Warning: fopen(111data/log202005311351.log): failed to open stream: No space left on device in /home/pde321/public_html/header.php on line 107

Warning: flock() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 108

Warning: fclose() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 113
AUS MODULEN ZUSAMMENGESETZTER HOCHLEISTUNGSMODULATOR - Dokument EP0943123
 
PatentDe  


Dokumentenidentifikation EP0943123 17.10.2002
EP-Veröffentlichungsnummer 0943123
Titel AUS MODULEN ZUSAMMENGESETZTER HOCHLEISTUNGSMODULATOR
Anmelder Northrop Grumman Corp., Los Angeles, Calif., US
Erfinder ZAWISLAK, M., Rober, Palatine, US;
KING, J., Kenneth, Algonquin, US;
REIN, M., John, Elgin, US;
PERKINS, C., Jeffrey, Island Lake, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69715447
Vertragsstaaten DE, ES, GB, GR, IT, NL
Sprache des Dokument EN
EP-Anmeldetag 21.02.1997
EP-Aktenzeichen 979296688
WO-Anmeldetag 21.02.1997
PCT-Aktenzeichen PCT/US97/02711
WO-Veröffentlichungsnummer 0097041497
WO-Veröffentlichungsdatum 06.11.1997
EP-Offenlegungsdatum 22.09.1999
EP date of grant 11.09.2002
Veröffentlichungstag im Patentblatt 17.10.2002
IPC-Hauptklasse G05F 1/00
IPC-Nebenklasse H05B 41/392   H05B 41/30   

Beschreibung[en]
FIELD OF THE INVENTION

This invention relates generally to modulators for arc lamps or lasers, and more particularly to high-power modular modulators for switching very high currents at frequencies reaching into the kilohertz range.

BACKGROUND OF THE INVENTION

High-power modulators for arc lamps or lasers are well known. They are used, for example, in electro-optical infrared (EO/IR) systems such 'as target illumination systems, which are conventionally designed to emit high intensity pulses of infrared light at frequencies ranging from hundreds to thousands of hertz. The emitters for these light pulses may typically be arc lamps or solid state lasers. Due to the nature of their use, these systems are frequently installed on aircraft or spacecraft, where weight and size, as well as cost, of the EO/IR equipment are important limitations. Examples of modulators are given in US 4,672,300, US 4,870;327 and US 4,415,839.

Conventionally, EO/IR systems are powered by power converters using a dual conversion process in which the prime AC power is first converted to a regulated DC output with a large energy storage capacitor bank. This capacitor bank then provides power to a buck type switch mode current-regulated modulator stage. The simmer current for the arc lamp is supplied by a separate parallel-connected current source.

Although such two-stage modulators have proven generally suitable for their intended purposes, they possess inherent deficiencies which detract from their overall effectiveness and desirability, particularly in airborne applications. Specifically, the conventional approach has two drawbacks: for one, the two-stage processing requires two sets of heavy, expensive high-current components, and for another, it does not lend itself to being easily adapted to efficiently handle the varying current requirements of different light sources.

In view of the shortcomings of the prior art, it is desirable to provide a simpler, smaller, lighter and less costly modulator for EO/IR systems. As such, although the prior art has recognized to some extent the need for increased efficiency of modulators, the proposed solutions have, to date, been ineffective in providing a satisfactory remedy.

SUMMARY OF THE INVENTION

The present invention specifically addresses and alleviates the above-mentioned deficiencies associated with the prior art. The present invention is a modulator for arc lamps or the like, comprising: (a) an unregulated DC power source; (b) an output transformer having a first winding and a second winding; and (c) a converter connected to said unregulated DC power source and arranged to supply alternating pulses of opposite polarity to said first winding at a predetermined frequency; as disclosed in US 4,870,327; characterised in that the modulator further comprises: (d) drive circuitry arranged to vary the width of said pulses in response to a modulation signal; (e) an output circuit connected to said second winding and to an arc lamp, and arranged to produce a DC load current to the arc lamp varying in accordance with said pulse width and with the level of said unregulated DC power source; (f) a current sensor in said output circuit arranged to produce a current feedback signal representative of said load current; and (g) modulator control circuitry arranged to produce said modulation signal, said modulator control circuitry including: (i) a first input to receive a current mode signal representative of the current flowing in said first winding; (ii) a second input to receive said current feedback signal; and (iii) a third input to receive a modulation command signal representative of the desired load current; said modulator control circuitry combining said current mode signal, said current feedback signal and said modulation command signal to produce said modulation signal. This provides a modulator having a single-stage power processing circuit whose switch mode circuitry is operated under current mode control to compensate for deviations in input supply voltage so as to obviate the need for DC voltage regulation.

In a first embodiment, the modulator comprises a rectifier which converts the prime AC power to an unregulated DC voltage. This voltage is applied to a full-bridge quasi-resonant forward converter operating at a frequency equal to or greater than twice the maximum modulating frequency. The exact operating frequency for a specific application is chosen to meet efficiency and performance requirements in accordance with conventional engineering practice, as well as to satisfy practical design limitations.

The output of the forward converter is applied to a pair of series-connected transformers which perform the functions of voltage step-down, isolation, and AC current regulation. The output of one of the transformers is applied to the modulator control circuitry as the current mode control input, while the output of the other is applied to a low pass filter which removes the unwanted carrier frequency from the modulator's pulse waveform. The thus filtered transformer output drives the load, e.g. an arc lamp. A current sense resistor in the load-driving transformer's secondary tap generates an instantaneous load current signal which is compared to the modulation command signal and simmer level in the control circuitry for the purpose of regulating the instantaneous load current.

Another embodiment comprises an interconnection of several modulator modules to provide a convenient and inexpensive way of driving loads requiring higher peak modulation currents than the approximately 70A per module which can be delivered by the use of insulated gate bipolar devices in the full bridge modulator.

These, as well as other advantages of the present invention will be more apparent from the following description and drawings. It is understood that changes in the specific structure shown and described may be made within the scope of the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a circuit diagram, partly in block form, of one embodiment of the invention;
  • Fig. 2 is a circuit diagram, partly in block form, of another embodiment of the invention; and
  • Fig. 3 is a block diagram of the modulator control circuitry.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiment of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the invention in connection with the illustrated embodiment. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the scope of the appended claims.

Fig. 1 shows the modulator 10 of this invention in block form. Three-phase AC power is applied to a conventional rectifier 14 whose output is an unregulated DC voltage of, e.g. about 270 V appearing across lines 16, 18. Any AC component remaining in the output of rectifier 14 is eliminated by bypass capacitor 19.

The DC voltage is converted into square wave AC at an appropriate operating frequency, about 40 kHz for example, by the full bridge converter 20 consisting of gate drives 22, 24; transistors 26, 28, 30, 32; and diodes 34, 36, 38, 40. The drives 22, 24 serve as both drives and isolators to the transistors 26, 28, 30, 32 which, at a 40 kHz operating frequency, are preferably insulated gate bipolar devices to provide high current capacity, but may be other types of devices at higher switching frequencies (e.g. >100 kHz). The drives 22, 24 are operated by the modulator control circuitry 42 in a manner described below to alternate between two states at the 40 kHz carrier frequency. The duration of these two states is modulated as described below at a modulation frequency ranging from a few hundred to a few thousand hertz. In the interval between the two states, both drives 22, 24 are off.

In the first state, drive 22 switches transistor 26 on and transistor 30 off while drive 24 switches transistor 28 on and transistor 32 off. In this state, current flows first through resonant components 52 and 79, through primary winding 44 of transformer 46, and then through primary winding 48 of transformer 50. Capacitor 52 along with inductor 79 and the leakage inductance of transformer 50 are resonant at the switching frequency. At turn-off of the transistors 26, 28, stored energy in inductor 79 transitions the inverter voltage and current flows in 32 and 38.

In the second state, drive 22 switches transistor 30 on and transistor 26 off while drive 24 switches transistor 32 on and transistor 28 off. The resulting 40 kHz variable duty cycle truncated sine wave current in primary winding 48 of transformer 50 produces a 40 kHz output in the secondary winding 54 of transformer 50. This output is rectified by diodes 56, 58, and the 40 kHz carrier is removed by a low-pass filter 60 consisting of inductance 62 and capacitor 64. The resulting DC voltage is applied to the load (e.g. arc lamp) 66.

Current sensing resistor 68 provides at junction 70 a current feedback signal 72 which is used by the modulator control circuitry 42 in a manner described below to modulate the arc lamp current in accordance with the modulation command 74.

The primary current of transformer 50 is monitored by transformer 46, whose primary current is identical to the primary current of transformer 50. The output 76 of secondary winding 78 of transformer 46 is therefore representative of the AC current put out by the full bridge converter 20, and can be used, through the modulator control circuitry 42, to vary the duty cycle of the transistors 26, 28, 30, 32 to compensate for input voltage variations.

The control circuit 42 is shown in more detail in Fig. 3. The modulation command 74 which is a waveform representing the operator-dictated modulation of the light intensity (i.e. the current through arc lamp 66), is scaled at 90 and added at 92 to a simmer level signal 94 which represents the minimum current at which the arc can be maintained. The output of the adder 92 and the current feedback signal 72, scaled and filtered at 96, constitute the inputs to amplifier 98 whose output represents the instantaneous difference between the desired arc lamp current level and the actual arc lamp current level.

The current mode control signal 100 from transformer 46 is integrated at 102 to produce a 40 KHz sawtooth wave which is applied, together with the output of amplifier 98, to comparator 104. The output of comparator 104 triggers the pulse width modulator 106 which actuates the modulation drivers 22, 24. The current mode control effected by the signal 100 is an inner feed-forward loop which regulates the primary current of transformer 50 to compensate for the deviations of input voltage that can be expected from the unregulated DC voltage produced by rectifier 14.

In order to drive loads that exceed the current capacity of the module 10, it possible to parallel as many modules 10 as may be required to deliver the needed current to the load 66. Such a parallel connection is shown in Fig. 2. All of the elements of modulator 10 and modulator 80 work in the-same way as described above in connection with modulator 10; however, the low pass filter outputs 82, 84 of modulators 10 and 80 are connected together and provide the input to the load 66.

It is understood that the exemplary modular circuitry described herein and shown in the drawings represents only a presently preferred embodiment of the invention. Indeed, various modifications and additions may be made to such embodiment without departing from the scope of the appended claims. Thus, other modifications and additions may be obvious to those skilled in the art and may be implemented to adapt the present invention for use in a variety of different applications.


Anspruch[de]
  1. Modulator (10) für Bogenlampen oder dergleichen, umfassend:
    • a) eine nicht geregelte DC-Energiequelle (14, 19);
    • b) einen Ausgangstransformator (50) mit einer ersten Wicklung (48) und einer zweiten Wicklung (54); und
    • c) einen Wandler (20), der mit der nicht geregelten DC-Energiequelle verbunden und angeordnet ist, um alternierende Impulse mit einer entgegengesetzten Polarität an die erste Wicklung (48) bei einer vorgegebenen Frequenz zu liefern;

         dadurch gekennzeichnet, dass der Modulator (10) ferner umfasst:
    • d) eine Ansteuerungs-Schaltungsanordnung (22, 24), die angeordnet ist, um die Breite der Impulse im Ansprechen auf ein Modulationssignal zu verändern;
    • e) eine Ausgangsschaltung, die mit der zweiten Wicklung (54) und mit einer Bogenlampe (66) verbunden und angeordnet ist, um einen DC-Laststrom an der Bogenlampe (66) zu erzeugen, der sich in Übereinstimmung mit der Impulsbreite und mit dem Pegel der nicht geregelten DC-Energiequelle verändert;
    • f) einen Stromsensor (68) in der Ausgangsschaltung, der angeordnet ist, um ein Stromrückkopplungssignal (72) zu erzeugen, welches den Laststrom darstellt; und
    • g) eine Modulator-Steuerungs-Schaltungsanordnung (42), die angeordnet ist, um das Modulationssignal zu erzeugen, wobei die Modulator-Steuerungs-Schaltungsanordnung (42) umfasst:
      • i) einen ersten Eingang zum Empfangen eines Strommodussignals (100), dass den Strom darstellt, der in der ersten Wicklung (48) fließt;
      • ii) einen zweiten Eingang zum Empfangen des Stromrückkopplungssignals (72); und
      • iii) einen dritten Eingang zum Empfangen eines Modulationsbefehlssignals (74), das den gewünschten Laststrom darstellt;
       wobei die Modulator-Steuerungs-Schaltungsanordnung (42) das Strommodussignal (100), das Stromrückkopplungssignal (72) und das Modulationsbefehlssignal (74) kombiniert, um das Modulationssignal zu erzeugen.
  2. Modulator nach Anspruch 1, wobei das Strommodussignal (100) von einem Transformator (46) erzeugt wird, der eine primäre Wicklung (44) aufweist, die zu der ersten Wicklung (48) in Reihe geschaltet ist.
  3. Modulator nach Anspruch 1 oder Anspruch 2, wobei die Schaltungsanordnung des Wandlers (20), die Impulse an die erste Wicklung (48) liefert, bei der vorgegebenen Frequenz in Resonanz ist.
  4. Modulator nach irgendeinem vorangehenden Anspruch, wobei das Strommodussignal (100) eine Sägezahnwelle bei der vorgegebenen Frequenz erzeugt, deren Spitzenamplitude sich mit dem Pegel der nicht geregelten DC-Energie verändert, wobei das Modulationsbefehlssignal (74) ein erstes Vergleichssignal erzeugt, das Stromrückkopplungssignal (72) ein zweites Vergleichssignal erzeugt, die ersten und zweiten Vergleichssignale verglichen werden, um ein Fehlersignal zu erzeugen, und die Impulsbreite die Zeit ist, in der das Fehlersignal die Amplitude der Sägezahnwelle übersteigt.
  5. Modulator nach Anspruch 4, ferner umfassend eine Quelle mit eine vorgegebenen Spannung, die zum dem Modulationsbefehlssignal vor der Vergleichung addiert wird, um den Laststrom über einem vorgegebenen Minimum zu halten.
  6. Modulator nach irgendeinem vorangehenden Anspruch, wobei der Stromsensor (68) in der Ausgangsschaltung ein Stromerfassungswiderstand (68) ist.
  7. Modulator nach irgendeinem vorangehenden Anspruch, wobei der Wandler (20) eine Vielzahl von Isolationsgate-Bipolareinrichtungen (26, 28, 30, 32) umfasst.
  8. Modulator nach irgendeinem vorangehenden Anspruch, ferner umfassend mehr als einen besagten Wandler, die zueinander parallel geschaltet sind, wobei die Anzahl der parallel geschalteten Wandler in Übereinstimmung mit dem gewünschten Laststrom bestimmt wird.
  9. Modulator nach Anspruch 8, wobei jeder der parallel geschalteten Wandler eine Vielzahl von Isolationsgate-Bipolareinrichtungen umfasst.
Anspruch[en]
  1. A modulator (10) for arc lamps or the like, comprising:
    • a) an unregulated DC power source (14, 19);
    • b) an output transformer (50) having a first winding (48) and a second winding (54); and
    • c) a converter (20) connected to said unregulated DC power source and arranged to supply alternating pulses of opposite polarity to said first winding (48) at a predetermined frequency;

      characterised in that the modulator (10) further comprises:
    • d) drive circuitry (22, 24) arranged to vary the width of said pulses in response to a modulation signal;
    • e) an output circuit connected to said second winding (54) and to an arc lamp (66), and arranged to produce a DC load current to the arc lamp (66) varying in accordance with said pulse width and with the level of said unregulated DC power source;
    • f) a current sensor (68) in said output circuit arranged to produce a current feedback signal (72) representative of said load current; and
    • g) modulator control circuitry (42) arranged to produce said modulation signal, said modulator control circuitry (42) including:
      • i) a first input to receive a current mode signal (100) representative of the current flowing in said first winding (48);
      • ii) a second input to receive said current feedback signal (72); and
      • iii) a third input to receive a modulation command signal (74) representative of the desired load current;
       said modulator control circuitry (42) combining said current mode signal (100), said current feedback signal (72) and said modulation command signal (74) to produce said modulation signal.
  2. A modulator as claimed in Claim 1, wherein said current mode signal (100) is generated by a transformer (46) having a primary winding (44) connected in series with said first winding (48).
  3. A modulator as claimed in Claim 1 or Claim 2, wherein the circuitry of said converter (20) which supplies pulses to said first winding (48) is resonant at said predetermined frequency.
  4. A modulator as claimed in any preceding Claim, wherein said current mode signal (100) produces a sawtooth wave at said predetermined frequency whose peak amplitude varies with said level of said unregulated DC power, said modulation command signal (74) produces a first comparison signal, said current feedback signal (72) produces a second comparison signal, said first and second comparison signals are compared to produce an error signal, and said pulse width is the time during which said error signal exceeds the amplitude of said sawtooth wave.
  5. A modulator as claimed in Claim 4, further comprising a source of a predetermined voltage which is added to said modulation command signal prior to said comparison to maintain said load current above a predetermined minimum.
  6. A modulator as claimed in any preceding Claim, wherein the said current sensor (68) In said output circuit is a current sensing resistor (68).
  7. A modulator as claimed in any preceding Claim, wherein said convertor (20) includes a plurality of insulated gate bipolar devices (26, 28, 30, 32).
  8. A modulator as claimed in any preceding Claim, further comprising more than one said converter connected to each other in parallel, wherein the number of said parallel-connected converters is determined according to the desired load current.
  9. A modulator as claimed in Claim 8, wherein each of the parallel-connected converters includes a plurality of insulated gate bipolar devices.
Anspruch[fr]
  1. Modulateur (10) pour des lampes à arc ou similaire, comprenant:
    • a) une source de puissance DC non régulée (14, 19);
    • b) un transformateur de sortie (50) qui comporte un premier enroulement (48) et un second enroulement (54); et
    • c) un convertisseur (20) qui est connecté à ladite source de puissance DC non régulée et qui est agencé pour appliquer des impulsions alternées de polarités opposées sur ledit premier enroulement (48) à une fréquence prédéterminée,

         caractérisé en ce que le modulateur (10) comprend en outre:
    • d) un circuit de pilotage (22, 24) qui est agencé pour faire varier la largeur desdites impulsions en réponse à un signal de modulation;
    • e) un circuit de sortie qui est connecté audit second enroulement (54) et à une lampe à arc (66) et qui est agencé pour produire un courant de charge DC sur la lampe à arc (66) qui varie conformément à ladite largeur d'impulsion et au niveau de ladite source de puissance DC non régulée;
    • f) un capteur de courant (68) dans ledit circuit de sortie qui est agencé pour produire un signal de retour de courant (72) qui est représentatif dudit courant de charge; et
    • g) un circuit de commande de modulateur (42) qui est agencé pour produire ledit signal de modulation, ledit circuit de commande de modulateur (42) incluant:
      • i) une première entrée pour recevoir un signal de mode de courant (100) qui est représentatif du courant qui circule dans ledit premier enroulement (48);
      • ii) une seconde entrée pour recevoir ledit signal de retour de courant (72); et
      • iii) une troisième entrée pour recevoir un signal de commande de modulation (74) qui est représentatif du courant de charge souhaité,
       ledit circuit de commande de modulateur (42) combinant ledit signal de mode de courant (100), ledit signal de retour de courant (72) et ledit signal de commande de modulation (74) afin de produire ledit signal de modulation.
  2. Modulateur selon la revendication 1, dans lequel ledit signal de mode de courant (100) est généré par un transformateur (46) qui comporte un enroulement de primaire (44) qui est connecté en série avec ledit premier enroulement (48).
  3. Modulateur selon la revendication 1 ou 2, dans lequel le circuit dudit convertisseur (20) qui applique des impulsions sur ledit premier enroulement (48) est résonant à ladite fréquence prédéterminée.
  4. Modulateur selon l'une quelconque des revendications précédentes, dans lequel ledit signal de mode de courant (100) produit une onde en dents de scie à ladite fréquence prédéterminée dont une amplitude de crêté varie avec ledit niveau de ladite puissance DC non régulée, ledit signal de commande de modulation (74) produit un premier signal de comparaison, ledit signal de retour de courant (72) produit un second signal de comparaison, lesdits premier et second signaux de comparaison sont comparés afin de produire un signal d'erreur, et ladite largeur d'impulsion est le temps pendant lequel ledit signal d'erreur excède l'amplitude de ladite onde en dents de scie.
  5. Modulateur selon la revendication 4, comprenant en outre une source d'une tension prédéterminée qui est additionnée audit signal de commande de modulation avant ladite comparaison afin de maintenir ledit courant de charge au-dessus d'un minimum prédéterminé.
  6. Modulateur selon l'une quelconque des revendications précédentes, dans lequel ledit capteur de courant (68) dans ledit circuit de sortie est une résistance de détection de courant (68).
  7. Modulateur selon l'une quelconque des revendications précédentes, dans lequel ledit convertisseur (20) inclut une pluralité de dispositifs bipolaires à grille isolé (26, 28, 30, 32).
  8. Modulateur selon l'une quelconque des revendications précédentes, comprenant en outre plus d'un dit convertisseur qui sont connectés les uns aux autres en parallèle, dans lequel le nombre desdits convertisseurs connectés en parallèle est déterminé conformément au courant de charge souhaité.
  9. Modulateur selon la revendication 8, dans lequel chacun des convertisseurs connectés en parallèle inclut une pluralité de dispositifs bipolaires à grille isolée.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com