Warning: fopen(111data/log202004030208.log): failed to open stream: No space left on device in /home/pde321/public_html/header.php on line 107

Warning: flock() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 108

Warning: fclose() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 113
VERFAHREN ZUR VERFLÜSSIGUNG VON TEEREN - Dokument EP0882110
 
PatentDe  


Dokumentenidentifikation EP0882110 17.10.2002
EP-Veröffentlichungsnummer 0882110
Titel VERFAHREN ZUR VERFLÜSSIGUNG VON TEEREN
Anmelder Rhodia Chimie, Courbevoie, FR;
Rhodia Inc., Cranbury, N.J., US
Erfinder HILL, Philip, Dean, Baton Rouge, US;
PRUITT, Edwin, Thomas, Deer Park, US;
SANDERS, Lee, Forest, Katy, US;
GUERIN, Gilles, F-95600 Eaubonne, FR;
LANGLOIS, Bruno, F-91700 Sainte-Geneviève-des-Bois, FR
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69715384
Vertragsstaaten AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 20.02.1997
EP-Aktenzeichen 979360070
WO-Anmeldetag 20.02.1997
PCT-Aktenzeichen PCT/US97/03793
WO-Veröffentlichungsnummer 0097036970
WO-Veröffentlichungsdatum 09.10.1997
EP-Offenlegungsdatum 09.12.1998
EP date of grant 11.09.2002
Veröffentlichungstag im Patentblatt 17.10.2002
IPC-Hauptklasse C10C 1/00

Beschreibung[en]

The present invention relates to a process for the preparation of an aqueous tar suspoemulsion.

Undesirable products/by products arc formed in several chemical reaction processes. In many cases these undesirable products tend to separate in storage containers, reactors and other process equipment as highly viscous, sticky or sometimes solid matter of unknown chemical composition. These are typically referred to by those skilled in the art as tars or sludges. Their physical nature often times makes them difficult to remove from the containers/vessels where they occur (reactors, storage tanks, transportation containers, pipes or the like) by normal material handling processes such as pumping. Build up over time subtracts from the liquid load carrying or storage capacity of the containers/vessels. Tars can be formed either during a chemical reaction process, a physical process such as distillation or during storage and/or transportation. The tars can be classified as organic, acidic etc. based on the physical and chemical characteristics they exhibit. Many organic substances, other than those having a simple structure and a low boiling point, result after pyrolysis, that is to say heating in the absence of air, in very viscous liquids known as tars.

Large amounts of tar residues are thus produced by industrial processes. These tars can thus consist of residues resulting from the destructive distillation of organic matter. The distillation of crude oil produces tar residues known as bitumens or alternatively asphalts. These bitumens are generally mixtures of hydrocarbons of high molecular mass (in particular from 500 to 3000), most often of asphaltenes (which can represent up to 25% by weight of the tar), and of organic substances which are very rich in carbon and in hydrogen but which can also contain oxygen, sulfur or nitrogen, as well as traces of metal elements, in particular nickel and vanadium. Mention may be made, as examples, of the viscous tar residues resulting from the synthesis of white oils from petroleum fractions. These viscous tars can contain an acid, in particular sulfuric acid.

These tars constitute waste which, because of its very high viscosity, is impossible or extremely difficult to pump and to spray and cannot be easily and inexpensively incinerated; this is highly disadvantageous, in particular when it is desired to recover the waste acids which it may contain. The tars must thus be handled like solids Their incineration in a rotary furnace is a substantial cost and can potentially contribute to air pollution.

The present invention provides a process for treating these tars which makes it possible to remove the above-mentioned disadvantages. One process of the present invention makes it possible to condition these residues in a fluid form which can be diluted with water or with acid, in highly varied proportions, and which is stable on storage.

Sulfuric acid is used in reactions such as sulfonations, nitration, or as a catalyst such as in alkylation in the petroleum refinery operations or for other uses such as drying, pickling etc. At the end of these processes, the sulfuric acid remains in a form which is not usable and has to be recovered or disposed. This sulfuric acid is commonly referred to as spent acid or spent sulfuric acid. The spent acid can be processed to recover usable sulfuric acid by a number of processes including the process of regeneration.

It is common practice to store the spent acid in storage tanks prior to recovery of the sulfuric acid either at site or transport them off-site for recovery or disposal. Common transportation modes are tank trucks, rail cars, barges and pipelines.

Tars have been found to be present in some spent acids. When spent acid is associated with tars, they pose operational problems in material handling and recovery during storage and transportation. When tars are formed in reactors and process equipment, such as heat exchangers, they reduce the operational capability of the process and the equipment. The tars are a heavy, viscous material which tend to stick to the containers, and in some instances, over a period of time increase in viscosity and react to form solid deposits in the containers. Removal of such tars by normal pumping techniques from storage tanks, reactors or pressure transfer from tank trucks and rail cars, is difficult due to the high viscosity and in some cases the solid nature of the material.

In industrial practice, it is common to remove such tars by physical means such as cutting and opening a passage into the container followed by physical removal or by a vacuum technique. A highly viscous tar is not transportable with ordinary small diameter four or five inch lines using standard available vacuum trucks, most of which are usually capable of creating a vacuum of about twenty seven to twenty eight inches of water column. Where masses of material cannot be suctioned, personnel are required to manually enter and remove the material.

Having to place personnel in intimate physical contact with the tar/sludge can result in significant health, safety and environmental issues. When the tar is laden with volatile or hazardous materials personnel safety and protective equipment can significantly slow the removal process. Often all of the tar/sludge can not be removed and the problem of disposal or transportation remains.

A process of the present invention is advantageous in that it does not involve any physical alteration to the tank to remove the tar/sludge. Instead, it involves treating the tar with sulfuric acid and a surfactant to allow blending of the tar/sludge with the sulfuric acid. The process provides a safer alternative to the existing methods of cleaning, especially tank cleaning, in that it does not involve any confined space entry or otherwise exposing individuals to potential safety hazards. Another advantage of the process is the ability to recover the tar/sludge in a form which can be easily transported, handled and pumped. Further, it is rendered in a condition for recovery of saleable sulfuric acid by the regeneration process.

The present invention relates to a process for the preparation of an aqueous tar suspoemulsion, characterized in that a mixture (M) comprising:

  • a viscous tar composition formed (i) from at least one tar generally exhibiting a viscosity at least equal to 3 Pa&peseta;s, preferably at least equal to 30 Pa&peseta;s, (ii) from inorganic solids and, optionally, (iii) from water,
  • water (W),
  • at least one surface-active agent (SA) exhibiting an HLB (hydrophilicity/lipophilicity balance) of at least 10, for example of at least 12, and, optionally, at least one thickening water-soluble polymer (TWP) with a molecular mass greater than 10,000, generally greater than 100,000,
is mixed, the relative amounts of constituents (W), (SA) and, optionally, (TWP) being such that the viscosity of the (W) + (SA) + optional (TWP) mixture is equal to or greater than about one tenth of the viscosity of said tar, preferably equal to or greater than the viscosity of said tar,

and in that the mixture obtained is optionally diluted with water or with at least one aqueous acidic solution.

Unless otherwise stated, all parts or percents are parts or percents respectively by weight.

Viscosity is understood to mean, in the present account, the dynamic viscosity measured at 25°C using a Brookfield viscometer according to AFNOR standard NFT 76-102 of February 1972.

The term suspoemulsion is employed here to denote an emulsion containing inorganic solids or particles.

"Comprising," as used herein, means various components can be conjointly employed. Accordingly, the terms "consisting essentially of" and "consisting of" are embodied in the term comprising.

The present invention relates to a process for the preparation of an aqueous tar suspoemulsion, characterized in that a mixture (M) comprising:

  • a viscous tar composition formed (i) from at least one tar generally exhibiting a viscosity at least equal to about 3 Pa&peseta;s, preferably at least equal to about 30 Pa&peseta;s, (ii) from inorganic solids and, optionally, (iii) from water,
  • water (W),
  • at least one surface-active agent (SA) exhibiting an HLB (hydrophilicity/lipophilicity balance) of at least about 10, for example of at least about 12, and, optionally, at least one thickening water-soluble polymer (TWP) with a molecular mass greater than about 10,000, generally greater than about 100,000,
is mixed, the relative amounts of constituents (W), (SA) and, optionally, (TWP) being such that the viscosity of the (W) + (SA) + optional (TWP) mixture is equal to or greater than one tenth of the viscosity of the said tar, preferably equal to or greater than the viscosity of said tar,

and in that the mixture obtained is optionally diluted with water or with at least one aqueous acidic solution.

The viscous tar composition can generally contain:

  • from about 2 to about 70%, preferably from about 5 to about 30%, for example from about 10 to about 25%, by weight of tar;
  • from about 5 to about 50%, preferably from about 10 to about 45%, for example from about 25 to about 40%, by weight of

    inorganic solids;
  • from 0 to about 70%, preferably from about 5 to about 65%, for example from about 30 to about 65%, by weight of water.

The viscous tar composition thus preferentially contains water. The tar + inorganic solids combination forms a water-immiscible phase. These inorganic solids generally result from the synthesis of the tar.

Mention may be made, as examples of inorganic solids present in the viscous tar composition to be emulsified, of in particular diatomaceous earths, silica powders, quartz, sand, sand-gravel mix, calcium carbonate, mica, talc, sulfur or traces of metal elements; the particle size of these inorganic solids is generally from approximately 0.001 to 300 µm.

The mixture (M) to be mixed very advantageously comprises, in addition to the viscous tar composition, per 100 parts by weight of tar:

  • from about 30 to about 200, preferably from about 40 to about 120, parts by weight of water (W), and
  • either from about 2 to about 20, preferably from about 3 to about 15, parts by weight of at least one surface-active agent (SA) or, preferably, on the one hand, from about 0.5 to about 10, preferably from about 1 to about 10, parts by weight of at least one surface-active agent (SA) and, on the other hand, from about 0.001 to about 15, preferably from about 0.1 to about 10, parts by weight of at least one thickening water-soluble polymer (TWP).

In particular, the mixture (M) to be mixed can comprise, in addition to the viscous tar composition, per 100 parts by weight of tar:

  • from about 45 to about 100, for example from about 60 to about 100, parts by weight of water (W), and either from about 5 to about 10 parts by weight of at least one surface-active agent (SA) or, preferably, on the one hand, from about 2 to about 5 parts by weight of at least one surface active agent (SA) and, on the other hand, from about 0.5 to about 5 parts by weight of at least one thickening water-soluble polymer (TWP).

According to one alternative form of the invention, it will be possible to use, depending on the tar content of the viscous tar composition, preferably of between about 2 and about 70% by weight, an amount of mixture containing about 2 to about 6% of surface-active agent(s) (SA) and from about 0.5 to about 2.5% of thickening water-soluble polymer(s) (TWP) in water (W) of between about 1/20 and about 1/4, in particular between about 1/15 and about 1/5, for example between about 1/13 and about 1/6, of the amount of viscous tar composition; it will be possible in particular for this ratio to be between about 1/9 and about 1/7.

Besides the viscous tar composition and the water (W), the mixture (M) to be mixed comprises at least one surface-active agent (SA) exhibiting an HLB of at least about 10, for example of at least about 12. The surface-active agent (SA) can be chosen from nonionic, anionic, cationic, zwitterionic or amphoteric surface-active agents having an HLB of at least about 10, or their mixtures.

It is thus possible to employ at least one anionic surface-active agent with an HLB of at least about 10 chosen from alkali metal alkylbenzenesulphonates, alkyl sulphates, alkyl ether sulphates, alkylaryl ether sulphates, dialkyl sulphosuccinates, alkyl phosphates or ether phosphates.

It is possible to use at least one cationic surface-active agent with an HLB at least equal to about 10 chosen from aliphatic or aromatic fatty amines, aliphatic fatty amides or quaternary ammonium derivatives.

Ionic surface-active agents with an HLB greater than 20 may be suitable. It is also possible to employ at least one zwitterionic or amphoteric surface-active agent with an HLB of at least about 10 chosen from betaines and their derivatives, sultaines and their derivatives, lecithins, imidazoline derivatives, glycinates and their derivatives, amidopropionates or fatty amine oxides.

Use is preferably made of at least one nonionic surface-active agent exhibiting an HLB of at least about 10 chosen, for example, from alkoxylated fatty acids, polyalkoxylated alkylphenols, polyalkoxylated fatty alcohols, polyalkoxylated or polyglycerolated fatty amides, polyglycerolated alcohols and α-diols or ethylene oxide/propylene oxide block copolymers, as well as alkylglucosides, alkylpolyglucosides, sucroethers, sucroesters, sucroglycerides or sorbitan esters.

Suitable surfactants (surface active agents) for use are nonionic surfactants, cationic surfactants, amphoteric (including zwitterionics) surfactants, anionic surfactants and mixtures thereof. Preferred surfactants for use are nonionic surfactants, cationic surfactants, anionic surfactants and mixtures thereof. Amphoterics are not preferred for use with acidic tars/sludges, particularly spent sulfuric acid tars/sludges. Preferably, the surfactant is compatible with the acid environment and more preferably also stable in non-acid environments. Preferably, compatibility is determined by the absence of any reaction between the surfactant and the acid and tar system and also by the stability of the fluidized tar resulting from the use of the surfactant system. Some degree of reaction can be acceptable and it is within the skill of an artisan to determine the compatibility.

Preferred surfactants useful herein include: mixed octyl/decyl alcohols which are ethoxylated and propoxylated, nonlyphenoxypoly(ethyleneoxy)ethanol, polyethoxylated tallow amine, isopropylaminealkylarylsulfonate, dinonylphenoxypoly(ethyleneoxy)-ethanol, mixtures of ethoxylated and propoxylated tallow amine and mixtures thereof. Amphoteric surfactants which can be utilized include: sodiumlauriminodipropionate, cocamidopropylbetaine, cocoamphohydroxypropyl sulfonate and mixtures thereof. Based on the composition of the tars, selection of the appropriate surfactant is made and experimentally tested for the stability (gelling, heat evolution and reaction with the tar components) of the mix of the tar with the acid system.

Surfactants having an HLB of at least about 10 or their mixtures are preferred for use. Ionic surfactants with an HLB greater than about 20 are also preferred.

Examples of useful nonionic surfactants include condensates of ethylene oxide with a hydrophobic moiety which has an average hydrophilic lipophilic balance (HLB) between about 8 to about 16, and more preferably, between about 10 and about 12.5. These surfactants include the condensation products of primary or secondary aliphatic alcohols having from about 8 to about 24 carbon atoms, in either straight or branched chain configuration, with from about 2 to about 40, and preferably between about 2 and about 9 moles of ethylene oxide per mole of alcohol.

In a preferred embodiment the aliphatic alcohol comprises between about 9 and about 18 carbon atoms and is ethoxylated with between about 3 and about 12 moles of ethylene oxide per mole of aliphatic alcohol.

Preferred nonionic surfactants exhibiting an HLB of at least about 10 can be chosen, for example, from alkoxylated fatty acids, polyalkoxylated alkylphenols, polyalkoxylated fatty alcohols, polyalkoxylated or polyglycerolated fatty amides, polyglycerolated alcohols and ∝-diols or ethylene oxide/propylene oxide block copolymers, as well as alkylglucosides, alkylpolyglucosides, sucroethers, sucroesters, sucroglycerides or sorbitan esters.

Other suitable nonionic surfactants include the condensation products of about 6 to about 12 carbon atom alkyl phenols with about 3 to about 30, and preferably between about 4 and 14 moles of ethylene oxide. Examples of such surfactants are sold under the trade names Igepal CO 430, Igepal CO 530, Igepal CO 630, Igepal CO 720 and Igepal CO 730 by Rhone-Poulenc Inc. Still other suitable nonionic surfactants are described in U.S. Patent No. 3,976,586.

Other suitable nonionic surfactant for use herein are sold under the trade names Antarox TA 4400 and Antarox BL 240 by Rhone-Poulenc Inc.

Cationic surfactants suitable for use include the quaternary compounds imidazolines, dialkyl quats and benzyl quats as well as the amine oxides, fatty imidazolines and ethoxylated amines.

Cationic surfactants suitable for use are ethoxylated tallow amines disclosed in U.S. Patent No, 5,409,574, issued April 25, 1995, to Razac et al.

The propoxylated fatty amine ethoxylate surfactants used in the invention can be represented by the general average formula:

where R suitably represents hydrocarbon groups containing an average value of between 1-30 carbon atoms, and wherein a plus b represent from 0 to about 50 moles ethylene oxide (EO), and x and y represent from 0 to about 20 moles propylene oxide (PO), the sum of a, b, x, and y being at least 2, and preferably from about 6 to about 22, it being understood that a, b, x, and y represent average numerical values and that the formula is an average representation, the various groups being disposed independently in each amine substituent chain, e.g., EO-PO-EO, EO-EO-PO, EO-EO-EO, PO-PO-PO, EO-PO-PO, PO-EO-PO and the like.

The hydrocarbon groups can be aliphatic or aromatic, and, if aliphatic, can be linear, branched or cyclic in nature, and can be the same or different particularly in the case of fatty radicals which are a composite of various chain length materials. The aliphatic hydrocarbon radical can contain ethylenic unsaturation. Preferably the aliphatic groups are selected from among alkyl groups, and substituted alkyl groups thereof, such as long chain alkyl groups, preferably having from 6 to 30, preferably 6 to 22, carbon atoms, such as stearyl, lauryl, oleyl, cetyl, tridecyl, tetradecyl, hexadecyl, dodecyl, octadecyl, nonadecyl, tallow, coco, soya, myristyl and other natural fatty radicals from animal, fish, vegetable and oil seed sources (coconut oil, palm kernel oil, babassu oil, rape seed oil, sunflower seed oil and the like) or substituted groups thereof, derived from natural or synthetic sources. These compounds can be illustrated by cocamine ethoxylate propoxylate, laurylamine ethoxylate propoxylate, tallowamine ethoxylate propoxylate, oleylamine ethoxylate propoxylate, stearylamine ethoxylate propoxylate, myristylamine ethoxylate propoxylate, cetylamine ethoxylate propoxylate and the like.

Preferred cationic surfactants with an HLB at least equal to about 10 can be chosen from alipatic or aromatic fatty amines, aliphatic fatty amides or quaternary ammonium derivatives.

Commercially available cationic surfactants for use are RHODAMEEN® PN 430, RHODAMEEN® VP-532/SPB and RHODAMEEN® ethoxylated fatty amines, ALKAQUAT® and RHODAQUAT® cationic quaternaries, RHODAMOX® amine oxides, and MIRAMINE® cationic imidazolines and fatty amine condensates sold by Rhone-Poulenc Inc., Cranbury, New Jersey.

Examples of suitable amphoteric surfactants include the alkali metal, alkaline earth metal, ammonium or substituted ammonium salts of alkyl amphocarboxy glycinates and alkyl amphocarboxypropionates, alkyl amphodipropionates, alkyl amphodiacetates, alkyl amphoglycinates and alkyl amphopropionates wherein alkyl represents an alkyl group having 6 to 20 carbon atoms. Other suitable amphoteric surfactants include alkyl immopropionates, alkyl iminodipropionates and alkyl amphopropylsulfonates having between 12 and 18 carbon atoms; alkyl betaines and amidopropyl betaines and alkyl sultaines and alkylamidopropylhydroxy sultaines wherein alkyl represents an alkyl group having 6 to 20 carbon atoms.

Particularly useful amphoteric surfactants include both mono and dicarboxylates such as those of the formulae:

and
wherein R is an alkyl group of 6-20 carbon atoms, x is 1 or 2 and M is hydrogen or sodium. Mixtures of the above structures are particularly preferred.

Other formulae for the above amphoteric surfactants include the following:

  • Alkyl betaines
  • Amidopropyl betaines
  • Alkyl sultaines
    and
  • Alkyl amidopropylhydroxy sultaines
where R is a alkyl group of 6-20 carbon atoms and M is potassium, sodium or a monovalent cation.

Of the above amphoteric surfactants, particularly preferred are the alkali salts of alkyl amphocarboxyglycinates and alkyl amphocarboxypropionates, alkyl amphodipropionates, alkyl amphodiacetates, alkyl amphoglycinates, alkyl amphopropyl sulfonates and alkyl amphopropionates wherein alkyl represents an alkyl group having 6 to 20 carbon atoms. Even more preferred are compounds wherein the alkyl group is derived from coconut oil or is a lauryl group, for example cocoamphodipropionate. Such cocoamphodipropionate surfactants are commercially sold under the trademarks MIRANOL C2M-SF CONC. and MIRANOL FBS by Rhône-Poulenc Inc.

Other commercially useful amphoteric surfactants include:

  • cocoamphoacetate (sold under the trademarks MIRANOL ULTRA C-32 and MIRAPON FA),
  • cocoamphopropionate (sold under the trademarks MIRANOL CMSF CONC. and MIRAPON FAS),
  • cocoamphodiacetate (sold under the trademarks MIRANOL C2M CONC. and MIRAPON FB),
  • lauroamphoacetate (sold under the trademarks MIRANOL HM CONC. and MIRAPON LA),
  • lauroamphodiacetate (sold under the trademarks MIRANOL H2M CONC. and MIRAPON LB),
  • lauroamphodipropionate (sold under the trademarks MIRANOL H2M-SF CONC. AND MIRAPON LBS),
  • lauroamphodiacetate obtained from a mixture of lauric and myristic acids (sold under the trademark MIRANOL BM CONC.), and
  • cocoamphopropyl sulfonate (sold under the trademark MIRANOL CS CONC.)
  • caproamphodiacetate (sold under the trademark MIRANOL S2M CONC.),
  • caproamphoacetate (sold under the trademark MIRANOL SM CONC.),
  • caproamphodipropionate (sold. under the trademark MIRANOL S2M-SF CONC.), and
  • stearoamphoacetate (sold under the trademark MIRANOL DM).

Also useful herein are the betaines and amidobctaines which are compounds of the general structure:

respectively wherein R2 is C8 - C22 alkyl or alkenyl; R3 is H or C1 - C4 alkyl; and R4 is H or C1 - C-4 alkyl.

The betaines useful herein include the high alkyl betaines such as cocodimethyl carboxymethyl betaine, lauryl dimethyl carboxymethyl betaine, lauryl dimethyl alpha-carboxy-ethyl betaine, cetyl dimethyl carboxymethyl betaine, lauryl bis-(2-hydroxyethyl)carboxy methyl betaine, stearyl bis-(2-hydroxy-propyl)carboxymethyl betaine, oleyl dimethyl gamma-carboxypropyl betaine, and lauryl bis-(2-hydroxypropyl)alpha-carboxyethyl betaine. The sulfobetaines are also preferred and may be represented by cocodimethyl sulfopropyl betaine, stearyldimethyl sulfopropyl betaine, lauryl dimethyl sulfoethyl betaine, lauryl bis-(2-hydroxy-ethyl)sulfopropyl betaine and mixtures thereof. A particularly preferred composition utilizes cocoamidopropyl betaine.

Preferred amphoteric (including zwitterionic) surfactants with an HLB of at least about 10 can be chosen from betaines and their derivatives, sultaines and their derivatives, lecithins, imidazoline derivatives, glycinates and their derivatives, amidopropionates or fatty amine oxides.

Useful anionic surfactants include any of the known hydrophobes attached to a carboxylate, sulfonate, sulfate or phosphate polar, solubilizing group including salts. Salts may be the sodium, potassium, calcium, magnesium, barium, iron, ammonium and amine salts of such surfactants.

Examples of such anionic surfactants include water soluble salts of alkyl benzene sulfonates having between 8 and 22 carbon atoms in the alkyl group, alkyl ether sulfates having between 8 and 22 carbon atoms in the alkyl group, alkali metal, ammonium and alkanolammonium salts or organic sulfuric reaction products having in their molecular structure an alkyl, or alkaryl group containing from 8 to 22 carbon atoms and a sulfonic or sulfuric acid ester group.

Preferred anionic surfactants with an HLB of at least about 10 can be chosen from alkali metal alkylbenzenesulphonates, alkyl sulphates, alkyl ether sulphates, alkylaryl ether sulphates, dialkyl sulphosuccinates, alkyl phosphates or ether phosphates.

Particularly preferred are linear sodium and potassium alkyl ether sulfates that are synthesized by sulfating a higher alcohol having between 8 and 18 carbon atoms and having 2 to 9 moles of ethylene oxide. Another anionic surfactant is alkyl benzene sulfonate, in which the alkyl group contains between about 9 to about 15, and preferably, between about 11 to about 13 carbon atoms in a straight chain or branched chain configuration and most preferably a linear straight chain having an average alkyl group of about 11 carbon atoms.

Mixtures of anionic surfactants can be utilized, including mixtures of alkyl or alkylaryl sulfonate and sulfate surfactants. Such embodiments comprise a mixture of alkali metal salts, preferably sodium salts, of alkyl benzene sulfonates having from about 9 to 15, and more preferred between 11 and 13 carbon atoms with an alkali metal salt, preferably sodium, of an alkyl sulfate or alkyl ethoxy sulfate having 10 to 20 and preferably 12 to 18 carbon atoms and an average ethoxylation of 2 to 4.

Anionic surfactants which may be selected include linear alkyl benzene sulfonates such as dodecylbenzene sulfonate, decylbenzene sulfonate, undecylbenzene sulfonate, tridecylbenzene sulfonate, nonylbenzene sulfonate and the sodium, potassium, ammonium, triethanolammonium and isopropylammonium salts thereof. A preferred anionic surfactant is a linear isopropylamine dodecylbenzene sulfonate; one of which is sold under the tradename Rhodacal® IPAM by Rhône-Poulenc Inc.. A suitable sulfonate salt is sodium dodecylbenzene sulfonate. Such chemicals are sold under the trade name Biosoft 100 by Stepan Chemicals of Northfield, Illinois. Other anionic surfactants include polyethoxylated alcohol sulfates, such as those sold under the trade name Neodol 25-3S by Shell Chemical Company. Examples of other anionic surfactants are provided in U.S. Patent No. 3,976,586.

An optional component is a carrier for the introduction of the surfactant into the tar/sludge. The carrier can be aqueous or organic and is preferably selected from the group consisting of water, diesel, xylene, methyl isobutyl ketone, isopropyl alcohol, an inorganic acid (e.g., sulfuric acid) and dimethylsulfoxide. It is used for ease of introduction of the surfactant, to provide stability to the mix and result in effective clean-out of the tar/sludges from the containers. Preferred carriers are water, diesel xylene and mixtures thereof and most preferred is diesel.

Another optional component is a suspending agent such as guar gum, a polysaccharide blend or other similar acting polymer can be utilized. A preferred guar is sold under the tradename Jaguar® by Rhône-Poulenc Inc.

The mixture (M) to be mixed preferably also comprises at least one thickening water-soluble polymer (TWP) with a molecular mass greater than about 10,000 (g/mol), generally greater than about 100,000 (g/mol).

The said thickening water-soluble polymer (TWP) is generally soluble to at least about 50% in water. Mention may in particular be made, as examples of thickening water-soluble polymers (TWP) which can be used, of:

  • those obtained by chemical synthesis, such as poly(vinyl alcohol)s, poly(ethylene glycol)s, polyvinylpyrrolidones or poly(alkali metal acrylate)s,
  • those extracted from plants and optionally modified, such as carrageenans, alginates, carboxymethyl celluloses, methyl celluloses, hydroxypropyl celluloses or hydroxyethyl celluloses, and
  • those obtained by biosynthesis, such as xanthan gum.

The surface-active agent(s) (SA) + thickening water-soluble polymer(s) (TWP) system constitutes a very effective stabilizing/dispersing agent for the viscous tar composition.

The relative amounts of water (W), of surface-active agent(s) (SA) and of optional water-soluble polymer(s) (TWP) are a function of the viscosity of the tar of the viscous tar composition, as well as of the nature of the (mixture of) surfactant(s) (SA) and of the nature of the (mixture of) optional thickening water-soluble polymer(s) (TWP). These relative amounts are such that the viscosity of the (W) + (SA) + optional (TWP) mixture is equal to or greater than about one tenth of the viscosity of the tar, preferably equal to or greater than the viscosity of the tar.

The amounts of surface-active agent(s) (SA) and of thickening water-soluble polymer(s) to be used are generally low, which is very advantageous, in particular from an economic viewpoint.

The mixing operation is carried out for a time and under shear conditions which are sufficient for an emulsion of "oil-in-water" type to be obtained. The mixing time, which generally increases as the viscous tar composition becomes richer in tar, can be only between about 0.5 and about 4 hours. Slow stirring is, moreover, generally sufficient.

The operation of emulsifying the tar can be carried out by:

  • introducing the viscous tar composition into a water (W) + surface-active agent(s) (SA) + optional thickening water-soluble polymer(s) (TWP) mixture and then mixing at a temperature generally of between approximately about 10 and about 50°C; or
  • introducing the water (W) into a viscous tar composition entirely or partially present + surface-active agent(s) (SA) + optional thickening water-soluble polymer(s) (TWP) mixture and then mixing at a temperature generally of between approximately about 10 and about 50°C, the amount of viscous tar composition optionally remaining being introduced into the mixture after the formation of an emulsion of "oil-in-water" type while maintaining the mixing.

Any conventional mixing device can be utilized, particularly slow-stirring devices. Thus, the mixing operation can be carried out in a mixer equipped with a stirrer, a stirrer in which the mobile part does not rotate at more than about 2500 revolutions/min (preferably not at more than about 1500 revolutions/min and, more particularly, not at more than about 500 revolutions/min) with a tangential velocity at the end of the mobile part not exceeding about 20 m/s (preferably not exceeding about 5 m/s and, more particularly, not exceeding about 2.5 m/s); advantageously, the tangential velocity at the end of the mobile part/distance between the end of the mobile part and the wall of the mixer ratio is less than about 50,000 s-1, preferably less than about 10,000 s-1 and, more particularly, less than about 2500 s-1. Mention may be made, by way of examples, of single- or multiple-screw extruders, planetary mixers, hook mixers, slow dispersers, static mixers or paddle, propeller, arm or anchor mixers.

The viscous tar composition can also contain a hydrocarbon phase which exhibits a viscosity which is much lower than that of the tar or a viscosity in the region of or equal to that of the tar.

Monitoring of the distribution of the sizes of the particles which they contain shows that the tar suspoemulsions obtained according to the process of the invention are stable on storage.

The tar suspoemulsions obtained according to the process of the invention are completely dilutable with water or with an aqueous acidic solution (in particular a nitration waste acid), for example an aqueous sulfuric acid solution. They can thus be easily pumped and can be easily sprayed into an incineration furnace for liquids.

They can generally exhibit a viscosity of less than about 80 mPa&peseta;s (in particular for a water content of greater than about 55% by weight), in particular of less than about 6 mPa&peseta;s (in particular for a water content of greater than about 65% by weight), for example at a gradient of about 3 s-1.

The starting viscous tar composition can in particular be a residue resulting from the synthesis of white oils from petroleum fractions. The process according to the invention finds a particularly advantageous application when the starting viscous tar composition contains at least one acid, in particular sulfuric acid, as often in the case of a residue resulting from the synthesis of white oils from petroleum fractions. It is then in particular possible, and this constitutes another object of the invention, to recover the sulfuric acid by preparing, according to the process described above, an aqueous tar suspoemulsion, diluted with water or with an aqueous sulfuric acid solution, and by then incinerating the dilute aqueous tar suspoemulsion.

The following example illustrates the invention without, however, limiting the scope thereof. It is realized that charges and variations may be made that are not shown below. Such changes which do not materially alter the process, formulation or function are still considered to fall within the scope of the invention as recited by the claims that follow.

EXAMPLE 1

Use is made of a viscous tar composition with the following composition (% by weight):

  • tar         16%
  • inorganic solids      34%
  • water         50%

The inorganic solids content is determined by combustion at 950°C and the water content by thermogravimetric analysis at 100°C.

The viscosity of the tar is greater than 50 Pa&peseta;s.

A mixture is prepared which contains, in water (% by weight):

  • &peseta; 1.5% of Guar CSA 200/50 (thickening water-soluble polymer);
  • &peseta; 2% of Soprophor B.S.U.® (ethoxylated tristyrylphenol with an HLB equal to 12.5 (non-ionic surface-active agent));
  • &peseta; 2% of Soprophor 3D33 (phosphated and ethoxylated tristyrylphenol with an HLB equal to 16 (anionic surface-active agent)).

For this, the Guar is added to water with vigorous stirring, the surfactants are then introduced and the mixture is homogenized with gentle stirring in order not to generate foam. The viscosity of the mixture after 1 hour is approximately 21 Pa&peseta;s.

50 grams of this mixture are placed in a mixer equipped with a gate-type paddle rotating at 500 revolutions/min and 7 times 50 grams of the abovementioned viscous tar composition are added thereto; stirring is maintained until the mixture is homogeneous.

An aqueous tar suspoemulsion is then obtained which has the following composition (% by weight):

  • tar + other organic matter      28.5%
  • inorganic solids      14.5%
  • water      57.0%

This dispersion contains particles with a mean size of 4.0 µm. Monitoring the distribution of the sizes of the particles shows that this aqueous suspoemulsion is stable for at least 48 hours. This dispersion is then easily diluted with a waste acid containing 60% of H2SO4 in water.

A fluid aqueous suspoemulsion is obtained which contains (% by weight):

  • 20.5% of tar + other organic matter
  • 7.0% of inorganic solids
  • 72.5% of water + acid.

This aqueous suspoemulsion is easily pumped and then sprayed into a furnace in order to be incinerated therein.


Anspruch[de]
  1. Verfahren zur Herstellung einer wässrigen Teersuspoemulsion, umfassend die Stufen: Vermischen eines Gemisches (M), umfassend:
    • eine viskose Teerzusammensetzung, gebildet aus mindestens einem Teer, aus anorganischen Feststoffen und gegebenenfalls Wasser, wobei der Teer eine Viskosität von mindestens gleich 3 Pa.s zeigt,
    • Wasser (W),
    • mindestens ein oberflächenaktives Mittel (SA), das einen HLB von mindestens 10 aufweist, und gegebenenfalls mindestens ein wasserlösliches Verdickungspolymeres (TWP) mit einer Molekularmasse von größer'als 10.000,
    wobei die relativen Mengen der Bestandteile (W), (SA) und gegebenenfalls (TWP) so gewählt werden, dass die Viskosität des (W) + (SA) + gegebenenfalls (TWP)-Gemisches gleich einem Zehntel der Viskosität des Teers oder höher ist.
  2. Verfahren nach Anspruch 1, wobei das Mischen durchgeführt wird, indem die viskose Teerzusammensetzung zu dem Wasser (W) + grenzflächenaktiven Mittel (SA) + gegebenenfalls wasserlöslichem(n) Verdickungspolymer(en) (TWP)-Gemisch gegeben wird, und dann bei einer Temperatur zwischen ungefähr 10 und 50°C gemischt wird.
  3. Verfahren nach Anspruch 1, wobei das Mischen durchgeführt wird, indem das Wasser (W) in ein Gemisch, in dem die viskose Teerzusammensetzung vollständig oder teilweise vorhanden ist, und das das oberflächenaktive Mittel bzw. die oberflächenaktiven Mittel (SA) + gegebenenfalls das bzw. die wasserlöslichen Verdickungspolymer(e) (TWP) enthält, eingeführt wird, dann bei einer Temperatur zwischen ungefähr 10 und 50°C gemischt wird, wobei die Menge an viskoser Teerzusammensetzung, die gegebenenfalls verbleibt, in das Gemisch nach der Bildung einer Emulsion des Öl-in-Wasser-Typs zugegeben wird, während weiter vermischt wird.
  4. Verfahren nach Anspruch 1, 2 oder 3, wobei das erhaltene Gemisch mit Wasser oder mit mindestens einer wässrigen sauren Lösung verdünnt wird.
  5. Verfahren nach Anspruch 1, wobei die relativen Mengen der Bestandteile (W), (SA) und gegebenenfalls (TWP) so sind, dass die Viskosität von dem (W) + (SA) + gegebenenfalls (TWP)-Gemisch gleich ist oder größer als die Viskosität des Teers.
  6. Verfahren nach Anspruch 5, wobei die viskose Teerzusammensetzung umfasst :
    • 2 bis 70 Gew.-% Teer;
    • 5 bis 50 Gew.-% anorganische Feststoffe; und
    • 0 bis 70 Gew.-% Wasser.
  7. Verfahren nach Anspruch 1, wobei das Gemisch (M) zusätzlich zu der viskosen Teerzusammensetzung pro 100 Gew.-Teile Teer umfasst:
    • 30 bis 200 Gew.-Teile Wasser (W) und
    • 2 bis 20 Gew.-Teile mindestens eines grenzflächenaktiven Mittels (SA) oder einer Kombination von 0,5 bis 10 Gew.-Teilen mindestens eines grenzflächenaktiven Mittels (SA) und 0,001 bis 15 Gew.-Teilen mindestens eines wasserlöslichen Verdickungspolymeren (TWP).
  8. Verfahren nach Anspruch 1, wobei das grenzflächenaktive Mittel (SA) ausgewählt wird aus der Gruppe, bestehend aus: nichtionischen, anionischen, kationischen, zwitterionischen oder amphoteren-grenzflächenaktiven Mitteln und Gemischen davon, mit einem HLB von mindestens etwa 10.
  9. Verfahren nach Anspruch 1, wobei das wasserlösliche Verdickungspolymer (TWP) zu mindestens 50% in Wasser löslich ist und ausgewählt wird aus der Gruppe, bestehend aus: Poly(vinylalkohol)(en), Poly(ethylenglykol)(en), Polyvinylpyrrolidonen, Poly(alkalimetallacrylat)(en), Carrageenanen, Alginaten, Xanthangummi, Carboxymethylcellulosen, Methylcellulosen, Hydroxypropylcellulosen oder Hydroxyethylcellulosen und deren Gemischen.
  10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Mischvorgang in einem Mischer, ausgerüstet mit einem Rührer, durchgeführt wird, wobei der mobile Teil des Rührer mit nicht mehr als 2500 Umdrehungen/min mit einer Tangential-Geschwindigkeit am Ende des mobilen Teils von nicht über 20 m/s rotiert wird.
  11. Verfahren nach Anspruch 10, wobei das Verhältnis der Tangential-Geschwindigkeit am Ende des mobilen Teils zur Entfernung zwischen dem Ende des mobilen Teils und der Wand des Mischers weniger als 50.000 s-1 beträgt.
  12. Verfahren nach Anspruch 1, wobei der Mischvorgang in einem Mischer durchgeführt wird, der mit einem Rührer ausgerüstet ist, wobei der mobile Teil des Rührers mit nicht mehr als 1500 Umdrehungen/min rotiert und die Tangential-Geschwindigkeit am Ende des mobilen Teils 5 m/s nicht überschreitet.
  13. Verfahren nach Anspruch 12, wobei das Verhältnis von Tangential-Geschwindigkeit am Ende des mobilen Teils/Entfernung zwischen dem Ende des mobilen Teils und der Wand des Mischers weniger als 10.000 s-1 beträgt.
  14. Verfahren nach Anspruch 1, wobei der Mischvorgang in einem Mischer durchgeführt wird, der mit einem Rührer ausgerüstet ist, wobei der mobile Teil des Rührers mit nicht mehr als 500 Umdrehungen/min rotiert und die Tangential-Geschwindigkeit am Ende des mobilen Teils nicht 2,5 m/s überschreitet.
  15. Verfahren nach Anspruch 14, wobei das Verhältnis von Tangential-Geschwindigkeit am Ende des mobilen Teils/Entfernung zwischen dem Ende des mobilen Teils und der Wand des Mischers weniger als 2500 s-1 beträgt.
  16. Verfahren nach Anspruch 1, wobei die viskose Teerzusammensetzung ein Rückstand ist, der bei der Synthese von Paraffinölen aus Erdölfraktionen anfällt.
  17. Verfahren nach Anspruch 1, wobei die viskose Teerzusammensetzung mindestens eine Säure enthält.
  18. Verfahren nach Anspruch 17, wobei die Säure Schwefelsäure ist.
  19. Verfahren zur Gewinnung der Schwefelsäure, die in der viskosen Teerzusammensetzung enthalten ist, umfassend die Stufen:
    • (i) Herstellung einer wässrigen Teersuspoemulsion gemäß dem Verfahren von Anspruch 1;
    • (ii) Verdünnung der wässrigen Teersuspoemulsion mit Wasser oder mit einer wässrigen Schwefelsäurelösung; und
    • (iii) Verbrennen der verdünnten wässrigen Teersuspoemulsion.
Anspruch[en]
  1. Process for the preparation of an aqueous tar suspoemulsion, comprising the steps of: mixing a mixture (M) comprising:
    • a viscous tar composition formed from at least one tar, from inorganic solids and, optionally, from water wherein said tar exhibits a viscosity at least equal to 3 Pa.s.
    • water (W),
    • at least one surface-active agent (SA) exhibiting an HLB of at least 10 and, optionally, at least one thickening water-soluble polymer (TWP) with a molecular mass of greater than 10,000,
    wherein the relative amounts of constituents (W), (SA) and, optionally, (TWP) being such that the viscosity of the (W) + (SA) + optional (TWP) mixture is equal to or greater than one tenth of the viscosity of said tar.
  2. Process according to claim 1, wherein the mixing is carried out by introducing said viscous tar composition into a water (W) + surface-active agent (SA) + optional thickening water-soluble polymer(s) (TWP) mixture, then mixing at a temperature of between approximately 10 and 50°C.
  3. Process according to claim 1, wherein the mixing is carried out by introducing the water (W) into a viscous tar composition entirely or partially present + surface-active agent(s) (SA) + optional thickening water-soluble polymer(s) (TWP) mixture, then mixing at a temperature of between approximately 10 and 50° C, the amount of viscous tar composition optionally remaining being introduced into the mixture after the formation of an emulsion of "oil-in-water" type while maintaining the mixing.
  4. Process according to claim 1, claim 2 or claim 3 further comprising the step of diluting the mixture obtained with water or with at least one aqueous acidic solution.
  5. Process according to claim 1, wherein the relative amounts of the constituents (W), (SA) and, optionally, (TWP) are such that the viscosity of the (W) + (SA) + optional (TWP) mixture is equal to or greater than the viscosity of said tar.
  6. Process according to claim 5, wherein said viscous tar composition comprises:
    • from 2 to 70%, by weight of tar;
    • from 5 to 50%, by weight of inorganic solids; and
    • from 0 to 70%, by weight of water.
  7. Process according to claim 1, wherein said mixture (M) comprises, in addition to said viscous tar composition, per 100 parts by weight of tar:
    • from 30 to 200 parts by weight of water (W), and
    • from 2 to 20parts by weight of at least one surface-active agent (SA) or a combination of from 0.5 to 10 parts by weight of at least one surface-active agent (SA) and from 0.001 to 15 parts by weight of at least one thickening water-soluble polymer (TWP).
  8. Process according to claim 1, wherein said surface-active agent (SA) is selected from the group consisting of: nonionic, anionic, cationic, zwitterionic or amphoteric surface-active agent(s) and mixtures thereof having an HLB of at least about 10.
  9. Process according to claim 1, wherein said thickening water-soluble polymer (TWP) is soluble to at least 50% in water and can be selected from the group consisting of: poly(vinyl alcohol)s, poly(ethylene glycol)s, polyvinylpyrrolidones, poly(alkali metal acrylate)s, carrageenans, alginates, xanthan gum, carboxymethyl celluloses, methyl celluloses, hydroxypropyl celluloses or hydroxyethyl celluloses and mixtures thereof.
  10. Process according to claim 1, characterized in that the mixing operation is carried out in a mixer equipped with a stirrer, a stirrer in which the mobile part does not rotate at more than 2500 revolutions/min with a tangential velocity at the end of the mobile part not exceeding 20 m/s.
  11. Process according to claim 10, wherein the tangential velocity at the end of the mobile part/distance between the end of the mobile part and the wall of the mixer ratio is less than 50,000 s-1.
  12. Process according to claim 1, wherein the mixing operation is carried out in a mixer equipped with a stirrer, a stirrer in which the mobile part does not rotate at more than 1500 revolutions/min with a tangential velocity at the end of the mobile part not exceeding 5 m/s.
  13. Process according to claim 12, wherein the tangential velocity at the end of the mobile part/distance between the end of the mobile part and the wall of the mixer ratio is less than 10,000 s-1.
  14. Process according to claim 1, wherein the mixing operation is carried out in a mixer equipped with a stirrer, a stirrer in which the mobile part does not rotate at more than 500 revolutions/min with a tangential velocity at the end of the mobile part not exceeding 2.5 m/s.
  15. Process according to claim 14, wherein the tangential velocity at the end of the mobile part/distance between the end of the mobile part and the wall of the mixer ratio is less than 2500 s-1.
  16. Process according to claim 1, wherein the viscous tar composition is a residue resulting from the synthesis of white oils from petroleum fractions.
  17. Process according to claim 1, wherein the viscous tar composition comprises at least one acid.
  18. Process according to claim 17, wherein said acid is sulfuric acid.
  19. Process for the recovery of sulfuric acid contained in a viscous tar composition, comprising the steps of:
    • (i) preparing an aqueous tar suspoemulsion in accordance with the process of claim 1;
    • (ii) diluting said aqueous tar suspoemulsion with water or with an aqueous sulfuric acid solution; and
    • (iii) incinerating said dilute aqueous tar suspoemulsion.
Anspruch[fr]
  1. Procédé de préparation d'une suspo-émulsion de goudron dans de l'eau, comprenant les étapes consistant : à mélanger un mélange (M) comprenant :
    • une composition de goudron visqueuse formé d'au moins un goudron, de matières solides minérales et, éventuellement, d'eau, ledit goudron présentant une viscosité au moins égale à 3 Pa.s.,
    • de l'eau (E),
    • au moins un agent tensioactif (TA) ayant une HLB au moins égale à 10, et, éventuellement, au moins un polymère hydrosoluble épaississant (PHE) ayant une masse moléculaire supérieure à 10 000, les quantités relatives des constituants (E), (TA) et, éventuellement, (PHE) étant telles que la viscosité du mélange (E) + (TA) + éventuellement (PHE) est supérieure ou égale à un dixième de la viscosité dudit goudron.
  2. Procédé selon la revendication 1, dans lequel on réalise le mélange en introduisant ladite composition visqueuse de goudron dans de l'eau (E) + un agent tensioactif (TA) + éventuellement, un ou plusieurs polymère(s) hydrosoluble(s) épaississant(s) (PHE), et en mélangeant ensuite l'ensemble à une température comprise entre environ 10 et 50 °C.
  3. Procédé selon la revendication 1, dans lequel on réalise le mélange en introduisant l'eau (E) dans la totalité ou dans une partie de la composition visqueuse de goudron + un agent tensioactif (TA) + éventuellement un ou plusieurs polymère(s) hydrosoluble(s) épaississant(s) (PHE), puis en mélangeant à une température comprise entre environ 10 et 50 °C, la quantité de composition visqueuse de goudron qui reste éventuellement étant introduite dans le mélange après formation d'une émulsion huile-dans-eau avec poursuite de l'agitation.
  4. Procédé selon la revendication 1, 2 ou 3, comprenant en outre l'étape consistant à diluer le mélange obtenu avec de l'eau ou avec au moins une solution aqueuse acide.
  5. Procédé selon la revendication 1, dans lequel les quantités relatives des constituants (E), (TA) et éventuellement (PHE) sont telles que la viscosité du mélange (E) + (TA) + éventuellement (PHE) est supérieure ou égale à la viscosité dudit goudron.
  6. Procédé selon la revendication 5, dans lequel ladite composition visqueuse de goudron comprend de 2 à 70 % en poids de goudron, de 5 à 50 % en poids de matières solides minérales, et de 0 à 70 % en poids d'eau.
  7. Procédé selon la revendication 1, dans lequel ledit mélange (M) comprend, en plus de ladite composition visqueuse de goudron, pour 100 parties en poids de goudron, de 30 à 200 parties en poids d'eau (E) et de 2 à 20 parties en poids d'au moins un agent tensioactif (TA) ou une combinaison de 0,5 à 10 parties en poids d'au moins un agent tensioactif (TA) et de 0,001 à 15 parties en poids d'au moins un polymère hydrosoluble épaississant.
  8. Procédé selon la revendication 1, dans lequel ledit agent tensioactif (TA) est choisi dans le groupe formé par les agents tensioactifs non-ioniques, anioniques, cationiques, zwitterioniques ou amphotères et des mélanges de ceux-ci ayant une HLB au moins égale à 10.
  9. Procédé selon la revendication 1, dans lequel ledit polymère hydrosoluble épaississant (PHE) a une solubilité dans l'eau d'au moins 50 % et peut être choisi dans le groupe formé par le poly(alcool vinylique), les polyéthylèneglycols, les polyvinylpyrrolidones, les poly(acrylate de métal alcalin), les carraghénanes, les alginates, la gomme de xanthane, les carboxyméthylcelluloses, les méthylcelluloses, les hydroxypropylcelluloses ou les hydroxyéthylcelluloses et des mélanges de ceux-ci.
  10. Procédé selon la revendication 1, caractérisé par le fait que le mélangeage se fait à l'aide d'un mélangeur muni d'un agitateur dont la partie mobile ne tourne pas à plus de 2500 tours par minute, avec une vitesse tangentielle à l'extrémité de la partie mobile au moins égale à 20 m/s.
  11. Procédé selon la revendication 10, dans lequel le rapport de la vitesse tangentielle à l'extrémité de la partie mobile à la distance entre l'extrémité de la partie mobile et la paroi du mélangeur est inférieur à 50 000 s-1.
  12. Procédé selon la revendication 1, dans lequel le mélange se fait à l'aide d'un mélangeur muni d'un agitateur dont la partie mobile ne tourne pas à plus de 1500 tours par minute avec une vitesse tangentielle à l'extrémité de la partie mobile au plus égale à 5 m/s.
  13. Procédé selon la revendication 12, dans lequel le rapport de la vitesse tangentielle à l'extrémité de la partie mobile à la distance entre l'extrémité de la partie mobile et la paroi du mélangeur est inférieur à 10 000 s-1.
  14. Procédé selon la revendication 1, caractérisé par le fait que le mélangeage se fait à l'aide d'un mélangeur muni d'un agitateur dont la partie mobile ne tourne pas à plus de 500 tours par minute, avec une vitesse tangentielle à l'extrémité de la partie mobile au moins égale à 2,5 m/s.
  15. Procédé selon la revendication 14, dans lequel le rapport de la vitesse tangentielle à l'extrémité de la partie mobile à la distance entre l'extrémité de la partie mobile et la paroi du mélangeur est inférieur à 2500 s-1.
  16. Procédé selon la revendication 1, dans lequel la composition visqueuse de goudron est un résidu provenant de la synthèse d'huile blanche à partir de fractions de pétrole.
  17. Procédé selon la revendication 1, dans lequel la composition visqueuse de goudron comprend au moins un acide.
  18. Procédé selon la revendication 17, dans lequel ledit acide est l'acide sulfurique.
  19. Procédé pour la récupération d'acide sulfurique contenu dans une composition visqueuse de goudron, comprenant les étapes consistant
    • (i) à préparer une suspo-émulsion de goudron dans de l'eau conformément au procédé de la revendication 1,
    • (ii) à diluer ladite suspo-émulsion aqueuse de goudron avec de l'eau ou avec une solution aqueuse d'acide sulfurique, et
    • (iii) à incinérer ladite suspo-émulsion aqueuse de goudron diluée.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com