PatentDe  


Dokumentenidentifikation EP0981852 23.01.2003
EP-Veröffentlichungsnummer 0981852
Titel VERFAHREN UND VORRICHTUNG ZUM BATTERIESCHUTZ IN EINER UNTERBRECHUNGSFREIEN STROMVERSORGUNG
Anmelder Active Power, Inc., Austin, Tex., US
Erfinder WEHRLEN, J., David, Austin, US
Vertreter Vossius & Partner, 81675 München
DE-Aktenzeichen 69810102
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 01.05.1998
EP-Aktenzeichen 989201314
WO-Anmeldetag 01.05.1998
PCT-Aktenzeichen PCT/US98/08909
WO-Veröffentlichungsnummer 0098050997
WO-Veröffentlichungsdatum 12.11.1998
EP-Offenlegungsdatum 01.03.2000
EP date of grant 11.12.2002
Veröffentlichungstag im Patentblatt 23.01.2003
IPC-Hauptklasse H02J 9/06

Beschreibung[en]
Background of the Invention

This invention relates to uninterruptible power supply (UPS) systems, and more particularly toward UPS systems that include batteries such as conventional lead-acid batteries as a standby power source.

UPS systems are often installed in environments in which continuous operation is critical, even in the event of a loss of main power. For example, such systems may be installed in airports, hospitals, processing plants and computer centers. In each case, a total loss of power may lead to catastrophic results (e.g., a loss of power in the middle of surgery may result in the death of the patient).

In typical UPS systems, circuitry is provided that monitors power being supplied from a main source of power, often via a connection to a DC buss. A bank of batteries, often lead-acid batteries, is connected to a DC buss that feeds the critical load to provide temporary power as soon as the voltage on the buss drops below battery voltage. The batteries are usually intended to provide temporary power only until a standby power source such as a backup diesel generator ("GENSET") can be brought on-line, or in some instances, are the sole backup power source (e.g., providing enough backup power to permit a normal, sequential shutdown of a processing system). The batteries, therefore, typically provide power for a very short time, until the standby generator is running at full speed and providing backup power.

One deficiency of traditional battery based UPS systems is that the battery life is often significantly reduced due to power disturbances that are very short in duration (e.g., less than a few seconds). It is generally known that approximately ninety percent of the power disturbances that occur are of the very short duration type (for example, some installations are known to have very short duration outages which occur hundreds of times each month). These short duration outages, however, still cause the line voltage to sag, leading to the batteries experiencing a discharge/charge cycle for each outage. The life of the batteries, as is well known, is inversely proportional to the number of discharge/charge cycles that the batteries are subjected to. Thus, even very short duration outages may have a severe negative impact on battery life. Moreover, it is also known that AC ripple is present on the DC buss that the batteries are connected to. This ripple further accelerates the loss of useful life of the batteries.

Rotary UPS systems are generally described in a Computer Technology Review article by Henry C. Lengefeld entitled, "Rotary UPS -- More Reliable For New Computers," 8211 Computer Technology Review 9(1990) January, no. 16. The article show various configurations of rotary UPS systems that include, for example, a battery coupled to a DC buss and a flywheel that drives a common shaft synchronous motor generator.

In view of the foregoing, it is an object of the present invention to provide an improved uninterruptible power supply in which batteries are protected from electrical disturbances that artificially reduce battery life.

It is also an object of the present invention to provide an improved method of supplying battery power to an uninterruptible power supply so that useful battery life is extended over conventional supplies.

Summary of the Invention

These objects of the invention are accomplished in accordance with the principles of the invention as set out in claims 1 and 18. It merely consists in providing an uninterruptible power supply in which the batteries of the backup power source are electrically isolated from the supply unless a long duration outage occurs. The preferred embodiments isolate the batteries by utilizing a flywheel energy storage device to provide temporary power during very short duration outages. Additional circuitry is provided that brings the batteries "on-line" when longer outages are experienced.

The flywheel energy storage device, which is electrically coupled to the DC buss, is activated by a monitoring circuit whenever a main power fault is detected, regardless of the duration. As long as the duration does not exceed a preset value (i.e., a very short duration, such as a few seconds), the flywheel provides an alternate source of power until the utility line power is once again stable. If, however, the duration exceeds a very short duration, for example, greater than approximately ten or fifteen seconds, the monitoring circuit sends a signal to the isolation circuitry that brings the batteries on-line. The monitoring circuitry may also send a signal to bring a GENSET on-line for extended outages.

Further particular embodiments of the invention are set out in the dependent claims. Various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.

Brief Description of the Drawings

  • FIG. 1 is a block diagram of a conventional battery powered uninterruptible power supply;
  • FIG. 2 is a block diagram of a flywheel/battery backed uninterruptible power supply constructed in accordance with the principles of the present invention;
  • FIG. 3 is a block diagram of a flywheel/battery backed uninterruptible power supply constructed in accordance with the principles of the present invention including redundant isolation circuitry; and
  • FIG. 4 is a block diagram of modified configuration of the flywheel/battery backed uninterruptible power supplies of FIGS. 2 and 3 constructed in accordance with the principles of the present invention.

Detailed Description of the Preferred Embodiments

FIG. 1 shows a conventional GENSET-backed battery powered uninterruptible power supply 100 (UPS 100). UPS 100 is connected between utility power source 102, which may simply be power supplied from a utility company, and critical load 104. Critical load 104 represents any one of several different applications in which a continuous supply of power is critical, such as the aforementioned airport, hospital, etc. UPS 100 provides backup power to critical load 104 in the event that utility power source 102 fails.

UPS 100 includes a transfer switch 106, an AC-to-DC converter 108, a DC-to-AC converter 110, a GENSET 112, a monitoring circuit 114, and a battery bank 116 (which may include a bank of, for example, lead-acid batteries). Transfer switch 106 transfers the power supply from utility power source 102 to GENSET 112 after utility source 102 fails and GENSET 112 is providing power at a sufficient level. AC-to-DC converter 108 takes the AC power provided by either utility power source 102 or GENSET 112 and converts it to DC power. Converter 108 may be a simple rectifier circuit, or it may be any other conventional circuit that is used to convert power from AC to DC as long as the proper power levels are maintained. This is typically accomplished by providing DC to DC buss 118 at a level of approximately 480 volts. The DC power is fed across DC buss 118 to DC-to-AC converter 110, which converts it back to AC power. Converter 110 may be a simple inverter circuit, or it may be any other conventional circuit used to convert power from DC to AC.

DC buss 118 is monitored by monitoring circuit 114 through lines 122 (while monitoring circuit 114 is only shown to receive signals indicative of the status of DC buss 118, additional "utility power failure" input signals may be received by monitoring the input to AC-to-DC converter 108 and/or the output from DC-to-AC converter 110). Once a utility power failure has been detected, monitoring circuit 114 sends signals along line 120 that may cause backup power to be supplied to critical load 104 from GENSET 112. Battery bank 116 supplies DC power to DC buss 118 as soon as the voltage on DC buss 118 drops below battery voltage. Battery bank 116 continues to supply power to buss 118 until either the batteries are drained or until adequate power is being supplied to critical load 104 from another source (i.e., either utility power source 102 or GENSET 112 -- a signal on line 120 triggers GENSET 112 to begin a powerup cycle). As soon as the voltage on DC buss 118 exceeds the voltage of battery bank 116, battery bank 116 ceases to discharge and instead, begins recharging.

FIG. 2 shows a battery-backed uninterruptible power supply 200 (UPS 200) that, in accordance with the principles of the present invention, overcomes the deficiencies of conventional battery-backed UPS systems. UPS 200 includes many of the same components as UPS 100. For example, transfer switch 106, AC-to-DC converter 108, DC-to-AC converter 110, GENSET 112 and battery bank 116. The monitoring circuit is shown as monitoring circuit 214 in view of the fact that different control signals are required in UPS 200 (e.g., the signal sent from monitoring circuit 214 to gating circuit 232 described below). UPS 200 also includes flywheel storage unit 230 (flywheel unit 230 includes, for example, a flywheel rotor (not shown), a motor/generator assembly (not shown), and an electronics control module (not shown) for normal operation), gating circuit 232, isolation circuit 234 (which may be a solid-state switch such as an SCR, as shown) and battery charger 236. Isolation circuit 234 keeps battery bank 116 disconnected from buss 118 until battery bank 116 is needed to supply power to buss 118. This protects battery bank 116 from the degradation in useful life that would otherwise occur due to the AC ripple present on buss 118.

UPS 200 normally operates in a monitoring mode, whereby monitoring circuit 214 monitors DC buss 118 until the voltage on buss 118 drops below a predetermined threshold (as described above, monitoring circuit 214 may also be activated by sensor inputs at either the input to AC-to-DC converter 108, the output to DC-to-AC converter 110, or both). If utility power 102 experiences a short duration outage (e.g., on the order of about 10 seconds or less), flywheel storage unit 230 provides DC energy to buss 118 so that buss 118 remains above the predetermined threshold. While utility power 102 is operating normally, flywheel unit 230 siphons off a small amount of power to overcome its internal losses and maintain its rotational speed.

If flywheel unit 230 determines that an extended outage occurs (i.e., after a predetermined amount of time has passed after the outage began), then flywheel unit 230 sends a trigger signal to gating circuit 232 via line 240. Additional reliability is provided by monitoring circuit 214, which detects an extended outage when the voltage on buss 118 drops below the predetermined voltage (e.g., if the trigger signal on line 240 fails to occur). Monitoring circuit 214, if required, sends a trigger signal via line 238 to gating circuit 232.

The trigger signals cause gating circuit 232 to switch isolation circuit 234 (i.e., the solid-state switch) out of isolation to bring battery bank 116 on-line. This provides temporary power to buss 118 until GENSET 112 is up and running or utility power is restored. Of course, the principles of the present invention may be practiced without the inclusion of GENSET 112. Under such circumstances, battery bank 116 provides backup power until they are depleted, in which case, all critical systems should have been powered down in an orderly fashion. GENSET 112 is activated by monitoring circuit 214 via a trigger signal on line 220 that is generated at about the same time as the trigger signal on line 238. Once GENSET 112 is producing power at the proper level, transfer switch 106 transfers the input power from utility power source 102 to GENSET 112 and battery bank 116 and energy storage system 230 cease to provide power to DC buss 118. Once utility power is restored, utility power reenergizes the flywheel unit 230 and supplies power to battery charger 236 to charge battery bank 116 (battery charger 236 typically provides a low ripple trickle charge signal to battery bank 116 to minimize the negative effects on the batteries).

UPS 200 provides many advantages over known UPS systems in extending battery life. UPS 200, however, may not provide the level of reliability required by some installations. For example, because UPS 200 includes only one monitoring circuit, one gating circuit and one isolation circuit, UPS 200 may experience a single point failure if any of those three components fails (e.g., if isolation circuit 234 fails, battery bank 116 will not come on-line). It is known that some installations require power systems to be redundant so that no single point failure can bring down the system. This potential problem is overcome by UPS 300 shown in FIG. 3. Additionally, while both UPS 200 and UPS 300 are shown to include GENSET 112, the inclusion of GENSET 112 is not to be considered a limitation of the present invention, as UPS 200 and UPS 300 may both be implemented without GENSET 112, as described above.

FIG. 3 shows a representative example of modifications that may be made to UPS 200 of FIG. 2 to provide all of the advantages of the present invention in a redundant configuration. Persons skilled in the art will understand that various modifications, other than those shown in FIG. 3 may be made without departing from the spirit of the present invention. For example, as described below, UPS 300 includes a pair of monitoring circuits, a pair of gating circuits and a pair of isolation circuits. Additional redundancy may be provided by adding a second flywheel storage unit to the UPS, even though such a configuration is not shown.

UPS 300 is similar to UPS 200 of FIG. 2, and as such, many components are numbered using the same or similar numbering scheme. For example, UPS 200 and UPS 300 both include converters 108 and 110. Additionally, each component added for redundancy is numbered using the same two-digit suffix as in FIG. 2 (e.g., the additional monitoring circuit in FIG. 3 is labeled as monitoring circuit 314 versus monitoring circuit 214 of FIG. 2). UPS 300 includes redundant monitoring circuit 314, redundant gating circuit 332 and redundant isolation circuit 334. Isolation circuits 234 and 334 are coupled together in parallel and sized such that either circuit can handle the entire load of battery bank 116. A second trigger line 340 is provided from flywheel unit 230 to gating circuit 332, and a second trigger line to GENSET 112 to provided via line 320 from monitoring circuit 314.

UPS 300 operates in substantially the same manner as UPS 200. Short duration outages are compensated for by flywheel unit 230, which maintains buss 118 above the predetermined voltage. If flywheel unit 230 determines that an outage is extended, trigger signals are sent via lines 240 and 340 to gating circuits 232 and 332, respectively. If flywheel unit 230 fails to generate the trigger signals, the extended outage will be detected by at least one of monitoring circuits 214 and 314 when the voltage on buss 118 falls below the predetermined level, in which case trigger signals on lines 220 and 238, and 320 and 338 are generated by monitoring circuits 214 and 314, respectively. Once gating circuits 232 and 332 receive trigger signals, they activate isolation circuits 234 and 334, respectively, to bring battery bank 116 on-line. In the configuration shown in FIG. 3, no single point of failure can "bring down the system," while battery bank 116 remains isolated from buss 118 until it is needed. Additional redundancy may also be provided by including one or more supplemental flywheel units (not shown).

FIG. 4 shows additional modifications that may be made to either UPS 200 or UPS 300 of FIGS. 2 and 3, respectively, in accordance with the principles of the present invention. The modifications shown in FIG. 4 enable the UPS system to further reduce the reliance on battery bank 116 to improve overall system reliability. Replacing flywheel unit 230 with flywheel unit 430 provides a direct line 452 to activate GENSET 112 from flywheel unit 430. Flywheel unit 430 may activate GENSET 112 at a point in time prior to the identification of an extended outage (e.g., less than about ten seconds) so that GENSET 112 may come on-line prior to battery bank 116 being required to do so. Under such circumstances, battery bank 116 becomes essentially an "insurance policy" that should never be required to provide power during outages. Moreover, redundancy is maintained by line(s) 420 (representing line 220 in FIG. 2 and lines 220 and 320 in FIG. 3) that provide additional trigger signals to GENSET 112. A further optional modification that may be made, is to provide a tap from flywheel unit 430 to GENSET 112 via line 450 through which startup power is supplied from flywheel unit 430 to GENSET 112 (in which case, trigger line 452 may not be required).

It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.


Anspruch[de]
  1. Unterbrechungsfreie Stromversorgung zur Lieferung von kontinuierlicher Energie an eine kritische Last (104), wobei die unterbrechungsfreie Stromversorgung aufweist:
    • eine Wechselstrom/Gleichstrom-Wandlerschaltung (108) mit einem mit einer Quelle primärer Energie (102) verbundenen Eingang, und mit einem Ausgang;
    • eine Gleichstrom/Wechselstrom-Wandlerschaltung (110) mit einem mit dem Ausgang der Wechselstrom/Gleichstrom-Wandlerschaltung (108) verbundenen Eingang zum Ausbilden einer Gleichstromverteilerschiene oder Bus (118), und mit einem Ausgang;
    • eine Batteriebank (116);
    • eine erste Überwachungsschaltung (214), die auf eine längere Ausfallzeit der primären Energie hin überwacht;
    • eine Schwungrad-Energiespeichereinheit (230), welche elektrisch mit der Gleichstromverteilerschiene (118) verbunden ist, wobei die Schwungradeinheit (230) Energie in dem Falle kurz dauernder Ausfallzeiten der primären Energie liefert; und
    • eine erste Trennschaltung (234), die zwischen die Batteriebank (116) und die Gleichstromverteilerschiene (118) geschaltet ist, wobei die erste Trennschaltung (234) ausgelöst wird, die Trennung aufzuheben, wenn die längere Ausfalldauer der primären Energie detektiert wird, so daß die Batteriebank (116) dann direkt mit der Gleichstromverteilerschiene (118) verbunden wird, um Energie an dem Bus (118) zu liefern.
  2. Unterbrechungsfreie Stromversorgung nach Anspruch 1 ferner aufweisend:
    • eine erste Gatterschaltung (232), die mit der ersten Trennschaltung (234) verbunden ist, wobei die erste Gatterschaltung (232) die erste Trennschaltung (234) auslöst, um die Trennung nach dem Empfang eines ersten Auslösesignals aufzuheben.
  3. Unterbrechungsfreie Stromversorgung nach Anspruch 2, wobei das erste Auslösesignal an die erste Gatterschaltung (232) durch die Schwungradeinheit (230) geliefert wird.
  4. Unterbrechungsfreie Stromversorgung nach Anspruch 2, wobei das erste Auslösesignal an die erste Gatterschaltung (232) durch die erste Überwachungsschaltung (214) geliefert wird.
  5. Unterbrechungsfreie Stromversorgung nach Anspruch 2, wobei die erste Überwachungsschaltung (214) die Spannung der Gleichstromverteilerschiene (118) überwacht und feststellt, daß die längere Ausfallszeit aufgetreten ist, wenn die Spannung unter einen vorbestimmten Pegel fällt.
  6. Unterbrechungsfreie Stromversorgung nach Anspruch 5, wobei die Schwungradeinheit (230) die Spannung auf dem Gleichstromverteilerschiene (118) wenigstens gleich dem vorbestimmten Pegel während der kurzen dauernden Ausfallzeit hält.
  7. Unterbrechungsfreie Stromversorgung nach Anspruch 1, ferner aufweisend:
    • einen mit der Quelle primärer Energie (102) verbundenen Umschalter (106), wobei der Umschalter (106) einen Ausgang besitzt;
    • einen elektrisch mit dem Umschalter (106) und mit der ersten Überwachungsschaltung (214) verbundenen Generatorsatz GENSET (112), wobei der GENSET (112) in der Lage ist, eine Ersatzenergie an die kritische Last (104) im Falle einer längeren Ausfallzeit zu liefern.
  8. Unterbrechungsfreie Stromversorgung nach Anspruch 7, wobei der GENSET (112) durch ein GENSET-Auslösesignal aus der ersten Überwachungsschaltung (214) aktiviert wird.
  9. Unterbrechungsfreie Stromversorgung nach Anspruch 7, wobei der GENSET (112) durch ein GENSET-Auslösesignal aus der Schwungradeinheit (430) aktiviert wird.
  10. Unterbrechungsfreie Stromversorgung nach Anspruch 1, welche ferner eine mit der Batteriebank (116) und der Quelle der primären Energie (102) verbundene Batterieladeeinheit (236) aufweist.
  11. Unterbrechungsfreie Stromversorgung nach Anspruch 2, welche ferner aufweist:
    • eine zweite mit der Gleichstromverteilerschiene (118) verbundene Überwachungsschaltung (314), die die Gleichstromverteilerschiene (118) auf eine längere Ausfallzeit der primären Energie hin überwacht;
    • eine zwischen der Batteriebank (116) und der Gleichstromverteilerschiene (118) angeschlossene zweite Trennschaltung (334), wobei die zweite Trennschaltung (334) ausgelöst wird, um die Trennung aufzuheben, wenn die längere Ausfallzeit der primären Energie detektiert wird, so daß die Batteriebank (116) dann direkt mit der Gleichstromverteilerschiene (118) verbunden wird, um Energie an die Verteilerschiene (118) zu liefern; und
    • eine mit der zweiten Trennschaltung (334) verbundene Gatterschaltung (332), wobei die zweite Gatterschaltung (332) die zweite Trennschaltung (334) auslöst, um die Trennung nach dem Empfang eines zweiten Auslösesignals aufzuheben.
  12. Unterbrechungsfreie Stromversorgung nach Anspruch 11, wobei das zweite Auslösesignal an die zweite Gatterschaltung (332) durch die Schwungradeinheit (230) geliefert wird.
  13. Unterbrechungsfreie Stromversorgung nach Anspruch 11, wobei das zweite Auslösesignal an die zweite Gatterschaltung (332) durch die zweite Überwachungsschaltung (314) geliefert wird.
  14. Unterbrechungsfreie Stromversorgung nach Anspruch 11, welche ferner aufweist:
    • einen mit der Quelle primärer Energie (102) verbundenen Umschalter (106), wobei der Umschalter (106) einen Ausgang besitzt;
    • einen elektrisch mit dem Umschalter (106) und mit der zweiten Überwachungsschaltung (314) verbundenen GENSET (112), wobei der GENSET (112) in der Lage ist, Ersatzenergie an die kritische Last (104) im Falle einer längeren Ausfallzeit zu liefern.
  15. Unterbrechungsfreie Stromversorgung nach Anspruch 1, wobei die erste Überwachungsschaltung (214) die Gleichstromverteilerschiene (118) überwacht.
  16. Unterbrechungsfreie Stromversorgung nach Anspruch 1, wobei die erste Überwachungsschaltung (214) den Eingang des Wechselstrom/Gleichstrom-Wandlers (108) überwacht.
  17. Unterbrechungsfreie Stromversorgung nach Anspruch 1, wobei die erste Überwachungsschaltung (214) den Ausgang des Gleichstrom/Wechselstrom-Wandlers (110) überwacht.
  18. Verfahren zur Verlängerung der Nutzungslebensdauer einer Bank von Batterien (116) in einer unterbrechungsfreien Stromversorgung, wobei das Verfahren die Schritte aufweist:
    • Umwandeln von Wechselstromenergie aus einer primären Quelle (102) in Gleichstromenergie;
    • Ausgeben der Gleichstromenergie an eine Gleichstromverteilerschiene (118);
    • Überwachen des Spannungspegels der Energie in der unterbrechungsfreien Stromversorgung mit einer ersten Überwachungsschaltung (214);
    • Liefern einer Reserveenergie an den Gleichstromverteilerschiene (118) aus einer Schwungrad-Speichereinheit (230) in dem Falle eines kurzzeitigen Verlustes der Energie aus der primären Quelle (102);
    • Einfügen einer ersten schaltbaren Trennschaltung (234) zwischen die Bank der Batterien (116) und die Gleichstromverteilerschiene (118); und
    • Auslösen der ersten Trennschaltung (234), um die Bank der Batterien (116) mit der Gleichstromverteilerschiene (118) in dem Falle eines längeren Verlustes von Energie aus der primären Quelle (102) zu verbinden.
  19. Verfahren nach Anspruch 18, wobei der Schritt der Auslösung von einem von der Schwungradeinheit (230) erzeugten ersten Auslösesignal durchgeführt wird.
  20. Verfahren nach Anspruch 18, wobei der Schritt der Auslösung von einem von der ersten Überwachungsschaltung (214) erzeugten ersten Auslösesignal durchgeführt wird.
  21. Verfahren nach Anspruch 18, wobei der Schritt der Auslösung die Schritte aufweist:
    • Liefern eines ersten Auslösesignals an eine erste Gatterschaltung (232);
    • Erzeugen eines ersten Schaltsignals als Reaktion auf das erste Auslösesignal; und
    • Durchschalten der ersten Trennschaltung (234) als Reaktion auf das erzeugte erste Schaltsignal.
  22. Verfahren nach Anspruch 21, welches ferner die Schritte aufweist:
    • Überwachen des Spannungspegels der Gleichstromverteilerschiene mit einer zweiten Überwachungsschaltung (314);
    • Einfügen einer zweiten schaltbaren Trennschaltung (334) zwischen der Bank der Batterien (116) und der Gleichstromverteilerschiene (118); und
    • Auslösen der zweiten Trennschaltung (334), um die Bank der Batterien (116) in dem Falle eines längeren Ausfalls von Energie aus der primären Quelle (102) mit der Gleichstromverteilerschiene (118) zu verbinden, so daß in dem Falle eines längeren Energieverlustes eine von den ersten und zweiten Trennschaltungen (234, 334) die Bank der Batterien (116) mit der Gleichstromverteilerschiene (118) verbindet.
  23. Verfahren nach Anspruch 18, welches ferner den Schritt aufweist:
    • Laden der Bank der Batterien (116) durch Verbinden mit einer Batterieladeeinrichtung (236) mit niedriger Welligkeit zwischen der primären Energiequelle (102) und der Bank der Batterien (116).
  24. Verfahren nach Anspruch 18, welches ferner die Schritte aufweist:
    • Bereitstellen einer alternativen Quelle einer Wechselstromenergie in dem Schritt der Umwandlung, wobei die alternative Wechselstromenergie von einem GENSET (112) geliefert wird, und der GENSET (112) in der Lage ist, eine Ersatzenergie an die kritische Last (104) in dem Falle einer längeren Ausfallzeit zu liefern; und
    • elektrisches Verbinden des GENSET (112) entweder mit der Schwungradeinheit (230) oder mit der ersten Überwachungseinheit (214), um ein Aktivierungssignal an den GENSET (112) zu liefern.
  25. Verfahren nach Anspruch 24, wobei der Schritt der Verbindung des GENSET (112) die Schritte aufweist:
    • Verbinden des GENSET (112) mit der Schwungradeinheit (230); und
    • Abgreifen von Energie aus der Schwungradeinheit (230), um Startenergie für den GENSET (112) bereitzustellen.
  26. Verfahren nach Anspruch 18, wobei der Schritt der Überwachung die Energie auf der Gleichstromverteilerschiene (118) überwacht.
  27. Verfahren nach Anspruch 18, wobei der Schritt der Überwachung die Energie aus der Energiequelle (102) überwacht.
Anspruch[en]
  1. An uninterruptible power supply for providing continuous power to a critical load (104), said uninterruptible power supply comprising:
    • an AC-to-DC converter circuit (108) having an input coupled to a source of primary power (102), and an output;
    • a DC-to-AC converter circuit (110) having an input coupled to said output of said AC-to-DC converter circuit (108) to form a DC buss (118), and an output;
    • a battery bank (116);
    • a first monitoring circuit (214) that monitors for an extended outage of primary power;
    • a flywheel energy storage unit (230) electrically coupled to said DC buss (118), said flywheel unit (230) providing power in the event of short duration outages of primary power; and
    • a first isolation circuit (234) coupled between said battery bank (116) and said DC buss (118), said first isolation circuit (234) being triggered to switch out of isolation when said extended outage of primary power is detected so that said battery bank (116) is then directly coupled to said DC buss (118) to provide power to said buss (118).
  2. The uninterruptible power supply of claim 1 further comprising:
    • a first gating circuit (232) coupled to said first isolation circuit (234), said first gating circuit (232) triggering said first isolation circuit (234) to switch out of isolation upon the receipt of a first trigger signal.
  3. The uninterruptible power supply of claim 2, wherein said first trigger signal is provided to said first gating circuit (232) by said flywheel unit (230).
  4. The uninterruptible power supply of claim 2, wherein said first trigger signal is provided to said first gating circuit (232) by said first monitoring circuit (214).
  5. The uninterruptible power supply of claim 2, wherein said first monitoring circuit (214) monitors the voltage of said DC buss (116) and determines that said extended outage has occurred when said voltage falls below a predetermined level.
  6. The uninterruptible power supply of claim 5, wherein said flywheel unit (230) maintains the voltage on said DC buss (118) at least equal to said predetermined level during said short duration outage.
  7. The uninterruptible power supply of claim 1 further comprising:
    • a transfer switch (106) coupled to said source of primary power (102), said transfer switch (106) having an output;
    • a GENSET (112) electrically coupled to said transfer switch (106) and to said first monitoring circuit (214), said GENSET (112) being capable of providing replacement power to said critical load (104) in the event of an extended outage.
  8. The uninterruptible power supply of claim 7, wherein said GENSET (112) is activated by a GENSET trigger signal from said first monitoring circuit (214).
  9. The uninterruptible power supply of claim 7, wherein said GENSET (112) is activated by a GENSET trigger signal from said flywheel unit (430).
  10. The uninterruptible power supply of claim 1 further comprising a battery charger (236) coupled to said battery bank (116) and to said source of primary power (102).
  11. The uninterruptible power supply of claim 2 further comprising:
    • a second monitoring circuit (314) coupled to said DC buss (118) that monitors said DC buss (118) for an extended outage of primary power;
    • a second isolation circuit (334) coupled between said battery bank (116) and said DC buss (118), said second isolation circuit (334) being triggered to switch out of isolation when said extended outage of primary power is detected so that said battery bank (116) is then directly coupled to said DC buss (118) to provide power to said buss (118); and
    • a second gating circuit (332) coupled to said second isolation circuit (334), said second gating circuit (332) triggering said second isolation circuit (334) to switch out of isolation upon the receipt of a second trigger signal.
  12. The uninterruptible power supply of claim 11, wherein said second trigger signal is provided to said second gating circuit (332) by said flywheel unit (230).
  13. The uninterruptible power supply of claim 11, wherein said second trigger signal is provided to said second gating circuit (332) by said second monitoring circuit (314).
  14. The uninterruptible power supply of claim 11 further comprising:
    • a transfer switch (106) coupled to said source of primary power (102), said transfer switch (106) having an output;
    • a GENSET (112) electrically coupled to said transfer switch (106) and to said second monitoring circuit (314), said GENSET (112) being capable of providing replacement power to said critical load (104) in the event of an extended outage.
  15. The uninterruptible power supply of claim 1, wherein said first monitoring circuit (214) monitors said DC buss (118).
  16. The uninterruptible power supply of claim 1, wherein said first monitoring circuit (214) monitors said input of said AC-to-DC converter (108).
  17. The uninterruptible power supply of claim 1, wherein said first monitoring circuit (214) monitors said output of said DC-to-AC converter (110).
  18. A method of extending useful life of a bank of batteries (116) in an uninterruptible power supply, said method comprising the steps of:
    • converting AC power from a primary source (102) to DC power;
    • outputting said DC power to a DC buss (118);
    • monitoring the voltage level of power in said uninterruptible power supply with a first monitoring circuit (214);
    • providing backup power to said DC buss (118) from a flywheel storage unit (230) in the event of a short duration loss of power from said primary source (102);
    • coupling a first switchable isolation circuit (234) between said bank of batteries (116) and said DC buss (118); and
    • triggering said first isolation circuit (214) to couple said bank of batteries (116) to said DC buss (118) in the event of an extended loss of power from said primary source (102).
  19. The method of claim 18, wherein said step of triggering is performed by a first trigger signal produced by said flywheel unit (230).
  20. The method of claim 18, wherein said step of triggering is performed by a first trigger signal produced by said first monitoring circuit (214).
  21. The method of claim 18, wherein said step of triggering comprises the steps of:
    • providing a first trigger signal to a first gating circuit (232);
    • producing a first switch signal in response to said first trigger signal; and
    • switching said first isolation circuit (234) in response to said produced first switch signal.
  22. The method of claim 21, further comprising the steps of:
    • monitoring the voltage level of said DC buss with a second monitoring circuit (314);
    • coupling a second switchable isolation circuit (334) between said bank of batteries (116) and said DC buss (118); and
    • triggering said second isolation circuit (334) to couple said bank of batteries (116) to said DC buss (118) in the event of an extended less of power from said primary source (102), such that, in the event of an extended loss of power, one of said first and second isolation circuits (234, 334) couple said bank of batteries (116) to said DC buss (118).
  23. The method of claim 18 further comprising the step of:
    • recharging said bank of batteries (116) by coupling a low ripple battery charger (236) between said primary power source (102) and said bank of batteries (116).
  24. The method of claim 18 further comprising the steps of:
    • providing an alternate source of AC power in said step of converting, said alternate AC power being provided by a GENSET (112), said GENSET (112) being capable of providing replacement power to said critical load (104) in the event of an extended outage; and
    • electrically coupling said GENSET (112) to at least one of said flywheel unit (230) and said first monitoring circuit (214) to provide an activation signal to said GENSET (112).
  25. The method of claim 24, wherein said step of coupling said GENSET (112) comprises the steps of:
    • coupling said GENSET (112) to said flywheel unit (230); and
    • tapping power from said flywheel unit (230) to provide startup power to said GENSET (112).
  26. The method of claim 18, wherein said step of monitoring monitors power on said DC buss (118).
  27. The method of claim 18, wherein said step of monitoring monitors power from said power source (102).
Anspruch[fr]
  1. Alimentation sans coupure pour fournir une puissance continue à une charge critique (104), ladite alimentation sans coupure comprenant :
    • un circuit convertisseur alternatif/continu (108) présentant une entrée couplée à une source de puissance primaire (102), et une sortie ;
    • un circuit convertisseur continu/alternatif (110) comportant une entrée couplée à ladite sortie dudit circuit convertisseur alternatif/continu (108) pour former un bus à courant continu (118), et une sortie ;
    • une rangée de batteries (116) ;
    • un premier circuit de surveillance (214) qui surveille un arrêt étendu de puissance primaire ;
    • une unité de stockage d'énergie à effet de volant (230) couplée électriquement audit bus à courant continu (118), ladite unité à effet de volant (230) fournissant de la puissance dans le cas d'arrêts de courte durée de puissance primaire ; et
    • un premier circuit d'isolation (234) couplé entre ladite rangée de batteries (116) et ledit bus à courant continu (118), ledit premier circuit d'isolation (234) étant déclenché pour commuter hors isolation lorsque ledit arrêt étendu de puissance primaire est détecté de telle sorte que ladite rangée de batteries (116) est ensuite couplée directement audit bus à courant continu (118) pour fournir de la puissance audit bus (118).
  2. Alimentation sans coupure selon la revendication 1, comprenant en outre :
    • un premier circuit formant porte (232) couplé audit premier circuit d'isolation (234), ledit premier circuit formant porte (232) déclenchant ledit premier circuit d'isolation (234) pour commuter hors isolation lors de la réception d'un premier signal de déclenchement.
  3. Alimentation sans coupure selon la revendication 2, où ledit premier signal de déclenchement est fourni audit premier circuit formant porte (232) par ladite unité à effet de volant (230).
  4. Alimentation sans coupure selon la revendication 2, où le premier signal de déclenchement est fourni audit premier circuit formant porte (232) par ledit premier circuit de surveillance (214).
  5. Alimentation sans coupure selon la revendication 2, où ledit premier circuit de surveillance (214) surveille la tension dudit bus à courant continu (118) et détermine que ledit arrêt étendu a eu lieu lorsque ladite tension chute en dessous d'un niveau prédéterminé.
  6. Alimentation sans coupure selon la revendication 5, où ladite unité à effet de volant (230) maintient la tension sur ledit bus à courant continu (118) pour qu'elle soit au moins égale audit niveau prédéterminé pendant ledit arrêt de courte durée.
  7. Alimentation sans coupure selon la revendication 1, comprenant en outre :
    • un commutateur de transfert (106) couplé à ladite source de puissance primaire (102), ledit commutateur de transfert (106) présentant une sortie ;
    • un générateur (112) couplé électriquement audit commutateur de transfert (106) et audit premier circuit de surveillance (214), ledit générateur (112) étant apte à fournir une puissance de remplacement à ladite charge critique (104) dans le cas d'un arrêt étendu.
  8. Alimentation sans coupure selon la revendication 7, où ledit générateur (112) est activé par un signal de déclenchement de générateur émis par ledit premier circuit de surveillance (214).
  9. Alimentation sans coupure selon la revendication 7, où ledit générateur (112) est activé par un signal de déclenchement de générateur émis par ladite unité à effet de volant (430).
  10. Alimentation sans coupure selon la revendication 1, comprenant en outre un chargeur de batterie (236) couplé à ladite rangée de batteries (116) et à ladite source de puissance primaire (102).
  11. Alimentation sans coupure selon la revendication 2, comprenant en outre :
    • un second circuit de surveillance (314) couplé audit bus à courant continu (118) qui surveille ledit bus à courant continu (118) en vue d'un arrêt étendu de puissance primaire ;
    • un second circuit d'isolation (334) couplé entre ladite rangée de batteries (116) et ledit bus à courant continu (118), ledit second circuit d'isolation (334) étant déclenché pour commuter hors isolation lorsque ledit arrêt étendu de puissance primaire est détecté de telle sorte que ladite rangée de batteries (116) est alors couplée directement audit bus à courant continu (118) pour fournir de la puissance audit bus (118) ; et
    • un second circuit formant porte (332) couplé audit second circuit d'isolation (334), ledit second circuit formant porte (332) déclenchant ledit second circuit d'isolation (334) pour commuter hors isolation lors de la réception d'un second signal de déclenchement.
  12. Alimentation sans coupure selon la revendication 11, où ledit second signal de déclenchement est fourni audit second circuit formant porte (332) par ladite unité à effet de volant (230).
  13. Alimentation sans coupure selon la revendication 11, où ledit second signal de déclenchement est fourni audit second circuit formant porte (332) par ledit second circuit de surveillance (314).
  14. Alimentation sans coupure selon la revendication 11, comprenant en outre :
    • un commutateur de transfert (106) couplé à ladite source de puissance primaire (102), ledit commutateur de transfert (106) ayant une sortie ;
    • un générateur (112) couplé électriquement audit commutateur de transfert (106) et audit second circuit de surveillance (314), ledit générateur (112) étant apte à fournir une puissance de remplacement à ladite charge critique (104) dans le cas d'un arrêt prolongé.
  15. Alimentation sans coupure selon la revendication 1, où ledit premier circuit de surveillance (214) surveille ledit bus à courant continu (118).
  16. Alimentation sans coupure selon la revendication 1, où ledit premier circuit de surveillance (214) surveille ladite entrée dudit convertisseur alternatif/continu (108).
  17. Alimentation sans coupure selon la revendication 1, où ledit premier circuit de surveillance (214) surveille ladite sortie dudit convertisseur continu/alternatif (110).
  18. Procédé pour prolonger la vie utile d'une rangée de batteries (116) dans une alimentation sans coupure, ledit procédé comprenant les étapes consistant à :
    • convertir une puissance alternative d'une source primaire (102) en puissance continue ;
    • émettre ladite puissance continue à un bus continu (118) ;
    • surveiller le niveau de tension de la puissance dans ladite alimentation sans coupure au moyen d'un premier circuit de surveillance (214) ;
    • fournir une puissance de secours audit bus à courant continu (118) à partir d'une unité de stockage à effet de volant (230) dans le cas d'une perte de puissance de courte durée de ladite source primaire (102) ;
    • coupler un premier circuit d'isolation commutable (234) entre ladite rangée de batteries (116) et ledit bus à courant continu (118) ; et
    • déclencher ledit premier circuit d'isolation (234) pour coupler ladite rangée de batteries (116) audit bus à courant continu (118) dans le cas d'une perte de puissance prolongée de ladite source primaire (102).
  19. Procédé selon la revendication 18, où ladite étape de déclenchement est exécutée par un premier signal de déclenchement produit par ladite unité à effet de volant (230).
  20. Procédé selon la revendication 18, où ladite étape de déclenchement est exécutée par un premier signal de déclenchement produit par ledit premier circuit de surveillance (214).
  21. Procédé selon la revendication 18, où ladite étape de déclenchement comprend les étapes consistant à :
    • fournir un premier signal de déclenchement à un premier circuit formant porte (232) ;
    • produire un premier signal de commutation en réponse audit premier signal de déclenchement ; et
    • commuter ledit premier circuit d'isolation (234) en réponse audit premier signal de commutation produit.
  22. Procédé selon la revendication 21, comprenant en outre les étapes consistant à :
    • surveiller le niveau de tension dudit bus à courant continu avec un second circuit de surveillance (314) ;
    • coupler un second circuit d'isolation commutable (334) entre ladite rangée de batteries (116) et ledit bus à courant continu (118) ; et
    • déclencher ledit second circuit d'isolation (334) pour coupler ladite rangée de batteries (116) audit bus à courant continu (118) dans le cas d'une perte de puissance étendue de ladite source primaire (102) de telle sorte que dans le cas d'une perte de puissance étendue l'un desdits premier et second circuits d'isolation (234, 334) couple ladite rangée de batteries (116) audit bus à courant continu (118).
  23. Procédé selon la revendication 18, comprenant en outre l'étape consistant à :
    • recharger ladite rangée de batteries (116) en couplant un chargeur de batteries à faible ondulation (236) entre ladite source de puissance primaire (102) et ladite rangée de batteries (116).
  24. Procédé selon la revendication 18, comprenant en outre les étapes consistant à :
    • fournir une source alternative de puissance alternative lors de ladite étape de conversion, ladite puissance alternative étant fournie par un générateur (112), ledit générateur (112) étant apte à fournir une puissance de remplacement à ladite charge critique (104) dans le cas d'un arrêt prolongé ; et
    • coupler électriquement ledit générateur (112) à au moins l'un parmi ladite unité à effet de volant (230) et ledit premier circuit de surveillance (214) pour fournir un signal d'activation audit générateur (112).
  25. Procédé selon la revendication 24, où ladite étape de couplage dudit générateur (112) comprend les étapes consistant à :
    • coupler ledit générateur (112) à ladite unité à effet de volant (230) ; et
    • prélever de la puissance de ladite unité à effet de volant (230) pour fournir de la puissance de démarrage audit générateur (112).
  26. Procédé selon la revendication 18, où ladite étape de surveillance surveille la puissance sur ledit bus à courant continu (118).
  27. Procédé selon la revendication 18, où ladite étape de surveillance surveille la puissance de ladite source de puissance (102).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com