polyester, and bears thereon such general information 29 as mentioned above. Bonded onto the surface of this sheet through a similar adhesive layer 201 as mentioned above is the image receiving sheet. It is noted that the image receiving sheet is bonded onto only a part of the card substrate.

Because the image receiving sheet is designed such that a heat transferred image 20 is viewed from the hologram sheet, the hologram sheet 21, image receiving layer 22 and intermediate layer 23 all have to be transparent or semi-transparent.

This image receiving sheet is equally applicable to various cards certifying the bearers nationalities or citizenships, addresses, dates of birth, places of employment, duties and authorities such as student's cards, ID cards issued by private enterprises and public agencies and membership cards issued by various clubs as well as various ID cards heretofore available. It is understood, however, that this product is not limited to such identification cards. For instance, this product may be useful to prepare various prints having increased ornamental effects.

By using the heat transfer image receiving sheet for various certificates, for instance, by bonding the holographic image receiving sheet onto the surfaces of the information bearing regions of ID cards like passports, it is nearly impossible to falsify or counterfeit them secretely, since these holograms cannot possibly be reproduced by either individuals or small entities.

When ID cards or other certificates are prepared by recording photographs of face and signatures on the dye receiving layer by a sublimation type heat transfer technique, it is impossible to falsify or counterfeit them. This is in part because if the holographic image receiving layer is released with the intention of counterfeiting these photographs of face, etc., then the images forming them get out of order and impart because the photographs of face, etc. cannot possibly be replaced. The invention is directed to a heat transfer image sheet in which a dye receiving layer is formed on the surface of a substrate sheet, characterized in that a holographic image is formed at least locally between the substrate sheet and the dye receiving layer and/or at least locally on the back side of the substrate sheet.

By forming the holographic image at least locally between the substrate sheet and the dye receiving layer and/or at least locally on the back side of the substrate sheet, there is provided a heat transfer image receiving sheet which dispenses with any bonding work, is unlikely to cause release of the holographic image and can form a heat transferred image integral with the holographic image.

The heat transfer image receiving layer according to the invention is characterized in that a holographic image A is formed at least locally between a substrate sheet 31 and a dye receiving layer 32 and/or at least locally on the back side of the substrate sheet 31, as illustrated in Figs. 22 to 24.

Referring to Fig. 22, there is diagrammatically shown in section one embodiment of the heat transfer image receiving sheet according to the invention.

The image receiving sheet according to this embodiment is obtained by forming the dye receiving layer 32 on the surface of a support film 33 of the hologram sheet A comprising the support film 33, a hologram forming layer 34 and a holographic effect layer 35 and then bonding the resulting assembly onto the substrate sheet 31 through an adhesive layer 36. Alternatively, the hologram sheet A may be bonded onto the substrate sheet 31 through the adhesive layer 36, and the dye receiving layer 32 may thereafter be formed on the surface of the support film 33 of the sheet A.

In the image receiving sheet according to this embodiment, the substrate sheet 31, adhesive layer 36 and holographic effect layer 35 may be either transparent or opaque, but the rest must be transparent or semi-transparent.

An image 37 is formed on the dye receiving layer 32 of such an image receiving sheet in heat transfer fashion. Since the holographic image A underlines the image 37, this image appears to be very specific and beautiful due to the synergistic effect of the holographic image A. For instance, making the holographic image A a deep landscape and making the heat transferred image a portrait result in a composite, three-dimensional image, unachievable by the sole use of each image.

Particularly because of being made of a dye, the heat transferred image 37 has the advantage of being of transparency so enhanced that the underlying holographic image can be viewed through it even when it is formed over a large area.

Use of such an image receiving sheet, therefore, provides a very specific and bodily image with neither need of bonding the hologram sheet nor fear of the hologram sheet, once bonded in place, peeling off.

Figure 23 is a diagrammatically sectioned view of another embodiment of the heat transfer image receiving sheet according to the invention, wherein the support film 33 is removed from the hologram sheet A.

The image receiving sheet according this embodiment is obtained by bonding the hologram sheet A onto the substrate sheet 31 as shown in Fig. 22, then removing the support sheet 33 and finally forming the dye receiving layer 32 on the hologram forming layer 34, and produces an effect similar to that obtained with the embodiment illustrated in Fig. 22.

Figure 24 is a diagrammatical illustration in section of yet another embodiment of the heat transfer image receiving sheet according to the invention, wherein an adhesive layer is interposed between the hologram sheet A and the dye receiving layer 32. This embodiment is useful when the dye receiving layer 32 shows a poor adhesion to the support film 33 of the hologram sheet A, having a similar improved effect, as is the case with the embodiment illustrated in Fig. 22.

While the invention has been described with reference to its preferred embodiments, it is understood that the hologram sheet A may not necessarily be placed all over the surface of the substrate sheet 31. For instance, it may be formed on a part of the substrate sheet 31. If the substrate sheet 31 and adhesive layer 36 are transparent, then the hologram sheet A may be formed on the back side of the substrate sheet 31 with the same effect as already mentioned.

The substrate sheet used according to the invention may be formed of any known material. For instance, use may be made of synthetic paper (based on polyolefin, polystyrene, etc.), fine paper, art or coated paper, cast coated paper, wall paper, lining paper, synthetic resin or emulsion-impregnated paper, synthetic rubber latex-impregnated paper, synthetic resin-incorporated paper, paperboard, cellulose fiber paper; films or sheets of various plastics such as polyolefin, polyvinyl chloride, polyethylene terephthalate, polystyrene, polymethacrylate, and polycarbonate; or white, opaque films or formed sheets obtained by adding white pigments and fillers to such plastics or the like.

Furthermore, laminates comprising any desired combinations of the above substrate sheets may be used to this end. Typical examples of the laminates are those of cellulose fibers with synthetic paper or cellulose fibers with plastic films or sheets. Although not critical, these substrate sheets may generally have a thickness of, say, about 10 to 300 µm.

Although not critical, the hologram sheet A used according to the invention may be a sheet having a holographic image of the transparent, semi-transparent or opaque (reflection) type.

Such a hologram sheet per se is well-known in the art, as set forth in greater detail in a number of specifications of our prior applications directed to the production and exploitation of holograms or in Takeuchi, "Printing Information", No. 3, pp. 17-24 (1986).

Particularly preferred in the invention is a relief hologram.

The relief hologram is three-dimensionally reproducible either by white light such as daylight or illumination light or by specific reproduction light such as a laser beam. One type of holographic image reproduced by white light such as daylight or illumination light has an improved ornamental effect, since it can be viewed even in a normal state. Another type of holographic image, reproducible by a laser beam, makes it easier to detect forging or counterfeiting.

The relief hologram will now be explained with reference to Fig. 22. The relief hologram is constructed from a support film 33, a hologram forming layer 34 and a holographic effect layer 35 laminated together in that order.

In order to make such a hologram sheet, the support film 33 such as a polyethylene terephthalate film is first provided on its surface with a layer of resin which is solid at normal temperature and capable of being thermally formed, for instance, a layer 34 (a hologram forming layer) of resin which is solid at normal temperature, thermoplastic and capable of being cured upon exposure to ionizing radiations. Then, a holographic plate (not shown) having thereon an irregular holographic interference pattern is pressed against the surface of the layer 34 to transfer that irregular pattern onto it, followed by curing. Finally, the thus transferred layer is provided on its surface, now patterned, with the holographic effect layer 35 formed of a thin film (e.g., and aluminized thin film) of material which combines sufficient transparency with high reflecting properties at a certain angle and is different in the index of refraction from the hologram forming layer 34. Thus, the hologram sheet may be formed in conventional known manners started with conventional known materials.

With such a hologram sheet appearing to be transparent or semi-transparent as a whole, the holographic image can be viewed by reflected light through the holographic effect layer or even by transmitted light because of the holographic effect layer 35 being nearly transparent. As a matter of course, this hologram sheet would be made entirely transparent in the absence of that holographic effect layer. If the holographic effect layer is made of an opaque and reflecting metal or the like, then the opaque (reflection) type of relief hologram is obtained.

Although not critical, this hologram sheet may generally have a thickness lying between about 10 µm and about 300 µm.

In case the hologram sheet A if found to be poor in the adhesion to the dye receiving layer 32 to be formed on its surface, that surface should then preferably be primed or otherwise treated with corona discharging, thereby forming such an adhesive layer 38 as shown in Fig. 24.

The dye receiving layer 32 formed on the surface of the above hologram sheet A is to receive a sublimable dye coming from a heat transfer sheet and maintain an image formed thereby.

The resins for forming the dye receiving layer, for example, may include polyolefinic resin such as polypropylene; halogenated polymers such as polyvinyl chloride and polyvinylidene chloride; vinyl polymers such as polyvinyl acetate and polyacrylic ester; polyester type resin such as polyethylene terephthalate; polystyrene type resin; polyamide type resin; resin based on copolymers of olefins such as ethylene and propylene with other vinyl monomers; ionomer; cellulosic resin such as cellulose acetate; and polycarbonate. Particular preference is given to vinylic resin and polyester type resin.

In order to obtain the heat transfer image receiving sheet according the invention, such a resin as mentioned above, together with the required additives, may be either dissolved in a suitable organic solvent into a solution or dispersed in an organic solvent or water into a dispersion. Then, the solution or dispersion is coated on the surface of the hologram sheet by suitable forming means, e.g., gravure printing, screen printing or reverse roll coating with a gravure plate. Finally, the dye receiving layer is formed by drying. It is understood that the thus formed dye receiving layer should be so transparent or semi-transparent that the underlying holographic image can be seen through it.

Although not critical, the thus formed dye receiving layer may generally have a thickness lying between 1 µm and 50 µm. Preferably, such a dye receiving layer should be in continuous form. However, it may be in discontinuous form achieved by using a resin emulsion or dispersion.

Basically, the heat transfer image receiving sheet according to the invention, constructed as mentioned above, may sufficiently be used as such. More preferably, however, the dye receiving layer according to the invention should contain a release agent in order to impart improved releasability to the heat transfer sheet.

Preferable release agents may include silicone oil, phosphate type surface active agents, fluorine type surface active agents and so on. The most preference is given to silicone oil.

More preferably, the above silicone oil should be modified by epoxy, alkyl, amino, carboxyl, alcohol, fluorine, alkylaralkyl polyether, epoxy-polyether, polyether, etc.

One or two or more release agents may be used in an amount of 1 to 20 parts by weight per 100 parts by weight of the dye receiving layer forming resin. If the amount of the release agent or agents added departs from the above-defined range, problems arise such as the fusion of the heat transfer sheet to the dye receiving layer or a lowering of printing sensitivity. Preferably, such a release agent or agents accounts for about 0.5 to 30% by weight of the dye receiving layer..

By the choice of the substrate sheet use, the image receiving sheet according to the invention may have various application as heat transfer recordable sheets to be heat-transferred, cards, sheets for preparing transmission type of MSS, and the like.

If required, a cushioning layer may be interposed between the hologram sheet A and the dye receiving layer 32 according to the invention, thereby making a heat transfer record of an image corresponding to image information with reduced noise and improved reproducibility at the time of printing.

The materials, of which the cushioning layer is made, may be polyurethane resin, acrylic resin, polyethylene type resin, butadiene rubber and epoxy resin, by way of example alone. Preferably, the cushioning layer may have a thickness of about 2-20 µm.

Additionally, a slip layer may be provided on the back side of the substrate sheet. The material, of which it is made, may be methacrylate resin such as methyl methacrylate or the corresponding resin, vinylic resin such as copolymers of vinyl chloride with vinyl acetate and the like.

Moreover, a detection mark may be provided on the image receiving sheet. The detection mark is very convenient in locating the heat transfer and image receiving sheet relative to each other. For instance, the substrate sheet may be provided as by printing on its back side with a detection mark capable of be sensed by a phototube sensor.

The heat transfer sheet used in carrying out heat transfer with the heat transfer image receiving sheet according to the invention may be obtained by providing a sublimable dye-containing layer on paper or polyester films. To this end, conventional heat transfer sheets heretofore known in the art may all be used as such in the 5th aspect of this invention.

Effectively usable to this end are any dyes employed for conventional known heat transfer sheets. By way of example alone, mention is preferably made of red dyes such as MS Red G, Macrolex Red Violet R, Ceres Red 7B, Samaron Red HBSL, SK (Rubin) SEGL, (Bimicrcon) SN VP 2670 and Resolin Red F3BS; yellow dyes such as (Phorone) Brilliant Yellow S-6GL, PTY-52, Macrolex Yellow 6G and (Terasil) Golden Yellow 2RS; and blue dyes such as (Kayaset) Blue 714, (Vacsolin) Blue AP-FW, (Phorone) Brilliant Blue S-R, MS Blue 100 and (Dito) Blue No. 1.

Application of heat energy at the time of heat transfer may be achieved by any means hitherto known to this end. For instance, the desired object can be well-attained by the application of a heat energy of about 5 to 100 mJ/mm2 for a controlled period of time with a thermal printer (e.g., Video Printer VY-100 made by Hitachi, Ltd.).

According to the invention, there is provided a heat transfer image receiving sheet in which a holographic image is pre-formed at least locally between a substrate sheet and a dye receiving layer and/or at least locally on the back side of the substrate sheet, whereby a heat transferred image integral with the holographic image can be formed with neither need of using any bonding work nor fear of the holographic image peeling off.

Examples Example D1 (for reference)

Use was made of a transparent type of rainbow hologram sheet commercialized by Dai Nippon Printing Co., Ltd. (of A4 size and 50 µm in thickness). By means of a bar coater, a coating liquid having the following composition was coated and dried on one side of that sheet in an amount of 5.0 g/m2 (on dry basis) to obtain a heat transfer image receiving sheet according to this invention. Polyester (Bylon 600 commercialized by Toyobo Co., Ltd.) 4.0 parts Vinyl chloride/vinyl acetate copolymer (#1000A commercialized by Denki Kagaku Kogyo K.K.) 6.0 parts Amino-modified silicone (X-22-3050C commercialized by The Shin-Etsu Chemical Co., Ltd.) 0.2 parts Epoxy-modified silicone (X-22-3000E commercialized by The Shin-Etsu Chemical Co., Ltd.) 0.2 parts Antioxidant 0.3 parts Methyl ethyl ketone/toluene (1:1 by weight) 89.3 parts

Apart from this, a dye carrying layer-forming ink composition having the following composition was prepared, and was then coated and dried on a 6-µm thick polyethylene terephthalate film in a coating amount of 1.0 g/m2 (on dry basis) by means of a wire bar to obtain a heat transfer sheet, said film being subjected on its back side to a heat-resistant treatment. Sublimable dyes (yellow, magenta and cyan) 5.5 parts Polyvinyl butyral resin (Eslec BX-l commercialized by Sekisui Chemical Co., Ltd.) 4.5 parts Methyl ethyl ketone/toluene (1:1 by weight) 90.0 parts

The heat transfer sheet of three colors was overlaid on the heat transfer image receiving sheet, while the dye layer was located in opposition to the dye receiving layer. With a thermal sublimation transfer printer (VY-50 commercialized by Hitachi, Ltd.), a printing energy of 90 mJ/mm2 was applied through its thermal head to the assembly from the back side of the heat transfer sheet for successive heat transfer, thereby recording in three colors, yellow, cyan and magenta, full-colored photographs, signatures, dates of birth, addresses, names of employers, the name of a country, etc. for six individuals. After a heat-sensitive adhesive was formed on the imagewise surface of the assembly to a thickness of about 5 µm, the assembly was divided into six parts.

A passport form was then provided, on which general items of common information were printed. Applied onto a give region of that form was heat-applied the above-mentioned hologram sheet, thereby preparing six certification cards.

A full-faced viewing of each card gives no holographic image, but provides a clear indication of the general items of common information and the personal items of information. A viewing of each card at an angle of about 45° gave a clear holographic stereogram.

Then, a forced removal of the hologram sheet destroyed partly the dye receiving layer on which the personal information was recorded, leaving one piece of the information on the substrate sheet and another piece on the hologram sheet. It was thus virtually impossible to falsify the photographs, etc.

Example E1

A solution of an ethylene/vinyl acetate copolymer was coated and dried on the surface of a transparent type of rainbow hologram sheet commercialized by Dai Nippon Printing Co., Ltd. (which was of A3-size and 50 µm in thickness and bore a landscape) to form an adhesive layer of about 20 µ m in thickness, which was in turn applied to a synthetic paper (Yupo FPG#150 commercialized by Oji Yuka Co., Ltd.) to prepare a substrate sheet. Further, a coating liquid having the following composition was coated on the front side of the hologram sheet in an amount of 10.0 g/m2 (on dry basis). After that, it was dried at 100°C for 30 minutes to obtain a heat transfer image receiving sheet according to this invention. Polyester (Bylon 200 commercialized by Toyobo Co., Ltd.) 11.5 parts Vinyl chloride/vinyl acetate copolymer (VYHH commercialized by UCC) 5.0 parts Amino-modified silicone (KF-393C commercialized by The Shin-Etsu Chemical Co., Ltd.) 1.2 parts Epoxy-modified silicone (X-22-343 commercialized by The Shin-Etsu Chemical Co., Ltd.) 0.2 parts Methyl ethyl ketone/toluene/cyclohexanone (4:4:2 by weight) 102.0 parts

On the other hand, a sublimation type of heat transfer sheet of three colors, yellow, magenta and cyan, was overlaid on the heat transfer sheet, while the dye layer was located in opposition to the dye receiving layer. With a thermal sublimation transfer printer (VY-50 commercialized by Hitachi, Ltd.), a printing energy of 90 mJ/mm2 was applied through its thermal head to the assembly from the back side of the heat transfer sheet for successive heat transfer, thereby forming a full-colored portraiture of three colors, yellow, cyan and magenta.

A full-faced viewing of the portraiture gives no holographic image, but provides a clear indication of the heat-transferred image. A viewing of this image at an angle of about 45° gave a clear holographic stereogram against the heat-transferred image.

Example E2

In Example E1, the hologram sheet was applied onto the substrate sheet, followed by removal of the support from the hologram sheet. A dye receiving layer similar to that used in Ex. E1 was then formed on the hologram sheet to record a similar image.

A full-faced viewing of that image gives no holographic image, but provides a clear indication of the heat-transferred image. A viewing of the image at an angle of about 45° gave a clear holographic stereogram against the heat-transferred image.

The heat transfer recording media according to the present invention, which provide greater security against falsifying and counterfeiting, have wide applications as various cards inclusive of identification cards, driving licenses and membership cards.


Anspruch[de]
  1. Thermotransferbildempfangsblatt, dadurch gekennzeichnet, daß ein Hologrammblatt auf mindestens einer Hauptseite mit einer Farbstoffempfangenden Schicht zum Empfangen eines Farbstoffs für den Thermotransfer bereitgestellt ist.
  2. Thermotransferbildempfangsblatt nach Anspruch 1, wobei eine Zwischenschicht zwischen diesem Hologrammblatt und dieser Farbstoff-empfangenden Schicht gebildet ist.
  3. Thermotransferbildempfangsblatt nach Anspruch 1, wobei dieses Hologrammblatt, diese Farbstoff-empfangende Schicht oder diese Zwischenschicht transparent oder semitransparent ist.
  4. Thermotransferbildempfangsblatt nach Anspruch 1, wobei das Hologrammblatt ein holographisches Bild umfaßt, welches mindestens lokal auf dem Substratblatt und/oder mindestens lokal auf der Rückseite des Substratblatts gebildet ist.
  5. Thermotransferbildempfangsblatt nach Anspruch 4, wobei das Hologramm ein Reliefhologramm ist.
  6. Thermotransferbildempfangsblatt nach einem der Ansprüche 1 bis 5, wobei die Farbstoff-empfangende Schicht ein Trennmittel enthält.
Anspruch[en]
  1. A heat transfer image receiving sheet,characterized in that a hologram sheet is provided on at least one major side with a dye receiving layer for receiving a dye for heat transfer.
  2. A heat transfer image receiving sheet as claimed in Claim 1 wherein an intermediate layer is formed between said hologram sheet and said dye receiving layer.
  3. A heat transfer image receiving sheet as claimed in Claim 1, wherein said hologram sheet, dye receiving layer or intermediate layer is transparent or semi-transparent.
  4. A heat transfer image receiving sheet as claimed in Claim 1, wherein the hologram sheet is comprised of a holographic image formed at least locally on the substrate sheet and/or at least locally on the back side of the substrate sheet.
  5. A heat transfer image receiving sheet as claimed in Claim 4, wherein the hologram is a relief hologram.
  6. A heat transfer image receiving sheet according to any one of Claims 1 to 5, wherein the dye receiving layer contains a release agent.
Anspruch[fr]
  1. Feuille réceptrice d'image pour transfert thermique, caractérisée en ce qu'une feuille d'hologramme est fournie sur au moins un côté principal avec une couche réceptrice de colorant pour recevoir un colorant pour transfert thermique.
  2. Feuille réceptrice d'image pour transfert thermique selon la revendication 1, dans laquelle une couche intermédiaire est formée entre ladite feuille d'hologramme et ladite feuille réceptrice de colorant.
  3. Feuille réceptrice d'image pour transfert thermique selon la revendication 1, dans laquelle ladite feuille d'hologramme, ladite couche réceptrice de colorant ou la couche intermédiaire est transparente ou semi-transparente.
  4. Feuille réceptrice d'image pour transfert thermique selon la revendication 1, dans laquelle la feuille d'hologramme est composée d'une image holographique formée au moins localement sur la feuille substrat et/ou au moins localement sur le verso de la feuille substrat.
  5. Feuille réceptrice d'image pour transfert thermique selon la revendication 4, dans laquelle l'hologramme est un hologramme en relief.
  6. Feuille réceptrice d'image pour transfert thermique selon l'une quelconque des revendications 1 à 5, dans laquelle la couche réceptrice de colorant contient un agent de libération.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com