PatentDe  


Dokumentenidentifikation EP0891559 11.07.2002
EP-Veröffentlichungsnummer 0891559
Titel VERFAHREN UND VORRICHTUNG ZUR ERZEUGUNG EINER PROGRAMMIERBAREN VERZÖGERUNG
Anmelder Teradyne Inc., Boston, Mass., US
Erfinder TRUEBENBACH, L., Eric, Sudbury, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69713084
Vertragsstaaten AT, BE, DE, ES, FR, GB, IE, IT, NL
Sprache des Dokument EN
EP-Anmeldetag 28.03.1997
EP-Aktenzeichen 979177268
WO-Anmeldetag 28.03.1997
PCT-Aktenzeichen PCT/US97/05202
WO-Veröffentlichungsnummer 0009737235
WO-Veröffentlichungsdatum 09.10.1997
EP-Offenlegungsdatum 20.01.1999
EP date of grant 05.06.2002
Veröffentlichungstag im Patentblatt 11.07.2002
IPC-Hauptklasse G01R 31/318
IPC-Nebenklasse G06F 11/273   H03K 5/13   

Beschreibung[en]
BACKGROUND OF THE INVENTION

This invention relates generally to automatic test equipment, and more particularly to deskew circuitry used in automatic test equipment.

Manufacturers of printed circuit boards commonly use automatic test equipment (also known as "testers") to determine whether the printed circuit boards contain manufacturing defects. Testers typically include computerized control circuitry, driver and receiver channels, and tester pins. The tester pins connect the electrical nodes of the printed circuit board under test (BUT) to the driver and receiver channels of the tester.

During a typical test session, testers apply test signals to the BUT, and receive and evaluate output signals produced by the BUT. Both the test signals, and the output signals which the tester expects to receive from the BUT, are specified by a series of test vectors.

A typical test vector is in digital form, and provides information about the data value, timing, and format of either a test signal or an expected output signal. For example, the data value of a signal during a particular time interval may be specified as either high or low, the signal timing may be specified as a delay relative to the beginning of the test cycle, and the format may indicate that the signal is to be either applied to or observed at a node of the BUT.

The timing of both the test signals and the output signals may also be affected by the propagation delay associated with each driver and receiver channel. Because the propagation delays of the channels may vary, each driver and receiver channel generally includes "deskew" circuitry. The deskew circuitry provides a programmable delay which may be specified so that the resulting propagation delay of each driver and receiver channel is the same. This ensures that the tester both applies the test signals and receives the output signals at the proper times, relative to the beginning of the test cycle.

FIG. 1A shows a block diagram of a tester in a typical test configuration. A human test engineer develops a test program, comprised of a series of test vectors, on computer work station 100. The test engineer then loads the test program into the memory (not shown) of sequencer 110 using SYSTEM BUS.

Sequencer 110 executes the test program and sends control signals to driver channels 102, 104, 106, and 108, receiver channels 114, 116, 118, and 120, and timing generator 112. Timing generator 112 produces multiple timing signals, and provides them to driver channels 102, 104, 106, and 108, and receiver channels 114, 116, 118, and 120. Consequently, multiple driver or receiver channels may either use the same-timing signal, or use different timing signals, depending upon the requirements of the test session. Finally, tester pins 122, 124, 126, and 128 connect driver channels 102, 104, 106, and 108, respectively, to a set of nodes of BUT 138. Similarly, tester pins 130, 132, 134, and 136 connect receiver channels 114, 116, 118, and 120, respectively, to another set of nodes of BUT 138.

In a typical mode of operation, sequencer 110 sends control signals to driver channel 102 using line 140. Sequencer 110 also sends control signals to receiver channel 114 using line 150. The test program includes test vectors which specify the characteristics of both the test signal to be generated by driver channel 102, and the output signal which receiver channel 114 expects to observe at a node of BUT 138. Additionally, timing generator 112 sends timing signals using lines 144 and 154, and control signals using lines 146 and 156, to driver channel 102 and receiver channel 114, respectively. Finally, tester pin 122 connects driver channel 102 to a node of BUT 138, and tester pin 130 connects receiver channel 114 to another node of BUT 138.

Turning to FIG. 1B, a block diagram of driver channel 102 is shown. Receiver channel 114 contains similar blocks. Timing generator 112 sends timing signals using line 144, and control signals using line 146, to deskew circuit 166. Further, sequencer 110 sends control signals to formatter 168 using line 140, and receives information from formatter 168 using line 142.

Deskew circuit 166 adds a sufficient amount of delay to the timing signals to compensate for the propagation delay of driver channel 102, thereby maintaining the proper timing relationships between timing signals used by different channels. Formatter 168 contains the driver and comparator circuitry needed to perform input and output operations during a test session. In a driver channel, formatter 168 may receive a timing signal from deskew circuit 166 that either causes an output driver to start driving an output, or causes the output driver to stop driving the output. In a receiver channel, formatter 168 may receive a timing signal that either causes a comparator to start comparing an output signal produced by BUT 138 with an expected value, or causes the comparator to stop the comparison.

When verifying the integrity of a printed circuit board, it is very important for a tester to react quickly to the electronic signals produced by the BUT. There are two reasons for this. First, a typical BUT contains circuitry which allows the BUT to control its own system timing. As a result, the tester has limited control over the timing of the BUT. Second, a typical BUT communicates with the outside world through interface circuitry, which may consist of an asynchronous, serial communications bus. The interface circuitry also has timing specifications which describe the electronic "handshaking" that must occur for error-free communications between the tester and the BUT. Consequently, the tester must respond fast enough to signals produced by the BUT to satisfy the requirements of the interface circuitry timing specifications. If the required handshaking cannot be achieved between the tester and the BUT, then the tester will not be able to determine successfully whether the BUT has manufacturing defects.

One way to decrease the amount of time required for a tester to react to a signal produced by the BUT is to decrease the amount of fixed delay associated with the deskew circuitry.

FIG. 1C shows one approach to implementing deskew circuit 166. The deskew circuit illustrated in FIG. 1C has three stages. Each stage consists of a binary-weighted delay cell and a two-input multiplexor, such as delay cell-4 and multiplexor 172.

The delay cells may be implemented using CMOS technology. Further, the delay cells typically consist of multiple CMOS inverter pairs connected in series. Different delay values may be obtained for each delay cell by stringing together different numbers of CMOS inverter pairs. Additionally, delay cell-4, delay cell-2, and delay cell-1 are binary-weighted such that the total delay provided by delay cell-2 is preferably twice that of delay cell-1, and the total delay provided by delay cell-4 is preferably four times that of delay cell-1. If we designate the delay value corresponding to delay cell-1 as one unit delay, or "du," then the delay values corresponding to delay cell-2 and delay cell-4 are 2du and 4du, respectively.

Multiplexor 172, multiplexor 176, and multiplexor 180 may also be implemented using CMOS technology. Further, because multiplexor 172, multiplexor 176, and multiplexor 180 each contain the same circuitry, it is assumed that each multiplexor has the same propagation delay. We shall designate the propagation delay through each multiplexor as one fixed delay, or "df." Finally, multiplexors 172, 176, and 180 have select inputs S2, S1, and S0, respectively. If the logical value of a select input is low, then the corresponding multiplexor will select the signal applied to its "0" input. Similarly, if the logical value of a select input is high, then the corresponding multiplexor will select the signal applied to its "1" input.

The deskew circuit shown in FIG. 1C may be programmed to provide eight different propagation delay values. For example, when select inputs S0, S1, and S2 equal 0, 0, and 0, respectively, multiplexor 172, multiplexor 176, and multiplexor 180 select the signals applied to their "0" inputs. It follows that the resulting propagation delay of the circuit equals the sum of the propagation delays of multiplexors 172, 176, and 180, or 3df. Similarly, when select inputs S0, S1, and S2 equal 1, 1, and 1, respectively, multiplexors 172, 176, and 180 select the signals applied to their "1" inputs. It then follows that the resulting propagation delay equals the sum of the propagation delays of delay cell-4, multiplexor 172, delay cell-2, multiplexor 176, delay cell-1, and multiplexor 180, or (7du + 3df). TABLE I indicates what logical values should be applied to S0, S1, and S2 to obtain the eight propagation delay values. S2 S1 S0 DELAY VALUE 0 0 0 3df 0 0 1 du + 3df 0 1 0 2du + 3df 0 1 1 3du + 3df 1 0 0 4du + 3df 1 0 1 5du + 3df 1 1 0 6du + 3df 1 1 1 7du + 3df

The deskew circuit may be laid out such that no devices are required to drive a large signal trace load. Further, the delay of delay cell-1, delay cell-2, and delay cell-4 may be increased either by adding more inverter pairs to the string of inverter pairs in each cell, or by adding metal to the outputs of the inverters, thereby increasing the capacitance of the signal path.

However, the deskew circuit depicted in FIG. 1C has a drawback; that is, a substantial fixed propagation delay value, equal to 3df, is included in each of the eight different delay configurations. This fixed delay increases the amount of time required for the tester to respond to a signal produced by the BUT, thereby making it difficult to satisfy the bus specifications of the BUT.

FIG. 1D shows another approach to implementing deskew circuit 166. The deskew circuit of FIG. 1D is a linear delay line consisting of a string of seven buffer circuits, and an eight-input multiplexor.

The buffer circuits may be implemented using one or more CMOS inverter pairs connected together in series. Buffer circuits 182, 184, 186, 188, 190, 192, and 194 are each designed to provide the same amount of propagation delay. We shall designate ,the propagation delay provided by each buffer circuit as one unit delay, or "du."

Multiplexor 196 may be implemented using CMOS technology. Once again, we shall designate the propagation delay through multiplexor 196 as one fixed delay, or "df." Multiplexor 196 also contains circuitry which decodes select inputs S2, S1, and S0 so that each combination of logical values applied to S2, S1, and S0 will select a unique input of multiplexor 196.

The deskew circuit shown in FIG. 1D may be programmed to provide eight different propagation delay values. For example, when select inputs S0, S1, and S2 equal 0, 0, and 0, respectively, multiplexor 196 selects the signal applied to its "0" input. It follows that the resulting propagation delay of the circuit equals the propagation delay of multiplexor 196, or df. Similarly, when select inputs S0, S1, and S2 equal 1, 1, and 1, respectively, multiplexor 196 selects the signal applied to its "7" input. It follows that the resulting propagation delay equals the sum of the propagation delays of buffer 182, buffer 184, buffer 186, buffer 188, buffer 190, buffer 192, buffer 194, and multiplexor 196, or (7du + df). TABLE II indicates what logical values should be applied to S0, S1, and S2 to obtain the eight propagation delay values. S2 S1 S0 DELAY VALUE 0 0 0 df 0 0 1 du + df 0 1 0 2du + df 0 1 1 3du + df 1 0 0 4du + df 1 0 1 5du + df 1 1 0 6du + df 1 1 1 7du + df

Although the fixed propagation delay value associated with the deskew circuit shown in FIG. 1D is one-third of the fixed delay value associated with the deskew circuit shown in FIG. 1C, the deskew circuit of FIG. 1D has a drawback. For example, as buffer circuits are added to the deskew circuit, the signal traces connecting the added buffer circuits to multiplexor 196 must be made longer. As a result, the additional buffer circuits are required to drive larger signal trace loads. These substantial trace loads increase the capacitance of the signal path, and make it difficult to adjust accurately the propagation delays of the individual buffer circuits.

Although the techniques described above have been successfully used in the deskew circuits of testers to adjust the overall propagation delay of the driver and receiver channels, it would be desirable to have a tester that both compensates for the different propagation length of each channel, and satisfies the bus specifications of the printed circuit board under test. It would also be desirable to have a tester with a deskew circuit that is programmable, has a low fixed delay, and is capable of providing a wide range of delay values.

US 5,497,263 discloses a variable delay circuit having a plurality of series-connected delay units, each one provided with a selector for switching the associated delay into, and out of, the circuit as required. The arrangement bears some similarity to that described above with respect to Figure 1C.

EP 0527366A discloses a variable delay circuit using a cascade arrangement of delay elements. Composite delay for all combination of paths are measured and a prediction is made in order to generate a conversion table for temperature compensation.

SUMMARY OF THE INVENTION

With the foregoing background in mind, it is an object of the invention to provide a tester, with deskew circuitry, that has the ability to respond rapidly to signals generated by a printed circuit board under test, while compensating for the different propagation length of each channel.

Another object of the invention is to provide a tester which includes deskew circuitry that is programmable, is capable of providing a wide range of delay values, and has a low fixed propagation delay value.

The invention provides a deskew circuit as set out in accompanying Claim 1, a test as set out in accompanying Claim 4 and a method of testing as set out in accompanying Claim 9.

In accordance with another feature of the invention, a linear delay line is connected to the output of the deskew circuit.

Still further objects and advantages will become apparent from a consideration of the ensuing description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood by reference to the following more detailed description and accompanying drawings in which

  • FIG. 1A is a block diagram of a tester in a typical test configuration,
  • FIG. 1B is a block diagram of the driver channel used with FIG. 1A,
  • FIG. 1C is a block diagram of a prior art deskew circuit used with FIG. 1B,
  • FIG. 1D is a block diagram of another prior art deskew circuit used with FIG. 1B,
  • FIG. 2A is a block diagram of a deskew circuit according to the present invention,
  • FIG. 2B is a detailed block diagram of the deskew circuit shown in FIG. 2A, and
  • FIG. 2C shows an alternative embodiment of the present invention that includes a linear delay line.

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 2A shows a preferred embodiment of the deskew circuit of the present invention. The deskew circuit generally includes multiple delay cells, such as delay cell-4, delay cell-2, and delay cell-1. It is important to note that the total number of delay cells used in the deskew circuit of FIG. 2A is not limited to three. Additional delay cells may be added to achieve a wider range of propagation delay values. The deskew circuit shown in FIG. 2A is a typical configuration.

Delay cell-4, delay cell-2, and delay cell-1 are binary-weighted such that the total delay provided by delay cell-2 is preferably twice that of delay cell-1, and the total delay provided by delay cell-4 is preferably four times that of delay cell-1. If we designate the propagation delay value corresponding to delay cell-1 as one unit delay, or "du," then the delay values corresponding to delay cell-2 and delay cell-4 are 2du and 4du, respectively.

Turning to FIG. 2B, delay cell-2 and delay cell-1 are shown in greater detail. Delay cell-2 consists of multiplexor 214 and delay cell-2A. Similarly, delay cell-1 consists of multiplexor 220 and delay cell-1A.

Delay cell-1A, delay cell-2A, and delay cell-4 may be implemented using CMOS technology. Accordingly, delay cell-1A, delay cell-2A, and delay cell-4 generally consist of multiple CMOS inverter pairs (not shown) connected together in series.

The delay of delay cell-1A, delay cell-2A, and delay cell-4 may be adjusted by first either adding or removing CMOS inverter pairs to obtain a coarse adjustment, and then by adding metal at the outputs of the inverters, thereby increasing the capacitance of the signal path, to obtain a fine adjustment. Many other design techniques for adjusting delay are known. The deskew circuit of the present invention is typically implemented using a double-metal CMOS process.

Multiplexor 214, multiplexor 220, and multiplexor 206 may also be implemented using CMOS technology. Each multiplexor consists of at least two inputs, an output, and at least one select input. For example, multiplexor 214 has line 208 and signal DIN as inputs, line 218 as an output, and signal S4 as a select input.

The input section of each multiplexor circuit is typically made with multiple n-channel transistors (not shown). For example, the sources of the n-channel transistors are connected together, and the drains of the n-channel transistors serve as the inputs of the multiplexor. Accordingly, the number of n-channel transistors in the input section of a multiplexor is equal to the number of inputs of the multiplexor.

The output section of each multiplexor typically consists of a CMOS inverter pair (not shown). The input of the CMOS inverter pair is connected to the point of connection of the multiple n-channel transistors of the input section, and the output of the CMOS inverter pair serves as the output of the multiplexor.

The advantages of implementing the multiplexor circuitry in CMOS are that the propagation delays from the inputs to the output are usually the same, and it is easy to add more inputs to the multiplexor. We shall designate the propagation delay through each multiplexor as "df."

The inputs of each multiplexor are selected by applying a logical high voltage to the gate of the corresponding n-channel transistor. Multiplexor 214, multiplexor 220, and multiplexor 206 each have circuitry (not shown) which decodes the select inputs so that each logical combination of select inputs causes a logical high voltage to be applied to the gate of a unique n-channel input transistor. The selected input is then passed on to the multiplexor output.

The select inputs to multiplexor 214, multiplexor 220, and multiplexor 206 are decoded as follows. If the logical value of select input S4 is low, then multiplexor 214 will select the signal applied to its "0" input. Further, if the logical value of select input S4 is high, then multiplexor 214 will select the signal applied to its "1" input. Similarly, if select inputs (S3,S2) are equal to (0,0), (0,1), and (1,0), then multiplexor 220 will select the signals applied to its "0" input, its "1" input, and its "2" input, respectively. Finally, if select inputs (S1,S0) are equal to (0,0), (0,1), (1,0), and (1,1), then multiplexor 206 will select the signals applied to its "0" input, its "1" input, its "2" input, and its "3" input, respectively.

Although the speed of the decode circuitry in each multiplexor is relatively slow, the performance of the present invention is not adversely affected. This is because after the test engineer determines the desired delay value for each deskew circuit, the test engineer will usually program each multiplexor accordingly, and then leave the multiplexors in their programmed state for an extended period of time.

As shown in FIG. 2B, the input signal, DIN, is applied to the input of delay cell-4, and to the "0" inputs of multiplexor 214, multiplexor 220, and multiplexor 206. The output of delay cell-4 is applied to the "1" input of multiplexor 214, the "2" input of multiplexor 220, and the "3" input of multiplexor 206. Further, the output of delay cell-2A is applied to the "1" input of multiplexor 220, and the "2" input of multiplexor 206. Additionally, the output of delay cell-1A is applied to the "1" input of multiplexor 206. The deskew circuit of the present invention is completed by connecting the output of multiplexor 214 to the input of delay cell-2A, and by connecting the output of multiplexor 220 to the input of delay cell-1A.

As noted above, delay cell-4, delay cell-2 and delay cell-1 are binary-weighted. As a result, the delay provided by delay cell-2 is preferably twice that of delay cell-1, or 2du, and the delay provided by delay cell-4 is preferably four times that of delay cell-1, or 4du.

The propagation delay of delay cell-1A may be adjusted in accordance with both the desired unit delay value, du, and the desired range of programmable delay values. The propagation delays of delay cell-2A and delay cell-4 may then be determined as follows. The propagation delay of delay cell-2 is preferably twice that of delay cell-1. This means that the propagation delay of delay cell-2A is preferably two times the combined delay of multiplexor 220 and delay cell-1A, minus the delay of multiplexor 214, or (2du - df). Further, the propagation delay of delay cell-4 is preferably four times that of delay cell-1. This means that the propagation delay of delay cell-4 is preferably four times the combined delay of multiplexor 220 and delay cell-1A, or 4du.

The deskew circuit shown in FIG. 2B may be programmed to provide eight different propagation delay values, depending upon the logical values of select inputs S0, S1, S2, S3, and S4. For example, when select inputs S0 and S1 equal 0 and 0, respectively, multiplexor 206 selects the signal applied to its "0" input. It follows that the resulting propagation delay equals the propagation delay of multiplexor 206, or df. Similarly, when select inputs S0, S1, S2, S3, and S4 equal 1, 0, 1, 0, and 1, respectively, multiplexors 214, 220, and 206 each selects the signal applied to its "1" input. It follows that the resulting propagation delay equals the sum of the propagation delays of delay cell-4, delay cell-2, delay cell-1, and multiplexor 206, or (7du + df). TABLE III indicates what logical values should be applied to S0, S1, S2, S3, and S4 in order to obtain the eight possible delay values. S4 S3 S2 S1 S0 DELAY VALUE X X X 0 0 df X 0 0 0 1 du +df 0 X X 1 0 2du +df 0 0 1 0 1 3du + df X X X 1 1 4du + df X 1 0 0 1 5du + df 1 X X 1 0 6du + df 1 0 1 0 1 7du + df

In TABLE III, a "0" and a "1" correspond to a logical low voltage and a logical high voltage, respectively. Further, an "X" corresponds to a "don't care" value; that is, the associated signal may be either a logical low or a logical high.

The propagation delays of delay cell-1A, delay cell-2A, and delay cell-4 may be increased either by adding more inverter pairs to the string of inverter pairs in each cell, or by adding metal to the outputs of the inverters. This is because the signal traces connecting delay cell-4, delay cell-2, delay cell-1, and multiplexor 206 can be made relatively short, and the resulting signal trace loads do not increase the capacitance of the signal path to the point where the accuracy of the timing adjustments is adversely affected.

In the prior art deskew circuit shown in FIG. 1C, it is easy to adjust the timing of the individual delay cells. However, the deskew circuit has a substantial fixed propagation delay value equal to 3df. In contrast, the prior art deskew circuit shown in FIG. 1D has a small fixed propagation delay value equal to df. However, it is not easy to adjust the timing of the individual buffer circuits in the deskew circuit because as the deskew circuit is made larger, the buffer circuits are required to drive larger signal trace loads. An important advantage of the present invention is the ability to adjust accurately the timing of the individual delay cells, while maintaining a small fixed propagation delay value, df. This is because the propagation delays of multiplexor 214 and multiplexor 220 are incorporated into the overall delays of delay cell-2 and delay cell-1, respectively. As a result, the delays of multiplexor 214 and multiplexor 220 are not included in the fixed propagation delay of the deskew circuit.

For some test sessions, delay cell-1 in FIG. 2B may not yield a unit delay value, du, that is small enough. In this case, a linear delay line may be used in conjunction with the deskew circuit of the present invention to achieve a smaller unit delay value.

Turning to FIG. 2C, linear delay line 234 is connected to multiplexor 232. Linear delay line 234 is identical to the prior art deskew circuit shown in FIG. 1D. The deskew circuit shown in FIG. 2C has the advantage of having higher order delay cells that are easily adjustable, such as delay cell-32, delay cell-16, and delay cell-8, while having a small unit delay value. The unit delay value is equal to the propagation delay of one buffer circuit, such as buffer circuit 182 of FIG. 1D.

However, whereas the fixed propagation delay value of the deskew circuit shown in FIG. 2B is equal to the delay of one multiplexor, df, the fixed propagation delay value of the deskew circuit shown in FIG. 2C is equal to the delay of two multiplexors, 2df. The fixed delay value consists of the propagation delay of multiplexor 232, plus the propagation delay of the eight-input multiplexor (not shown) of linear delay line 234. This eight-input multiplexor is analogous to multiplexor 196 of FIG. 1D. Although the circuit shown in FIG. 2C has a small unit delay value, there is a trade-off in that the circuit has a slightly larger fixed propagation delay value.

Having described one embodiment, numerous alternative embodiments or variations might be made. For example, it is not necessary that CMOS technology be used to implement the deskew circuitry. Other suitable technologies may be used, such as one of the bipolar technologies.

Also, additional delay cells may be incorporated into the deskew circuit to obtain a wider range of programmable delay values.

Also, the number of bits in the select and control signals serves as an illustration. Any number of bits might be used. When the number of bits is changed, the number of inputs for multiplexors 214, 220, and 206 should be changed accordingly. Further, additional multiplexors may be required. Additionally, the length of delay line 234 should be changed accordingly.

Also, it was described that each delay cell consists of multiple CMOS inverter pairs connected together in series. However, this implementation is merely an illustration. Other design techniques for delay cells and delay lines are known. Similarly, the implementation of the input and output sections of each multiplexor serves as an illustration. Other design techniques for multiplexors are known.

Also, it was described that the delay provided by each successive delay cell in a chain of delay cells is preferably twice that of its predecessor. However, exact weightings for the delay cells is not required if the tester can compensate for any differences between the actual and programmed delay values using software.

Also, it was described that the speed of the decode circuitry in each multiplexor is relatively slow. However, the decode circuitry is not required if the select inputs to the multiplexors are decoded using software. In this case, the time needed to decode the select inputs would be very small, and the tester may be able to change the timing of the deskew circuitry on-the-fly.

Also, it should be appreciated that the prior art tester architecture shown in FIG. 1A is merely an illustration. The invention might be used to provide a programmable delay with low fixed delay in a tester of any architecture. The same circuitry might also be used in other applications where a programmable delay with low fixed delay is required.


Anspruch[de]
  1. Verschiebungsausgleichungsschaltung zum Bereitstellen einer programmierbaren Verzögerung, die in jeden Kanal (102, 104, 106, 108, 114, 116, 118, 120) eines Testers eingebaut wird, und verwendet zum Einstellen der Ausbreitungsverzögerung jedes Kanals, umfassend:
    • einen Eingang (144),
    • einen Ausgang, und
    • eine Vielzahl von Verzögerungszellen (200, 202, 204), die zueinander in eine Kette geschaltet sind, wobei die Vielzahl von Verzögerungszellen eine erste Verzögerungszelle (200) und wenigstens eine nachfolgende Verzögerungszelle (202, 204) umfassen, wobei die nachfolgenden Verzögerungszellen eine Verzögerung bereitstellen, die zu derjenigen, die von der vorangehenden Verzögerungszelle in der Kette bereitgestellt wird, in einem Faktor von 2 in Beziehung steht,
       dadurch gekennzeichnet, dass

       jede Verzögerungszelle einen ersten Eingang, der mit dem Eingang der Verschiebungsausgleichungsschaltung verbunden ist, aufweist

       jede wenigstens eine nachfolgende Verzögerungszelle wenigstens einen zusätzlichen Eingang, der mit Ausgängen von vorangehenden Verzögerungszellen in der Kette verbunden ist, und einen ersten Multiplexer (214, 220) zum Wählen zwischen dem ersten Eingang und dem wenigstens einen zusätzlichen Eingang im Ansprechen auf einen ersten Satz von Steuerzeit-Steuerbits aufweist, und

       ein zweiter Multiplexer (206) mit dem Ausgang der Verschiebungsausgleichungsschaltung verbunden ist, zum Wählen zwischen dem Eingang der Verschiebungsausgleichungsschaltung und Ausgängen der Verzögerungszellen in Reaktion auf einen zweiten Satz von Steuerzeit-Steuerbits.
  2. Verschiebungsausgleichungsschaltung nach Anspruch 1, wobei jede Verzögerungszelle eine erste Verzögerungsleitung umfasst.
  3. Verschiebungsausgleichungsschaltung nach Anspruch 1, ferner umfassend eine Verzögerungsleitung (234) mit einem Eingang, der mit dem Ausgang der Verschiebungsausgleichungsschaltung verbunden ist.
  4. Tester mit einer Vielzahl von Kanälen (102, 104, 106, 108, 114, 116, 118, 120), ausgelegt zum Kompensieren der unterschiedlichen Ausbreitungsverzögerung jedes Kanals, umfassend:
    • eine Vielzahl von Teststiften (122, 124, 126, 128, 130, 132, 134, 136), die mit den Kanälen verbunden sind, und
    • einen Sequenzer (110), der mit den Kanälen verbunden ist, zum Aktivieren der Kanäle zum Ansteuern von gewählten Teststiften und zum Empfangen von Signalen, die auf gewählten Teststiften erscheinen, wobei jeder Kanal eine programmierbare Verschiebungsausgleichungsschaltung umfasst, mit
    • einem Eingang (144),
    • einem Ausgang, und
    • einer Vielzahl von Verzögerungszellen (200, 202, 204), die miteinander in eine Kette geschaltet sind,
       dadurch gekennzeichnet, dass

       die Vielzahl von Verzögerungszellen eine Verzögerungszelle (200) mit einem einzelnen Eingang und wenigstens eine Verzögerungszelle (202, 204) mit mehreren Eingängen umfasst, wobei wenigstens eine Verzögerungszelle mit mehreren Eingängen eine Verzögerung bereitstellt, die zu derjenigen, die von der vorangehenden Verzögerungszelle in der Kette bereitgestellt wird, in einer Beziehung eines Faktors von 2 steht,

       die Verzögerungszelle mit dem einzelnen Eingang einen Eingang aufweist, der mit dem Eingang der Verschiebungsausgleichungsschaltung verbunden ist,

       jede Verzögerungszelle mit mehreren Eingängen eine Vielzahl von Eingängen und einen ersten Multiplexer (214, 220) zum Wählen von einem der Eingänge im Ansprechen auf einen ersten Satz von Steuerzeit-Steuerbits aufweist,

       wobei jede Verzögerungszelle mit mehreren Eingängen einen ersten Eingang, der mit dem Eingang der Verschiebungsausgleichungsschaltung verbunden ist, einen zweiten Eingang, der mit dem Ausgang der Verzögerungszelle mit dem einzelnen Eingang verbunden ist, und wenigstens einen dritten Eingang, der mit Ausgängen von vorangehenden Verzögerungszellen mit mehreren Eingängen in der Kette verbunden ist, wenn überhaupt, aufweist, und

       ein zweiter Multiplexer (206) mit dem Ausgang der Verschiebungsausgleichungsschaltung verbunden ist und einen ersten Eingang, der mit dem Eingang der Verschiebungsausgleichungsschaltung verbunden ist, und eine Vielzahl von zweiten Eingängen, die mit Ausgängen der Verzögerungszellen verbunden sind, zum Wählen von einem von seinen Eingängen im Ansprechen auf einen zweiten Satz von Steuerzeit-Steuerbits, aufweist.
  5. Tester nach Anspruch 4, wobei die Verzögerungszelle mit dem einzelnen Eingang eine erste Verzögerungsleitung ist.
  6. Tester nach Anspruch 4, wobei der erste Multiplexer in jeder Verzögerungszelle mit mehreren Eingängen eine Vielzahl von Eingängen und einen Ausgang umfasst, wobei die Vielzahl von Eingängen des Multiplexers die Eingänge der Verzögerungszelle mit den mehreren Eingängen sind und wobei eine Verzögerungsleitung zwischen den Ausgang des Multiplexers und den Ausgang der Verzögerungszelle mit mehreren Eingängen geschaltet ist.
  7. Tester nach Anspruch 4, ferner umfassend eine dritte Verzögerungsleitung (234) mit einem Eingang und einem Ausgang, wobei der Eingang mit dem Ausgang des zweiten Multiplexers verbunden ist und der Ausgang der dritten Verzögerungsleitung der Ausgang der Verschiebungsausgleichungsschaltung ist.
  8. Tester nach Anspruch 7, wobei die dritte Verzögerungsleitung eine Verzögerungsleitung mit einer Vielzahl von Abgriffen und einen Multiplexer zum Wählen des Ausgangs von einem der Abgriffe im Ansprechen auf einen dritten Satz von Steuerzeit-Steuerbits umfasst
  9. Tester nach Anspruch 4, verwendet in einem Verfahren zum Herstellen einer gedruckten Schaltungsplatine, wobei das Verfahren die folgenden Schritte umfasst:
    • (a) Befestigen einer Vielzahl von elektronischen Komponenten an der gedruckten Schaltungsplatine,
    • (b) Anbringen wenigstens eines elektrischen Verbinders an der gedruckten Schaltungsplatine,
    • (c) Anordnen der gedruckten Schaltungsplatine in einer Testhalterung,
    • (d) Anlegen von Energie und Testsignalen an die gedruckte Schaltung, und
    • (e) Vergleichen von Antwortsignalen, die von der gedruckten Schaltungsplatine erzeugt werden, mit erwarteten Antwortsignalen, um den Betrieb der gedruckten Schaltungsplatine zu überprüfen, wodurch bestimmt wird, ob die gedruckten Schaltungsplatine Herstellungsdefekte enthält.
Anspruch[en]
  1. A deskew circuit for providing a programmable delay, incorporated into each channel (102, 104, 106, 108, 114, 116, 118, 120) of a tester, and used to adjust the propagation delay of each channel, comprising

       an input (144),

       an output, and

       a plurality of delay cells (200, 202, 204) connected to one another in a chain, the plurality of delay cells including a first delay cell (200) and at least one subsequent delay cell (202, 204) which subsequent delay cells provide a delay related to that provided by the preceding delay cell in the chain by a factor of 2,

       characterized in that

       each delay cell has a first input connected to the input of the deskew circuit,

       each at least one subsequent delay cell has at least one additional input connected to outputs of preceding delay cells in the chain, and a first multiplexor (214, 220) for selecting between the first input and the at least one additional input in response to a first set of timing control bits, and

       a second multiplexor (206) is connected to the output of the deskew circuit, for selecting between the input of the deskew circuit and outputs of the delay cells in response to a second set of timing control bits.
  2. The deskew circuit of claim 1, wherein each delay cell includes a first delay line.
  3. The deskew circuit of claim 1, further comprising a delay line (234) having an input connected to the output of the deskew circuit.
  4. A tester having a plurality of channels (102, 104, 106, 108, 114, 116, 118, 120), adapted to compensate for the different propagation delay of each channel, comprising

       a plurality of test pins (122, 124, 126, 128, 130, 132, 134, 136) connected to the channels, and

       a sequencer (110) connected to the channels, for activating the channels to drive selected test pins and to receive signals appearing on selected test pins, each channel including a programmable deskew circuit including

       an input (144),

       an output, and

       a plurality of delay cells (200, 202, 204) connected to one another in a chain,

       characterized in that

       the plurality of delay cells includes a single-input delay cell (200) and at least one multiple-input delay cell (202, 204) which at least one multiple-input delay cell provides a delay related to that provided by the preceding delay cell in the chain by a factor of 2,

       the single-input delay cell has an input connected to the input of the deskew circuit,

       each multiple-input delay cell has a plurality of inputs and a first multiplexor (214, 220) for selecting one of the inputs in response to a first set of timing control bits,

       each multiple-input delay cell has a first input connected to the input of the deskew circuit, a second input connected to the output of the single-input delay cell, and at least one third input connected to outputs of preceding multiple-input delay cells in the chain, if any, and

       a second multiplexor (206) is connected to the output of the deskew circuit, and has a first input connected to the input of the deskew circuit and a plurality of second inputs connected to outputs of the delay cells, for selecting one of its inputs in response to a second set of timing control bits.
  5. The tester of claim 4, wherein the single-input delay cell is a first delay line.
  6. The tester of claim 4, wherein the first multiplexor in each multiple-input delay cell includes a plurality of inputs and an output, the plurality of inputs of the multiplexor being the inputs of the multiple-input delay cell, and wherein a delay line is connected between the output of the multiplexor and the output of the multiple-input delay cell.
  7. The tester of claim 4, further comprising a third delay line (234) having an input and an output, the input connected to the output of the second multiplexor, the output of the third delay line being the output of the deskew circuit.
  8. The tester of claim 7, wherein the third delay line comprises a delay line having a plurality of taps, and a multiplexor for selecting the output of one of the taps in response to a third set of timing control bits.
  9. The tester of claim 4 used in a method for manufacturing a printed circuit board, the method comprising the steps of
    • (a) attaching a plurality of electronic components to the printed circuit board,
    • (b) mounting at least one electrical connector to the printed circuit board,
    • (c) placing the printed circuit board in a test fixture,
    • (d) applying power and test signals to the printed circuit, and
    • (e) comparing response signals generated by the printed circuit board with expected response signals to verify the operation of the printed circuit board, thereby determining whether the printed circuit board contains manufacturing defects.
Anspruch[fr]
  1. Un circuit de correction de désalignement pour produire un retard programmable, incorporé dans chaque canal (102, 104, 106, 108, 114, 116, 118, 120) d'un testeur, et utilisé pour régler le retard de propagation de chaque canal, comprenant

       une entrée (144),

       une sortie, et

       une multiplicité de cellules de retard (200, 202, 204) connectées l'une à l'autre en une chaîne, la multiplicité de cellules de retard comprenant une première cellule de retard (200) et au moins une cellule de retard suivante (202, 204), ces cellules de retard suivantes produisant un retard lié par un facteur de 2 à celui qui est produit par la cellule de retard précédente dans la chaîne,

       caractérisé en ce que

       chaque cellule de retard a une première entrée connectée à l'entrée du circuit de correction de désalignement,

       chaque cellule de retard suivante a au moins une entrée supplémentaire connectée à des sorties de cellules de retard précédentes dans la chaîne, et un premier multiplexeur (214, 220) pour effectuer une sélection entre la première entrée et l'au moins une entrée supplémentaire en réponse à un premier ensemble de bits de commande temporelle, et

       un second multiplexeur (206) est connecté à la sortie du circuit de correction de désalignement, pour effectuer une sélection entre l'entrée du circuit de correction de désalignement et des sorties des cellules de retard, en réponse à un second ensemble de bits de commande temporelle.
  2. Le circuit de correction de désalignement de la revendication 1, dans lequel chaque cellule de retard comprend une première ligne à retard.
  3. Le circuit de correction de désalignement de la revendication 1, comprenant en outre une ligne à retard (234) ayant une entrée connectée à la sortie du circuit de correction de désalignement.
  4. Un testeur ayant une multiplicité de canaux (102, 104, 106, 108, 114, 116, 118, 120), adapté pour compenser le retard de propagation différent de chaque canal, comprenant

       une multiplicité de broches de test (122, 124, 126, 128, 130, 132, 134, 136) connectées aux canaux, et

       un séquenceur (110) connecté aux canaux, pour activer les canaux de façon à attaquer des broches de test sélectionnées et à recevoir des signaux apparaissant sur des broches de test sélectionnées, chaque canal incluant un circuit de correction de désalignement programmable comprenant

       une entrée (144),

       une sortie, et

       une multiplicité de cellules de retard (200, 202, 204) connectées les unes aux autres en une chaîne,

       caractérisé en ce que

       la multiplicité de cellules de retard comprend une cellule de retard à une seule entrée (200) et au moins une cellule de retard à entrées multiples (202, 204), cette cellule de retard à entrées multiples produisant un retard lié par un facteur de 2 à celui qui est produit par la cellule de retard précédente dans la chaîne,

       la cellule de retard à une seule entrée a une entrée connectée à l'entrée du circuit de correction de désalignement,

       chaque cellule de retard à entrées multiples a une multiplicité d'entrées et un premier multiplexeur (214, 220) pour sélectionner l'une des entrées en réponse à un premier ensemble de bits de commande temporelle,

       chaque cellule de retard à entrées multiples a une première entrée connectée à l'entrée du circuit de correction de désalignement, une seconde entrée connectée à la sortie de la cellule de retard à une seule entrée, et au moins une troisième entrée connectée à des sorties de cellules de retard à entrées multiples précédentes dans la chaîne, s'il y en a, et

       un second multiplexeur (206) est connecté à la sortie du circuit de correction de désalignement, et il a une première entrée connectée à l'entrée du circuit de correction de désalignement et une multiplicité de secondes entrées connectées à des sorties des cellules de retard, pour sélectionner l'une de ses entrées en réponse à un second ensemble de bits de commande temporelle.
  5. Le testeur de la revendication 4, dans lequel la cellule de retard à une seule entrée est une première ligne à retard.
  6. Le testeur de la revendication 4, dans lequel le premier multiplexeur dans chaque cellule de retard à entrées multiples comprend une multiplicité d'entrées et une sortie, la multiplicité d'entrées du multiplexeur étant les entrées de la cellule de retard à entrées multiples, et dans lequel une ligne à retard est connectée entre la sortie du multiplexeur et la sortie de la cellule de retard à entrées multiples.
  7. Le testeur de la revendication 4, comprenant en outre une troisième ligne à retard (234) ayant une entrée et une sortie, l'entrée étant connectée à la sortie du second multiplexeur, et la sortie de la troisième ligne à retard étant la sortie du circuit de correction de désalignement.
  8. Le testeur de la revendication 7, dans lequel la troisième ligne à retard comprend une ligne à retard ayant une multiplicité de prises, et un multiplexeur pour sélectionner la sortie de l'une des prises en réponse à un troisième ensemble de bits de commande temporelle.
  9. Le testeur de la revendication 4, utilisé dans un procédé pour la fabrication d'une carte de circuit imprimé, le procédé comprenant les étapes suivantes :
    • (a) on fixe une multiplicité de composants électroniques sur la carte de circuit imprimé,
    • (b) on monte au moins un connecteur électrique sur la carte de circuit imprimé,
    • (c) on place la carte de circuit imprimé dans un montage de test,
    • (d) on applique des signaux d'alimentation et de test au circuit imprimé, et
    • (e) on compare des signaux de réponse générés par la carte de circuit imprimé avec des signaux de réponse attendus, pour vérifier le fonctionnement de la carte de circuit imprimé, pour déterminer ainsi si la carte de circuit imprimé contient des défauts de fabrication.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com