PatentDe  


Dokumentenidentifikation EP1115542 09.01.2003
EP-Veröffentlichungsnummer 1115542
Titel VORRICHTUNG ZUM VERFLÜSSIGEN VON SCHMELZMASSEN MIT HOHEM DURCHSATZ UND ERWÄRMUNGSVERMÖGEN
Anmelder Nordson Corp., Westlake, Ohio, US
Erfinder MILLER, R., Scott, Roswell, US;
SAIDMAN, B., Laurence, Duluth, US;
BETKOWSKI, Brian, Atlanta, US;
COOK, B., Christian, Snellville, US;
FARLEY, H., Mark, Laguna Niguel, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69904215
Vertragsstaaten DE, FR, SE
Sprache des Dokument EN
EP-Anmeldetag 23.09.1999
EP-Aktenzeichen 999498157
WO-Anmeldetag 23.09.1999
PCT-Aktenzeichen PCT/US99/22093
WO-Veröffentlichungsnummer 0000016954
WO-Veröffentlichungsdatum 30.03.2000
EP-Offenlegungsdatum 18.07.2001
EP date of grant 27.11.2002
Veröffentlichungstag im Patentblatt 09.01.2003
IPC-Hauptklasse B29B 13/02

Beschreibung[en]
Field of the Invention

The present invention relates generally to devices used in connection with melting and dispensing thermoplastic materials and, more particularly, to melting units including grids and reservoirs used for melting and dispensing hot melt adhesive.

Background of the Invention

So-called hot melt adhesives are used for various coating and bonding operations such as diaper construction, package forming, automobile parts assembly and various other industrial applications. Generally, it is convenient to store and ship the hot melt adhesive materials in bulk forms such as in the form of chicklets, slats, pellets, bricks or slugs held in containers. In any of these cases, important parameters include the ability to achieve a desired throughput or flow rate of liquid adhesive from the unit and, at the same time, achieve and maintain a relatively precise elevated liquid temperature. This temperature is often referred to as the set point temperature.

Hopper-type melting units may be used to melt and dispense many forms of thermoplastic adhesives including the forms mentioned above. In the case of bulk adhesive in the form of a slug held in a container, hopper-type dispensers or melting units can first remove the slug from the container and then melt the slug of adhesive as it contacts a heated melting grid mounted near the bottom of the hopper. The other forms of adhesive mentioned above may simply be loaded into the hopper. In each case, a heated reservoir is usually disposed beneath the melting grid to receive the fully or partially melted hot melt adhesive as it passes through the grid. Reservoirs have been designed to maintain the adhesive in a heated liquid state suitable for the application and, for this purpose, various types of fins or other heated surfaces have been provided in the reservoir. An outlet of the reservoir typically leads to a pump and heated manifold assembly for pumping the hot melt adhesive to a dispenser appropriate for the application.

Melting grids have been the primary devices for transforming the adhesive from its initial form into a molten or at least semi-molten state. Melting grids may consist of various forms of heated grid members that melt the adhesive on contact. These members are typically elongated fins. Melting grids typically include through passages for the melted adhesive. Preferred grids take the form of aluminum castings with electrical heating elements cast within the grid structure. This maximizes the service life of the heaters and provides the most uniform temperatures at a reasonable cost. Melting grids must be designed to compromise between a number of competing objectives. The primary factors that can be varied to meet these objectives are fin thickness and fin spacing. Fin height is also a factor, but the overall size of the unit and the constraints of casting technology typically limit height.

Thin fins are preferred to maximize the surface area in contact with the adhesive. However, a minimum thickness is required in the vicinity of the heater to allow for variability of the heater location within the casting and variability in the size of the heater itself. A minimum thickness is also required for strength in large units. Thus, the fins are tapered from a relatively thick section near the heater to a relatively thin tip. However, if the taper is too gradual or the fin is too high, the tip will be much cooler than the heater and this will adversely affect the ability to melt adhesive.

Widely spaced fins have been preferred to maximize the cutting force on the solid adhesive and minimize the resistance to flow as the adhesive melts. However, if the fins are spaced too widely, solid adhesive will be able to pass through without melting. Also, widely spacing the fins results in fewer overall fins in a given size grid, and thus less surface area for transferring heat to the adhesive.

Finally, melting units have generally provided a significant space within the reservoir for liquid adhesive to accumulate to meet high instantaneous demand. This is a problem because much of the liquid adhesive ends up spaced a significant distance from the nearest heated surface. The liquid adhesive is therefore difficult to heat to a desired temperature. The fact that hot melt adhesive is a poor heat conductor exacerbates this problem. Its relatively high viscosity precludes significant convective heat transfer as well. Also, in start-up conditions, this adhesive is often in a solid state and must be slowly melted and heated to its set point temperature prior to using the unit.

One way to drive more heat into the adhesive would be to heat the melting elements, such as fins, to a temperature substantially above the desired adhesive temperature. However, the adhesive is likely to char or otherwise degrade under these conditions. This char acts as an insulating layer and degrades the melting performance. It is also likely to break off and clog downstream elements of the system. In addition, degraded adhesive may not provide the bonding performance required by the application. For these reasons, it is desired that the adhesive closely approach the set point temperature of the reservoir, hoses, and applicator heads, and that strong temperature gradients and associated hot spots be avoided. Prior melting units were either relatively small, in which case the residence time in the hoses was sufficient to bring the adhesive up to temperature, or a separate heat exchanger was required between the pump and the hoses. The heat exchanger used the pump pressure to overcome the drag caused by the extensive surface area, but this is relatively expensive as it requires a separate heating zone and an additional high pressure component.

One melting grid which achieves certain advantages in optimizing the above parameters is disclosed in U.S. Patent No. 5,657,904, which is owned by the assignee of the present invention.

This patent discloses a melting grid having intersecting sets of high and low level grid members and certain other unique features which help achieve a balance between melt rate and flow rate. Advances and improvements in this area are nevertheless desirable.

In view of the various problems in this field, it would be desirable to provide a thermoplastic material melting unit in which the melting rate, liquid throughput or flow rate, and overall heat transfer are optimized.

German Utility 85 05 907 discloses a melt unit formed from a series of parallel elements shaped at the ends to define upwardly and downwardly extending fins. The upwardly extending fins are crossed by transverse fin elements which form passages with the upwardly extending fins.

Summary of the invention

The present invention provides a thermoplastic material melting unit including a supply hopper having an interior space for receiving solid thermoplastic material, a liquid reservoir disposed beneath the interior space of the supply hopper and also including an interior space generally defined by side walls and a bottom wall. The reservoir includes an outlet for discharging melted thermoplastic material and a plurality of heat exchanging elements disposed within reservoir and extending generally in an upward direction relative to the bottom wall of the reservoir. A melting grid is disposed between the supply hopper and the reservoir and includes a plurality of intersecting elongated grid members including a plurality of upwardly extending grid members for contacting and melting the solid thermoplastic material and a plurality of downwardly extending grid members which intermesh with the upwardly extending heat exchanging elements disposed in the liquid reservoir to occupy the interior space of the reservoir. At least one heating element is thermally coupled to the melting grid and to the plurality of heat exchanging elements disposed in the reservoir.

One of the novel aspects of this invention is the intermeshing of the grid members and reservoir heat exchanging elements to greatly increase the surface area available for heat exchange without introducing excessive resistance to the flow of the molten adhesive through the unit. This is possible because the viscosity of the adhesive drops dramatically with increasing temperature. In this regard, solid adhesive will tend to "plug flow" with a thin layer of hot adhesive at low viscosity lubricating the walls of grid members as the adhesive moves through the grid. In the past, extensive surface area in an area where gravity head is the only driving force for fluid flow (i.e., upstream of the pumps) has been avoided to maximize throughput. In other words, extensive surface area in a grid was believed to be detrimental to throughput because of anticipated plugging. In developing the invention, among various findings, it was found that the initial grid fins may be placed closer together than generally thought feasible in the past while achieving adequate throughput. In this regard, spacing the fins more closely and lengthening the resulting restricted and heated flow path dramatically increased the adhesive temperature leaving the grid. Against conventional wisdom, the overall throughput penalty for this close spacing was small. In addition, the adhesive viscosity was much less, allowing even more surface area for heat exchange than in prior art devices. This relatively lower viscosity also allows more opportunity to split and redirect the adhesive so that the "plug flow" can be broken up, and the adhesive can be raised to a uniformly high temperature, despite its very low thermal conductivity.

An important consideration in this design is the presence of a thermal boundary layer. This is the thin lubricating layer of molten adhesive. Computational fluid dynamics (CFD) evaluations of several fin geometries showed that the thickness of this layer varies from about 0.02 mm at the fin tips to 5 mm or more at the fin base. Therefore, spacing the fins so that the "throat" or closest points between fins are about 3-8 mm apart provides excellent opportunity for heat transfer without excessive flow resistance.

The grid members of the melting grid and the heating elements disposed in the reservoir preferably comprise fins which taper in thickness toward the outer edges thereof. Also in the preferred embodiment, the melting grid preferably has both a set of high level grid members and a set of lower level grid members or fins extending upwardly to initially heat, slice and melt the solid thermoplastic material.

In another embodiment of the invention, a plurality of sets of heating elements are superimposed or stacked upon one another to provide a combined a melting grid and a heat exchange section of a melting unit. More specifically, serpentine-shaped electrical heating elements are disposed in vertically spaced relation with an upper heating element serving as a primary melting element and lower heating elements serving as secondary melting elements and heat transfer elements to raise the temperature of the melted thermoplastic material to a desired set point within a reservoir. In this embodiment, the serpentine-shaped heating elements are preferably oriented in vertically spaced relation and with the elements of adjacent grids oriented perpendicularly or transversely to each other. Also, the heating elements in the middle section of a particular grid are more closely spaced together than the heating elements at outer portions thereof.

In another embodiment, grids are formed with a plurality of elongated heating elements carrying a plurality of thin, flat fins. These fins are oriented at an angle relative to the axis of each heating element and serve to transfer heat from the heating elements to the thermoplastic material. These grids are stacked with the fins and heating elements of adjacent grids being oriented perpendicularly or generally transverse to each other. This results in forming multiple flow paths and increased surface area contact with heated surfaces as solid thermoplastic material is melted and heated by the stacked grids.

Another embodiment of the invention utilizes one or more grids formed by fins having electrical heating elements contained therein and further including generally vertically oriented slots for providing increased flow paths and increased heated surface area. These fins may be tapered and formed into various types of grids and heat exchange devices for disposition within a thermoplastic material melting unit. The invention further contemplates methods which may be carried out using the various devices disclosed herein. For example, a method in accordance with this invention may include introducing solid hot melt adhesive onto a plurality of first elongated fins of a melting grid, with the first fins being both heated and tapered to initially heat, slice and at least partially melt the solid hot melt adhesive. Hot melt adhesive is then passed into a plurality of elongated channels extending lengthwise along the first elongated fins and further passed into a plurality of second elongated fins which intersect the first elongated fins. The second elongated fins are also heated and tapered to again heat and slice the hot melt adhesive in a direction transverse to the first elongated fins. The hot melt adhesive is then passed through passages contained between the intersecting first and second elongated fins and, finally, the method involves contacting the hot melt adhesive with a plurality of third elongated and heated fins extending from the melting grid below the first and second elongated fins to transfer additional heat to the hot melt adhesive.

From the foregoing summary and the description to follow, it will be appreciated that the various forms of this invention optimize the various parameters, including melt rate, flow rate and heat transfer involved with melting and dispensing thermoplastic material, such as hot melt adhesive. Additional advantages and objectives of the invention will become more readily apparent to those of ordinary skill upon review of the following detailed description of the various embodiments, taken in conjunction with the accompanying drawings.

Brief Description of the Drawings

  • Fig. 1 is a side elevational view of a thermoplastic material melting unit constructed in accordance with a preferred embodiment of the invention;
  • Fig. 2 is an enlarged side elevational view of a lower end of the unit shown in Fig. 1, partially in cross section to show details of the melting grid and reservoir sections;
  • Fig. 3 is a top view of the melting grid shown in Fig. 2;
  • Fig. 4 is a front elevational view of the melting grid taken along line 4-4 of Fig. 3;
  • Fig. 5 is a side elevational view of the melting grid taken along line 5-5 of Fig. 4;
  • Fig. 6 is a cross sectional view, partially fragmented, and taken along line 6-6 of Fig. 2;
  • Fig. 7 is a cross sectional view, partially fragmented, and taken along line 7-7 of Fig. 6;
  • Fig. 8 is a graphical representation of a CFD evaluation representing results of a close fin spacing;
  • Fig. 9 is a graphical representation of a CFD evaluation of another fin geometry having a larger fin spacing than that represented in Fig. 8;
  • Fig. 10 is a perspective view of an alternative melting grid and heat exchanger arrangement for use in a thermoplastic material melting unit;
  • Fig. 11 is a top view of the melting grid and heat exchanger arrangement shown in Fig. 10;
  • Fig. 12 is a cross sectional view of the arrangement shown in Fig. 11, and generally taken along line 12-12 thereof, but showing the melting grid and heat exchanger arrangement disposed within a thermoplastic material melting unit;
  • Fig. 13 is a perspective view of another alternative melting grid and heat exchanger arrangement for use in a thermoplastic material melting unit;
  • Fig. 14 is a top view of the melting grid and heat exchanger arrangement shown in Fig. 13;
  • Fig. 15 is a side elevational view of the melting grid and heat exchanger arrangement shown in Fig. 13;
  • Fig. 16 is a perspective view of a fin and electrical heating element constructed in accordance with another embodiment of the invention.

Detailed Description of the Preferred Embodiments

Referring first to Fig. 1, a thermoplastic material melting unit 10 is shown in connection for use with one preferred embodiment of the present invention. Various conventional components and accessories have been excluded from Fig. 1, as these are not necessary to an understanding of the present invention. It will be understood that melting unit 10 may be used in various capacities for melting different types of thermoplastic material, however, it is especially useful for melting solid hot melt adhesive material. A supply hopper 12 is provided for holding a supply of solid hot melt adhesive material which may be introduced by opening a hinged lid 14. As is known, hot melt adhesive material may be supplied in various forms including those mentioned hereinabove. In accordance with the invention, melting unit 10 includes a melting grid 16 and a reservoir 18 for containing melted liquid hot melt adhesive. Melting grid 16 and reservoir 18 are described in more detail below. Reservoir 18 includes an upper flange 20 which is fastened to supply hopper 12, for example, with melting grid 16 held therebetween. A ring or annular member 24 formed from a thermally insulating material may also be provided, as shown, to thermally isolate upper and lower regions of unit 10. All of these elements are securely fastened by means of fastening bolts 22. Finally, one or more conventional pumps 26 may be provided and connected to reservoir 18 for pumping liquid hot melt adhesive to various dispensers, for example, in accordance with the application needs.

Fig. 2 illustrates a melting grid 16 in more detail as well as the interaction between melting grid 16 and reservoir 18. As further shown in Fig. 2, solid chunks 30 of hot melt adhesive material are contained within supply hopper 12 and rest against melting grid 16. Melting grid 16 heats and melts chunks 30 into a liquid 30a which travels through melting grid 16 into reservoir 18. To seal the various components, as shown in Fig. 2, gaskets 32, 34, 36 are provided between supply hopper 12, grid 16, spacer 24 and flange 20 of reservoir 18. As mentioned, reservoir 18 includes an interior space 40 defined generally between surrounding side walls 42 and a bottom wall 44. Bottom wall 44 further includes at least one discharge outlet 46 leading to pump 26. A bottom surface 48 of reservoir 18 is sloped toward discharge outlet 46 to promote full drainage of liquid hot melt adhesive 30a. A plurality of fins 50 project upwardly from bottom surface 48 and intermesh with a set of fins 52 which extend downward from melting grid 16. As will be described in more detail below, melting grid 16 further includes a set of fins 60 extending upwardly to contact and melt solid adhesive chunks 30 or other forms of adhesive material.

The construction of melting grid 16 is best understood from a review of Figs. 3-5. Melting grid 16 is preferably cast from aluminum and, as will be appreciated, is formed to have a significantly increased heated surface area as compared to past grids used for similar purposes. As further understood from a review of Figs. 3-5, fins 60 comprise an upper level or high level of fins extending above a second set of lower level fins 62. Fins 60 and 62 intersect in perpendicular fashion to form an array of through passages 64 as best shown in Fig. 3. As further shown in Fig. 4, high level fins 60 preferably each have a serrated leading edge 60a which forms a plurality of apexes or points 60b. This not only increases the contact area by increasing the effective length of leading edge 60a, but also produces high pressure points 60b for better penetrating into chunks 30 or other forms of solid hot melt adhesive (Fig. 2). As also appreciated from Figs. 4 and 5, leading edges 62b of lower level fins 62 are disposed below leading edges 60a. Finally, as also shown in Figs. 4 and 5, fins 52, which extend downward relative to fins 60 and 62, may vary in height so that they follow generally the contour of reservoir 18. This can include, as shown, outer sets of fins 54, 56 which are of shorter length than inner sets of fins 52 and also include a varying height to the respective fins themselves as shown by trailing edges 52a, 56a in Fig. 5. Such features ensure that fins 52, 54, 56, taken together with fins 50 of reservoir 18 (Fig. 2) occupy a substantial portion of interior space 40 associated with reservoir 18.

As best shown in Fig. 3, a plurality of electrical heating elements 70, 72, 74 are also inserted are cast within melting grid 16 in a serpentine fashion. Associated resistive temperature detectors (RTD's, not shown) are also inserted into holes (not shown) drilled in grid 16 in a conventional manner for controlling the temperature of grid 16. In particular, heating elements 70 are cast within lower level fins 62 as shown in Fig. 6. As further shown in Fig. 2, additional heating elements 76, 78, 80 may be embedded into additional downstream portions of melting unit 10, including reservoir 18 and other manifold structure 82 associated with pump 26.

Figs. 6 and 7 illustrate the construction of melting grid 16 in more detail. In particular, it will be noted that lower level fins 62 have lower ends which are extended to form downwardly directed fins 52. Specifically, two fins 52 extend from each lower level fins 62 and taper to trailing edges 52a. Fins 52 are situated between pairs of adjacent fins 50 extending upwardly from bottom surface 48 of reservoir 18. This pair of fins 52 traps an air pocket 52a. This air pocket allows for the thermal expansion of the adhesive when the unit is started cold with solidified adhesive in the reservoir area. This concept is further described in U.S. Patent No. 4,771,920, assigned to the assignee of this invention. Fins 50 also preferably taper upwardly to leading edges 50a. Leading edges 50a are disposed above trailing edges 52a to assure that liquid contained in space 40 is located in close proximity to a heated surface. Through a comparison of Figs. 6 and 7, it will be noted that high level fins 60 taper upwardly at a smaller angle than low level fins 62. As discussed with respect to Fig. 4, fins 60 have a leading edge 60a with apexes 60b creating a serrated top surface and further having two angled outer surfaces 60c, 60d (Fig. 7). Most preferably, the respective angles of surfaces 60c, 60d relative to vertical are about 4° and about 3°. Likewise, fins 62 have a leading edge 62a and three angled side surfaces 62b, 62c, 62d. The respective angle of surfaces 62b, 62c, 62d relative to vertical are about 22°, 4° and 4°. The specific angles may vary, however, it is advantageous to have the significant difference in angular relationship between surfaces 60c and 62b. For example, the angle of surface 60c may vary between about 3° and about 10°, while the angle of surface 62b may vary between about 10° and about 30°. With the intersecting grid member design of this invention, a relatively small throat area 64 is provided for allowing adhesive to flow through grid 16 while becoming well heated in the process. In this specific embodiment, throat area 64 is rectangular-shaped and about 5 mm x 18 mm at its smallest area. It is believed that these dimensions may be variable to a range of about 3-8 mm x 10-30 mm for grids constructed similar to grid 16. With the preferred grid 16 and reservoir 18, for example, it may be ensured that all liquid contained in space 40 is located at an approximate maximum distance of between about 3 - 8 mm from the nearest heated surface. This ensures quick heating, uniform heating and minimal degradation of the liquid hot melt adhesive 30a, as well as quicker start-up due to a smaller overall space in which solid hot melt adhesive can accumulate after melting unit 10 is shut down and allowed to cool.

Figs. 8 and 9 schematically illustrate graphs which represent CFD (computational fluid dynamics) evaluations of two different fin geometries used to melt the same hot melt material. Fig. 8 illustrates a CFD model or graphical representation of a fin structure having a height "h" of about 90 mm and represented in a grid where the distance between the center line "a" of the fin and the center line "b" of the throat is a distance "d" which, in this case, is approximately 13.8 mm. The line at 150°C represents the approximate location of the thermal boundary layer. This layer extends a significant distance above the bottom of the throat. It will also be noted that the colder layers do not extend a significant distance into the throat area. On the other hand, Fig. 9 illustrates a model in which the height "h" of the fin is likewise about 90 mm, but a dramatic difference is shown. Here, the distance "D" between the center line a' of the fin and the center line b' of the throat is larger at about 22 mm. Comparing the relative sizes of the throats, Fig. 9 represents a fin and throat structure wherein the distance between the center line "b" of the throat and a lower adjacent surface of the fin is approximately 14.3 mm while Fig. 8 illustrates a fin and throat configuration in which the distance between the center line b' and the lower adjacent surface of the fin is approximately 4.6 mm. It will be readily appreciated that the larger throat size of Fig. 9 allows the colder temperature layers to drop much farther into the throat area. In this illustration, the approximate thermal boundary layer of 150°C is located closely adjacent to the bottom of the fin. For each model, as represented in Figs. 8 and 9, the downward flow rate of material is about 0.028 cm/sec.

Figs. 10-12 illustrate one alternative grid and heat exchanger device using bare electric heating element arrays 102, 104, 106, 108, 110 formed, for example, in a serpentine fashion as shown. As also shown best in Fig. 10, adjacent elements are oriented perpendicularly or at least transverse to one another. As viewed in Fig. 11, this ensures that contact between adhesive flowing through device 100 and heating element arrays 102-110 is maximized. In other words, a net or grid of bare heating elements is formed to maximize heat transfer to the melting and melted adhesive. As further shown in Fig. 10, inner portions of each heating element arrays 102-110 may be more closely spaced than outer portions thereof. For example, portions 102a are more closely spaced than outer portions 102b. This may equalize flow in the center of each array 102-110 in relation to the outer portions of each array 102-110. To offset the additional heating elements in the center in relation to the outer portions, the watt density may be less in the center than in the outer portions.

As further shown in Fig. 12, heating element array 102 may be used as an initial melter and positioned at the lower end of a hopper 12' for example, mounted on a suitable support 112. This array 102 then acts as a gate to allow adhesive into the lower heat exchanger section formed by heating element arrays 104-110. In this manner, heating element array 102 can quickly melt solid adhesive and this melted adhesive will fall into the heat exchanger section formed by heating element arrays 104-110. These arrays 104-110 may then act to raise the liquid adhesive to the desired set point temperature. Heating element arrays 104, 110 may be spaced apart by suitable spacers 114 and a plurality of resistive temperature detectors (RTDs) 116 and 118 may be placed in contact with heating element arrays 104-110 as shown to indicate the temperature thereof to a conventional control. Arrays 104-110 may be mounted on an upper surface or mounting portion 120 of a reservoir 18' connected at a lower end of supply hopper 12'. Reservoir 18' may include a suitable electrical heating devices and fins (not shown) as well as sloped drainage surfaces and one or more discharge outlets as previously described in connection with the first embodiment. Device 100 may have various advantages including a high relative melt rate, a low overall mass for quick warm-up and cool-down, accurate control of fluid temperature, high efficiency due to direct contact between the adhesive and the heating elements and a relatively low average distance between the adhesive and the heated surfaces.

Figs. 13-15 illustrate yet another embodiment generally incorporating concepts of the present invention. This embodiment is similar to the embodiment described immediately above, except that a multilayered finned grid 130 is formed by a stacked arrangement of finned grids 132, 134, 136. The respective grids 132, 134, 136 are formed by electrical heating elements 132a, 134a, 136a holding a respective plurality of thin, angled fins 132b, 134b, 136b. Fins 132b, 134b, 136b are oriented perpendicular, or at least transverse to adjacent sets thereof as shown in Figs. 13 and 15. The angle of fins 132b, 134b, 136b increases the surface area and residence time of adhesive in device 130. Heating elements 132a, 134a, 136a may be cast with fins 132b, 134b, 136b. Device 130 may be used within a hot melt adhesive melting unit such as generally described above and in conjunction with a reservoir (not shown) which may have additional heating elements and fin arrangements. Again, device 130 may be produced with a low overall mass for quick warm-up and may allow for precise control of liquid temperature or set point temperature. Finally, varying the fin angles effectively mixes the hot melt adhesive or thermoplastic material as it flows through the device to ensure more uniform liquid temperature.

Fig. 16 illustrates a perspective view of one alterative fin configuration useful in melting units, such as those of the present invention. This particular configuration is designed to provide a high melt rate via a high concentration of fins with a provision to allow easy removal of liquid adhesive. In particular, a slotted fin configuration may be used for increasing both heat transfer and liquid adhesive flow. As shown in Fig. 16, a tapered fin 150 may include an upper leading edge 150a and a series of generally vertically oriented slots 150b. As described above, fin 150 may be cast from aluminum and may include a resistive-type electric heating element 152 therein. Slots 150b both increase the surface area of fin 150 to increase heat transfer and, at the same time, provide multiple liquid flow paths past fin 150. It will further be appreciated that fin 150 may be tapered in upward and/or downward fashion, such as disclosed with respect to the first embodiment of this invention. It will be appreciated that the grid members and/or heat exchanging elements of the invention in its many forms may include the slotted fin design.

While the present invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not the intention of the Applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods as shown and described. This has been a description of the present invention, along with the preferred methods of practicing the present invention as currently known. However, the invention itself should only be defined by the appended claims.


Anspruch[de]
  1. Vorrichtung (10) zum Schmelzen von thermoplastischem Material, umfassend ein Schmelzgitter (16, 130, 160), wobei das Schmelzgitter mehrere, sich abwärts erstreckende längliche Gitterelemente (52, 54, 56) besitzt, einen Vorratsbehälter (18) zum Aufnehmen des schmelzflüssigen thermoplastischen Materiales vom Schmelzgitter, und mindestens ein mit den länglichen Gitterelementen (52, 54, 56) thermisch verbundenes Heizelement (70, 72, 74, 76, 78, 132a, 134a, 136a), dadurch gekennzeichnet, dass die Vorrichtung mehrere, in dem Vorratsbehälter (18) angeordnete und sich in Aufwärtsrichtung erstreckende, längliche Wärmeübertragungselemente (50) umfasst; dass die länglichen Gitterelemente (52, 54, 56) mit den sich aufwärts erstreckenden Wärmeübertragungselementen (50) ineinander greifen, und dass das mindestens eine Heizelement (70, 72, 74, 76, 78, 132a, 134a, 136a, 170, 172, 174) mit den mehreren Wärmeübertragungselementen (50) thermisch verbunden ist.
  2. Vorrichtung gemäß Anspruch 1, außerdem umfassend einen Beschickungsbehälter (12) zum Aufnehmen des thermoplastischen Materiales und Zuführen des thermoplastischen Materiales zum Schmelzgitter (16, 130, 160).
  3. Schmelzvorrichtung gemäß Anspruch 2, bei der die Wärmeübertragungselemente und die sich abwärts erstreckenden Gitterelemente außerdem Rippen (50, 52, 54, 56) umfassen.
  4. Schmelzvorrichtung gemäß Anspruch 3, bei der die Rippen (50, 52, 54, 56) Außenkanten besitzen und zu den Außenkanten hin dünner werden.
  5. Schmelzvorrichtung nach einem der vorhergehenden Ansprüche, bei der der Vorratsbehälter (18) außerdem einen Boden (44) umfasst, der eine Neigung zur Unterstützung des Ablaufs des schmelzflüssigen thermoplastischen Materiales besitzt, und die mehreren sich abwärts erstreckenden Gitterelemente (52,54, 56) unterschiedliche Höhen entsprechend der Neigung der Bodenwand haben.
  6. Schmelzvorrichtung gemäß einem der vorhergehenden Ansprüche, bei der die Bodenwand (44) des Vorratsbehälters (18) in mindestens zwei Richtungen geneigt ist und die Gitterelemente (52, 54, 56) in beiden Richtungen jeweils unterschiedliche Höhen haben, so dass sie in einer Art und Weise entsprechend der Bodenwand des Vorratsbehälters (18) abgeschrägt sind.
  7. Schmelzvorrichtung gemäß einem der vorhergehenden Ansprüche, bei der die Schmelzvorrichtung (10) aus Metall gegossen ist und das mindestens eine Heizelement (70, 72, 74, 76, 78, 132a, 134a, 136a) innerhalb des Schmelzgitters (16, 130, 160) angeordnet ist.
  8. Schmelzvorrichtung gemäß einem der Ansprüche 1 bis 6, bei der separate Heizelemente (70, 72, 74, 76, 78, 132a, 134a, 136a) mit den länglichen Gitterelementen des Schmelzgitters (16, 130, 160) und den Wärmeübertragungselementen (50) des Vorratsbehälters (18) thermisch verbunden sind.
  9. Schmelzvorrichtung gemäß einem der vorhergehenden Ansprüche, bei dem die länglichen Wärmeübertragungselemente (50) sich quer zur ihren Längsausdehnungen erstreckende Schlitze besitzen.
  10. Schmelzvorrichtung gemäß Anspruch 9, bei der die länglichen Gitterelemente (52, 54, 56) sich quer zu ihren Längsausdehnungen erstreckende Schlitze besitzen.
  11. Schmelzvorrichtung gemäß einem der Ansprüche 1 bis 9, bei der mindestens einige der länglichen Gitterelemente (52, 54, 56) sich quer zu ihren Längsausdehnungen erstreckende Schlitze besitzen.
  12. Vorrichtung (10) zum Verflüssigen von thermoplastischem Material, umfassend einen Beschickungsbehälter (12) zum Aufnehmen festen thermoplastischen Materiales, einen mit dem Beschickungsbehälter (12) kommunizierenden Vorratsbehälter (18) zum Austragen des schmelzflüssigen thermoplastischen Materiales, ein mit dem Beschickungsbehälter (12) verbundenes Schmelzgitter (16) zum Hindurchführen des schmelzflüssigen thermoplastischen Materiales zum Vorratsbehälter, wobei das Schmelzgitter (16) erste, zweite und dritte Sätze länglicher Rippen (60, 62, 52, 54, 56) umfasst, sich mindestens die ersten und zweiten Sätze länglicher Rippen (60, 62) kreuzen, so dass eine Gitterstruktur gebildet wird, die Durchgänge (64) besitzt, der erste Rippensatz durch eine Vielzahl hoch liegender Rippen (60) und der zweite Rippensatz durch eine Vielzahl tief liegender Rippen (62) gebildet wird, wobei die hoch und tief liegenden Rippen (60, 62) Vorderkanten (60a, 62a) besitzen, und die Vorderkanten der hoch liegenden Rippen über den Vorderkanten der tief liegenden Rippen angeordnet sind, und der dritte Satz länglicher Rippen (52, 54, 56) entsprechende Hinterkanten (52a, 54a, 56a) besitzt, die unterhalb der ersten und zweiten Sätze länglicher Rippen (60, 62) angeordnet sind, und eine erste Heizvorrichtung (70, 72, 74), die mit dem ersten, zweiten und dritten Rippensatz thermisch verbunden ist, dadurch gekennzeichnet, dass die Vorrichtung außerdem einen vierten Rippensatz (50) umfasst, der im Vorratsbehälter (18) angeordnet ist und sich in Aufwärtsrichtung erstreckt, wobei Rippen (50) im vierten Rippensatz mit Rippen (52, 54, 56) im dritten Rippensatz ineinander greifen und eine zweite Heizvorrichtung (76, 78) mit dem vierten Rippensatz (50) thermisch verbunden ist.
  13. Schmelzvorrichtung gemäß Anspruch 13, bei der die Heizelemente (70, 72, 74) in den tief liegenden Rippen (62) aufgenommen sind und der erste und zweite Rippensatz (60, 62) miteinander in thermischem Kontakt steht, so dass Wärme von den tief liegenden Rippen zu den hoch liegenden Rippen übertragen wird.
  14. Schmelzvorrichtung gemäß Anspruch 13, bei der gegenüberliegende Seitenflächen der hoch liegenden Rippen (60) sich aufwärts zueinander in einem kleineren Winkel in Bezug auf die Vertikale verjüngen als gegenüberliegende Seitenflächen der tief liegenden Rippen (62)
  15. Schmelzvorrichtung gemäß einem der Ansprüche 12 bis 14, bei der die Vorderkanten (60a) der hoch liegenden Rippen (60) geriffelt sind, um ihre Schneidund Wärmekapazität zu erhöhen.
  16. Schmelzvorrichtung gemäß einem der Ansprüche 12 bis 15, bei der die tief liegenden Rippen (62) im wesentlichen parallel zueinander und im wesentlichen parallel zum vierten Rippensatz (50) sind.
  17. Schmelzvorrichtung gemäß einem der Ansprüche 12 bis 16, bei der die tief liegenden Rippen (62) im wesentlichen senkrecht zu den hoch liegenden Rippen (60) und im wesentlichen parallel zum dritten Rippensatz (52) ausgerichtet sind.
  18. Schmelzvorrichtung nach einem der Ansprüche 12 bis 17, bei der gegenüberliegende Seitenflächen der hoch liegenden Rippen (60) aufwärts in einem Winkel zwischen ungefähr 3° und ungefähr 10° in Bezug auf die Senkrechte zusammenlaufen.
  19. Schmelzvorrichtung gemäß Anspruch 18, bei der gegenüberliegenden Seitenflächen der tief liegenden Rippen (62) aufwärts in einem Winkel zwischen ungefähr 10° und ungefähr 30° in Bezug auf die Senkrechte zusammenlaufen.
  20. Schmelzvorrichtung nach einem der Ansprüche 12 bis 19, bei der die Rippen (52, 54, 56) im dritten Rippensatz sich zu ihren Hinterkanten (52a, 54a, 56a) hin verjüngen.
  21. Verfahren zum Verflüssigen fester Schmelzkleber, umfassend das Erwärmen und Schneiden des festen Schmelzklebers mit einem ersten Satz länglicher Rippen (60) zum mindestens teilweisen Verflüssigen des festen Schmelzklebers, Erwärmen und Schneiden des Schmelzklebers mit einem zweiten Satz länglicher Rippen (62), der sich quer zum ersten Satz länglicher Rippen (60) erstreckt, wobei mindestens der erste Satz und der zweite Satz länglicher Rippen ineinander greifen, so dass eine über einem Vorratsbehälter liegende Schmelzgitterstruktur gebildet wird, und Erwärmen des Schmelzklebers mit einem dritten Satz länglicher Rippen (52, 54, 56), der sich unterhalb des ersten und zweiten Satzes länglicher Rippen (60, 62) abwärts erstreckt, dadurch gekennzeichnet, dass das Verfahren das Erwärmen des Schmelzklebers mit einem vierten Satz länglicher Rippen (50) umfasst, der im Vorratsbehälter angeordnet ist und sich aufwärts erstreckt und mit dem dritten Satz länglicher Rippen (52) ineinander greift.
Anspruch[en]
  1. A unit (10) for melting thermoplastic material comprising a melting grid (16, 130, 160), the melting grid having a plurality of elongated grid members (52, 54, 56) extending downwards, a reservoir (18) for receiving the melted thermoplastic material from the melting grid, and at least one heating element (70, 72, 74, 76, 78, 132a, 134a, 136a) thermally coupled to the elongated grid members (52, 54, 56), characterised in that the unit includes a plurality of elongated heat exchanging elements (50) positioned within the reservoir (18) and extending in an upward direction; in that the elongated grid members (52, 54, 56) intermesh with the upwardly extending heat exchanging elements (50), and in that the at least one heating element (70, 72, 74, 76, 78, 132a, 134a, 136a, 170, 172, 174) is thermally coupled to the plurality of heat exchanging elements (50).
  2. The unit of Claim 1 further comprising a supply hopper (12) for receiving the thermoplastic material and passing the thermoplastic material to the melting grid (16, 130, 160).
  3. The melting unit of Claim 2, wherein the heat exchanging elements and the downwardly extending grid members further comprise fins (50, 52, 54, 56).
  4. The melting unit of Claim 3, wherein the fins (50, 52, 54, 56) have outer edges and taper in thickness toward the outer edges.
  5. The melting unit of any preceding claim, wherein the reservoir (18) further includes a bottom (44) having a slope to promote drainage of the melted thermoplastic material and the plurality of downwardly extending grid members (52, 54, 56) have varying height dimensions corresponding to the slope of the bottom wall.
  6. The melting unit of any preceding claim, wherein the bottom wall (44) of the reservoir (18) is sloped in at least two directions and the grid members (52, 54, 56) have varying height dimensions in each of the said two directions so as to slope in a manner corresponding to the bottom wall of the reservoir (18).
  7. The melting unit of any preceding claim, wherein the melting unit (10) is cast from a metal and the at least one heating element (70, 72, 74, 132a, 134a, 136a) is disposed within the melting grid (16, 130, 160).
  8. The melting unit of any one of Claims 1 to 6, wherein separate heating elements (70, 72, 74, 76, 78, 132a, 134a, 136a) are thermally coupled to elongated grid members of the melting grid (16, 130, 160) and the heat exchanging elements (50) of the reservoir (18).
  9. The melting unit of any preceding claim, wherein the elongated heat exchanging elements (50) have slots extending transverse to lengthwise dimensions thereof.
  10. The melting unit of Claim 9, wherein the elongated grid members (52, 54, 56) have slots extending transverse to lengthwise dimensions thereof.
  11. The melting unit of any one of Claims 1 to 9, wherein at least some of the elongated grid members (52, 54, 56) have slots extending transverse to lengthwise dimensions thereof.
  12. A thermoplastic material melting unit (10) comprising a supply hopper (12) for receiving solid thermoplastic material, a reservoir (18) communicating with the supply hopper (12) for discharging melted thermoplastic material, a melting grid (16) connected with the supply hopper (12) for passing the melted thermoplastic material to the reservoir, the melting grid (16) including first, second and third sets of elongated fins (60, 62, 52, 54, 56), at least the first and second sets of elongated fins (60, 62) intersecting to form a grid structure having through passages (64), the first set of fins formed by a plurality of high level fins (60) and the second set of fins formed by a plurality of low level fins (62), the high and low level fins (60, 62) having leading edges (60a, 62b) with the leading edges of the high level fins being disposed above the leading edges of the low level fins, and the third set of elongated fins (52, 54, 56) having respective trailing edges (52a, 54a, 56a) disposed below the first and second sets of elongated fins (60, 62) and a first heater (70, 72, 74) thermally coupled to the first, second and third sets of fins, characterised in that the unit further comprises a fourth set of fins (50) disposed within the reservoir (18) and extending in an upward direction, fins (50) in the fourth set of fins intermeshing with fins (52, 54, 56) in the third set of fins, and a second heater (76, 78) thermally coupled to the fourth set of fins (50).
  13. The melting unit of Claim 12, wherein heating elements (70, 72 74) are contained within the low level fins (62) and the first and second sets of fins (60, 62) are in thermal contact with one another so as to transfer heat from the low level fins to the high level fins.
  14. The melting unit of Claim 13, wherein opposite side surfaces of the high level fins (60) taper upwardly toward one another at a smaller angle relative to vertical than opposite side surfaces of the low level fins (62).
  15. The melting unit of any one of Claims 12 to 14, wherein the leading edges (60a) of the high level fins (60) are serrated to increase slicing and heating capacity thereof.
  16. The melting unit of any one of Claims 12 to 15, wherein the low level fins (62) are substantially parallel to each other and substantially parallel to the fourth set of fins (50).
  17. The melting unit of any one of Claims 12 to 16, wherein the low level fins (62) are oriented substantially perpendicular to the high level fins (60) and substantially parallel to said third set of fins (52).
  18. The melting unit of any one of Claims 12 to 17, wherein opposite side surface of the high level fins (60) converge upwardly at an angle of between about 3° and about 10° relative to vertical.
  19. The melting unit of Claim 18, wherein opposite side surfaces of the low level fins (62) converge upwardly at an angle of between about 10° and about 30° relative to vertical.
  20. The melting unit of any one of Claims 12 to 19, wherein the fins (52, 54, 56) in the third set of fins taper toward the railing edges (52a, 54a, 56a) thereof.
  21. A method of melting solid hot melt adhesive comprising heating and slicing the solid hot melt adhesive with a first set of elongated fins (60) to at least partially melt the solid hot melt adhesive, heating and slicing the hot melt adhesive with a second set of elongated fins (62), extending transverse to the first set of elongated fins (60), at least the first and second sets of elongated fins intersecting to form a melting grid structure located over a reservoir, and heating the hot melt adhesive with a third set of elongated fins (52, 54, 56) extending downward below the first and second sets of elongated fins (60, 62), characterised in that the method comprises heating the hot melt adhesive with a fourth set of elongated fins (50) disposed within the reservoir and extending in an upward direction and intermeshing with the third set of elongated fins (52).
Anspruch[fr]
  1. Une unité (10) pour fondre un matériau thermoplastique, comprenant une grille de fusion (16, 130, 160), la grille de fusion ayant une pluralité d'éléments de grille allongés (52, 54, 56) qui s'étendent vers le bas, un réservoir (18) pour recevoir le matériau thermoplastique fondu à partir de la grille de fusion, et au moins un élément chauffant (70, 72, 74, 76, 78, 132a, 134a, 136a) couplé thermiquement aux éléments de grille allongés (52, 54, 56), caractérisée en ce que l'unité inclut une pluralité d'éléments allongés échangeurs de chaleur (50) placés à l'intérieur du réservoir (18) et qui s'étendent vers le haut ; en ce que les éléments de grille allongés (52, 54, 56) s'entrecroisent avec les éléments échangeurs de chaleur (50) qui s'étendent vers le haut et en ce que l'élément chauffant (70, 72, 74, 76, 78, 132a, 134a, 136a, 170, 172, 174) (un au moins) est couplé thermiquement à la pluralité d'éléments échangeurs de chaleur (50).
  2. L'unité selon la Revendication 1, qui comprend de plus une trémie d'alimentation (12) pour recevoir le matériau thermoplastique et envoyer le matériau thermoplastique vers la grille de fusion (16, 130, 160).
  3. L'unité de fusion selon la Revendication 2, dans laquelle les éléments échangeurs de chaleur et les éléments de grille qui s'étendent vers le bas comprennent de plus des ailettes (50, 52, 54, 56).
  4. L'unité de fusion selon la Revendication 3, dans laquelle les ailettes (50, 52, 54, 56) ont des arêtes extérieures et leur épaisseur diminue vers ces arêtes extérieures.
  5. L'unité de fusion selon l'une quelconque des revendications précédentes, dans laquelle le réservoir (18) inclut de plus un fond (44) ayant une pente pour stimuler le drainage du matériau thermoplastique fondu, et la pluralité d'éléments de grille (52, 54, 56) qui s'étendent vers le bas ont des hauteurs diverses qui correspondent à la pente de la paroi inférieure.
  6. L'unité de fusion selon l'une quelconque des revendications précédentes, dans laquelle la paroi inférieure (44) du réservoir (18) est en pente dans deux directions au moins et les éléments de grille (52, 54, 56) ont des hauteurs diverses dans chacune desdites deux directions de sorte à former une pente d'une façon qui correspond à la paroi inférieure du réservoir (18).
  7. L'unité de fusion selon l'une quelconque des revendications précédentes, dans laquelle l'unité de fusion (10) est moulée à partir d'un métal et l'élément chauffant (70, 72, 74, 132a, 134a, 136a) (un au moins) est disposé à l'intérieur de la grille de fusion (16, 130, 160).
  8. L'unité de fusion selon l'une quelconque des Revendications 1 à 6, dans laquelle des éléments chauffants séparés (70, 72, 74, 76, 78, 132a, 134a, 136a) sont couplés thermiquement à des éléments de grille allongés de la grille de fusion (16, 130, 160) et aux éléments échangeurs de chaleur (50) du réservoir (18).
  9. L'unité de fusion selon l'une quelconque des revendications précédentes, dans laquelle les éléments échangeurs de chaleur allongés (50) ont des fentes qui s'étendent transversalement relativement à leurs dimensions en longueur.
  10. L'unité de fusion selon la Revendication 9, dans laquelle les éléments de grille allongés (52, 54, 56) ont des fentes qui s'étendent transversalement relativement à leurs dimensions en longueur.
  11. L'unité de fusion selon l'une quelconque des Revendications 1 à 9, dans laquelle certains au moins des éléments de grille allongés (52, 54, 56) ont des fentes qui s'étendent transversalement relativement à leurs dimensions en longueur.
  12. Une unité de fusion de matériau thermoplastique (10) qui comprend une trémie d'alimentation (12) pour recevoir un matériau thermoplastique solide, un réservoir (18)- qui communique avec la trémie d'alimentation (12) pour décharger le matériau thermoplastique fondu, une grille de fusion (16) connectée à la trémie d'alimentation (12) pour faire passer le matériau thermoplastique fondu jusqu'au réservoir, la grille de fusion (16) incluant un premier, un deuxième et un troisième ensembles d'ailettes allongées (60, 62, 52, 54, 56), dont au moins les premier et deuxième ensembles d'ailettes allongées (60, 62) se coupent pour former une structure en grille ayant des ouvertures de passage (64), le premier ensemble d'ailettes formées par une pluralité d'ailettes à haut niveau (60) et le deuxième ensemble d'ailettes formées par une pluralité d'ailettes à bas niveau (62), les ailettes à haut et bas niveau (60, 62) ayant des arêtes avant (60a, 62b), les arêtes avant des ailettes à haut niveau étant disposées au-dessus des arêtes avant des ailettes à bas niveau, et le troisième ensemble d'ailettes allongées (52, 54, 56) ayant des arêtes arrières respectives (52a, 54a, 56a) disposées au-dessous des premier et deuxième ensembles d'ailettes allongées (60, 62) et un premier dispositif de chauffage (70, 72, 74) couplé thermiquement aux premier, deuxième et troisième ensembles d'ailettes, caractérisée en ce que l'unité comprend de plus un quatrième ensemble d'ailettes (50) disposé à l'intérieur du réservoir (18) et s'étendant vers le haut, les ailettes (50) du quatrième ensemble d'ailettes s'entrecroisant avec les ailettes (52, 54, 56) du troisième ensemble d'ailettes, et un deuxième dispositif de chauffage (76, 78) couplé thermiquement au quatrième ensemble d'ailettes (50).
  13. L'unité de fusion selon la Revendication 12, dans laquelle les éléments chauffants (70, 72, 74) sont renfermés à l'intérieur des ailettes à bas niveau (62) et les premier et deuxième ensembles d'ailettes (60, 62) sont en contact thermique l'un avec l'autre de sorte à transférer la chaleur depuis les ailettes à bas niveau jusqu'aux ailettes à haut niveau.
  14. L'unité de fusion selon la Revendication 13, dans laquelle des surfaces latérales opposées des ailettes à haut niveau (60) présentent une conicité vers le haut les unes vers les autres à un angle plus petit relativement à la verticale que les surfaces latérales opposées des ailettes à bas niveau (62).
  15. L'unité de fusion selon l'une quelconque des Revendications 12 à 14, dans laquelle les arêtes avant (60a) des ailettes à haut niveau (60) sont en dents de scie de sorte à en accroître la capacité de coupe et de chauffage.
  16. L'unité de fusion selon l'une quelconque des Revendications 12 à 15, dans laquelle les ailettes à bas niveau (62) sont sensiblement parallèles les unes aux autres et sensiblement parallèles au quatrième ensemble d'ailettes (50).
  17. L'unité de fusion selon l'une quelconque des Revendications 12 à 16, dans laquelle les ailettes à bas niveau (62) sont orientées sensiblement perpendiculairement aux ailettes à haut niveau (60) et sensiblement parallèlement audit troisième ensemble d'ailettes (52).
  18. L'unité de fusion selon l'une quelconque des Revendications 12 à 17, dans laquelle les surfaces opposées des ailettes à haut niveau (60) convergent vers le haut à un angle compris entre environ 3° et environ 10° relativement à la verticale.
  19. L'unité de fusion selon la Revendication 18, dans laquelle les surfaces latérales opposées des ailettes à bas niveau (62) convergent vers le haut à un angle compris entre environ 10° et environ 30° relativement à la verticale.
  20. L'unité de fusion selon l'une quelconque des Revendications 12 à 19, dans laquelle les ailettes (52, 54, 56) du troisième ensemble d'ailettes présentent une conicité vers leurs arêtes arrières (52a, 54a, 56a).
  21. Un procédé de fusion d'un adhésif thermofusible solide comprenant le chauffage et le découpage en tranches de l'adhésif thermofusible solide avec un premier ensemble d'ailettes allongées (60) pour fondre au moins en partie ledit adhésif thermofusible solide, le chauffage et le découpage en tranches de l'adhésif thermofusible avec un deuxième ensemble d'ailettes allongées (62), qui s'étendent transversalement relativement au premier ensemble d'ailettes allongées (60), les premier et deuxième ensembles d'ailettes allongées au moins se coupant pour former une structure à grille de fusion placée au-dessus d'un réservoir, et le chauffage de l'adhésif thermofusible avec un troisième ensemble d'ailettes allongées (52, 54, 56) qui s'étendent vers le bas au-dessous des premier et deuxième ensembles d'ailettes allongées (60, 62), caractérisé en ce que le procédé comprend le chauffage de l'adhésif thermofusible avec un quatrième ensemble d'ailettes allongées (50) disposées à l'intérieur du réservoir et qui s'étendent vers le haut et s'entrecroisent avec le troisième ensemble d'ailettes allongées (52).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com