PatentDe  


Dokumentenidentifikation EP0987432 23.01.2003
EP-Veröffentlichungsnummer 0987432
Titel Brennstoffeinspritzventil
Anmelder Delphi Technologies, Inc., Troy, Mich., US
Erfinder Harcombe, Anthony Thomas, Richmond, Surrey, TW10 5DZ, GB;
Cross, Robert Keith, Banstead, Surrey, SM7 1LX, GB
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69904414
Vertragsstaaten DE, FR, GB, IT, SE
Sprache des Dokument EN
EP-Anmeldetag 13.09.1999
EP-Aktenzeichen 993072032
EP-Offenlegungsdatum 22.03.2000
EP date of grant 11.12.2002
Veröffentlichungstag im Patentblatt 23.01.2003
IPC-Hauptklasse F02M 57/02
IPC-Nebenklasse F02M 47/02   F02M 59/36   

Beschreibung[en]

This invention relates to a fuel injector for use in delivering fuel under high pressure to a cylinder or combustion space of an associated engine. In particular, the invention relates to a fuel injector of the type in which the fuel pressure at the commencement of injection can be controlled independently of the timing of fuel injection. The invention also relates to a method of operation of such an injector.

It is known, in a unit injector arrangement, to use separately actuated spill or drain valves and injection control valves to permit the timing of injection and the injection pressure to be controlled independently. It is also known, as disclosed in EP 823 550 A, to control the spill or drain valve and the injection control valve of a unit injector using a single actuator including an armature common to both valves. In a typical arrangement, when injection is to be terminated the injection control valve is closed to permit the fuel pressure within a control chamber to rise, the increased fuel pressure within the control chamber forcing the injector needle into engagement with its seating to terminate injection. Forcing the needle into engagement with its seating against a relatively high injection pressure in this manner can cause the generation of undesirably high smoke and particulate emissions. It is an object of the invention to provide a fuel injector in which this disadvantage is overcome.

According to the present invention there is provided a fuel injector comprising a valve needle biased by a spring into engagement with a seating, a surface associated with the needle being exposed to the fuel pressure within a control chamber, restricted communication means providing a restricted flow path between a supply passage and the control chamber, a drain valve controlling communication between the supply passage and a low pressure reservoir, an injection control valve controlling communication between the control chamber and the low pressure reservoir, the drain valve and the injection control valve being moveable under the control of a single electromagnetic actuator including an armature common to both valves, wherein the injection control valve, the drain valve and the actuator are arranged such that at rest, the injection control valve and the drain valve are open, when the actuator is energized to a first, relatively low energization level the drain valve is closed and the injection control valve is open, and when the actuator is energized to a second, higher energization level, the drain valve and the injection control valve are both closed.

In such an arrangement, injection is terminated by de-energizing the actuator, thereby allowing the drain valve to open. As, immediately prior to the drain valve opening, the injection control valve is already open, termination of injection occurs under the action of the spring biasing of the injector needle against a reduced injection pressure rather than due to the increase of fuel pressure within the control chamber. The risk of production of excessive smoke and particulates emissions is reduced.

The responsiveness of the injector may be improved by reversing the polarity of the connections of the supply to the actuator when the energization level of the actuator is to be reduced rather than simply allowing the actuator current to decay.

The injector conveniently takes the form of a unit pump/injector.

According to another aspect of the invention there is provided a method of operating an injector of the type defined hereinbefore comprising the steps of:

  • energizing the actuator to its second, higher level to close the drain and injection control valves when the pressurization of fuel is to commence;
  • allowing the energization level of the actuator to fall to its first level to allow the injection control valve to open when injection is to commence; and
  • de-energizing the actuator to allow the drain valve to open when injection is to terminate.

The step of allowing the energization level of the actuator to fall may include reversing the polarity of the connections between a supply and the actuator.

The invention will further be described, by way of example, with reference to the accompanying drawing which is a sectional view of part of a unit pump/injector in accordance with an embodiment of the invention.

The unit pump injector illustrated in the accompanying drawing comprises a nozzle body 10 having a blind bore 11 formed therein. The blind bore 11 defines, adjacent its blind end, a conical seating with which a conical part of a valve needle 12 is engageable. The valve needle 12 and bore 11 together define a delivery chamber 13, the engagement between the needle 12 and the seating controlling fuel flow from the delivery chamber 13 past the seating to one or more outlet openings 14 provided in the nozzle body 10. The needle 12 includes angled thrust surfaces exposed to the fuel pressure within the delivery chamber 13, thus the application of fuel under pressure to the delivery chamber 13 applies a force to the needle 12 urging the needle 12 away from its seating.

The bore 11 includes a region of enlarged diameter defining an annular gallery 15 which communicates with a drilling 16, forming part of a supply passage, provided in the nozzle body 10. The needle 12 is provided with flutes or other formations which permit fuel to flow from the annular gallery 15 to the delivery chamber 13.

The end of the nozzle body 10 remote from the blind end of the bore 11 abuts a spring housing 17 which is provided with drillings 18 forming part of the supply passage. The spring housing 17 includes a through bore extending coaxially with the bore 11, the through bore including a region of enlarged diameter defining a spring chamber 19. The enlarged part of the bore of the spring housing 17 is closed by a closure member 20 including an integral, axially extending projection 20a which acts to guide a spring 21 located within the spring chamber 19. The spring 21 engages a spring abutment member 22 which, in turn, engages an end of the needle 12 remote from the part thereof which is engageable with the seating, the spring 21 urging the needle 12 towards the seating.

The spring abutment member 22 includes a region 22a which is slidable within a bore formed within the projection 20a of the closure member 20. The region 22a is a piston-like fit within the bore of the projection 20a.

The surface of the closure member 20 remote from the spring housing 17 abuts a first distance piece 23 which, in turn, abuts a second distance piece 24. The first distance piece 23, the closure member 20 and the upper end part of the region 22a of the spring abutment member 22 together define a control chamber 25, the upper end of the region 22a defining a surface which is moveable with, and hence associated with, the valve needle 12 which is exposed to the fuel pressure within the control chamber 25 such that when the fuel pressure within the control chamber 25 is high, a large force is applied to the needle 12 assisting the spring 21 in urging the needle 12 towards its seating. The control chamber 25 communicates through a restricted clearance between the region 22a and the bore of the projection 20a with an annular chamber which communicates with a drilling 26, the drilling 26 communicating via a groove formed in the surface of the closure member 20 which abuts the first distance piece 23 with a drilling formed in the closure member 20 which forms part of the supply passage. The control chamber 25 further communicates through a drilling 27 formed in the first distance piece 23, and a groove 28 formed in the surface of the first distance piece 23 which abuts the second distance piece 24 with a drilling 29 formed in the second distance piece 24.

The second distance piece 24 abuts a control valve housing 30 including an axially extending through bore 31 within which a control valve member 32 is slidable. The control valve member 32 includes a region of enlarged diameter which is engageable with a seating defined by part of the bore 31 to control communication between an annular chamber 33 which communicates through a drilling 34 with the drilling 29 and a chamber 35 which communicates through a groove 36 formed in the surface of the second distance piece 24 which abuts the control valve housing 30 with a chamber defined, in part, between the control valve housing 30 and a cap nut, the chamber communicating, in use, with an appropriate low pressure fuel reservoir.

The control valve member 32 is coupled to an armature 37 moveable under the influence of the magnetic field generated, in use, by an electromagnetic actuator 38. The actuator 38 is located within a drain valve housing 39 which abuts the surface of the control valve housing 30 remote from the second distance piece 24. The drain valve housing 39 includes a drilling 40 forming part of the supply passage, the drilling 40 communicating through a groove 41 formed in the surface of the drain valve housing 39 remote from the control valve housing 30 with part of a through bore formed in the drain valve housing 39. A drain valve member 42 is slidable within the bore, the drain valve member 42 including an axially extending drilling 43 which communicates through cross-drillings 44 with a passage 45 communicating, in use, with the low pressure drain reservoir. The drain valve member 42 is engageable with a surface of a pump housing 46 which abuts the surface of the drain valve housing 39 remote from the control valve housing 30 to control communication between the passage 45 and the supply passage.

The pump housing 46 includes a bore 47 within which a pumping plunger is reciprocable under the influence of an appropriate cam and tappet arrangement, in conjunction with a return spring. The bore 47 communicates through a drilling 48 with the drilling 40 of the drain valve housing 39.

A spring 49 is provided to bias the drain valve member 42 away from the pump housing 46, ie towards an open position. A spring assembly 50 is provided between the drain valve member 42 and a part of the control valve member 32. In the illustrated embodiment, the spring arrangement 50 takes the form of a pre-assembled spring loaded capsule, the spring rate and prestressing of which can be set prior to introduction into the unit pump injector. However, it will be appreciated that other types of spring arrangement could be used to provide a resilient interconnection between the control valve member 32 and the drain valve member 42. The spring arrangement 50 transmits the action of the spring 49 to the control valve member 32, and thus urges the control valve member towards an open position.

In use, with the actuator 38 de-energized and with the bore 47 charged with fuel to a low pressure, the drain valve member 42 and the control valve member 32 are biased away from their seatings by the spring 49 and the spring arrangement 50. Inward movement of the plunger under the influence of the cam and tappet arrangement displaces fuel from the pump injector between the pump housing 46 and the adjacent end of the drain valve member 42, the fuel flowing through the axially extending passage 43, the cross-drillings 44 and the passage 45 to the low pressure drain reservoir. As fuel is able to escape from the unit pump injector, the fuel pressure within the delivery chamber 13 is relatively low, and as a result, the needle 12 remains in engagement with its seating under the action of the spring 21. Fuel injection is not taking place.

When it is determined that pressurization of fuel should commence, the actuator 38 is energized by applying a relatively high voltage thereto. The application of the relatively high voltage applies a relatively large magnitude attractive force to the armature 37 resulting in movement of the armature 37 to a fully lifted position. In this position, the control valve member 32 engages its seating. Additionally, the movement of the armature 37 is transmitted through the spring arrangement 50 to the drain valve member 42 which is able to move against the influence of the spring 49, moving into engagement with the pump housing 46. As a result of the energization of the actuator 38 to a relatively high level, it will be appreciated that both the control valve member 32 and the drain valve member 42 are moved into engagement with their respective seatings. Continued inward movement of the plunger is unable to displace fuel to the low pressure drain reservoir, thus the continued inward movement of the plunger pressurizes the fuel within the bore 47 and the parts of the pump injector in communication with the bore 47. As the control valve member 32 engages its seating, fuel is unable to escape from the control chamber 25, thus as the fuel pressure within the bore 47 increases, the fuel pressure within the control chamber 25 also increases, the fuel pressure within the control chamber 25 in conjunction with the spring 21 being sufficient to maintain the needle 12 in engagement with the its seating against the action of the fuel under pressure within the delivery chamber 13. It will therefore be appreciated that injection of fuel does not take place.

In order to commence injection, the actuator 38 is de-energized from its relatively high level to an intermediate level at which the attractive force applied to the armature 37 is insufficient to maintain the control valve member 32 in engagement with its seating against the action of the spring arrangement 50, the attractive force still being sufficient to ensure that the drain valve member 42 remains in engagement with its seating against the action of the spring 49. Such movement of the control valve member 32 permits fuel to escape from the control chamber 25 to the low pressure drain reservoir. As fuel is only able to flow to the control chamber 25 at a restricted rate, the fuel pressure within the control chamber 25 falls, and a point will be reached beyond which the fuel pressure within the control chamber 25 and the action of the spring 21 are insufficient to maintain the needle 12 in engagement with its seating. The needle 12 then rises from its seating thus permitting fuel to escape from the delivery chamber 13 past the seating to the outlet openings 14. Injection therefore takes place.

Although the actuator current may simply be allowed to decay to de-energize the actuator, the responsiveness of the injector may be improved by reversing the polarity of the connections between the source and the actuator, thereby positively driving the actuator towards its intermediate energization level. As a result, the control of the movement of the control valve member 32 is improved.

The movement of the needle 12 away from its seating is limited by the upper end of the region 22a abutting the first distance piece 23. The engagement of the region 22a with the first distance piece 23 closes the drilling 27, thus during subsequent fuel injection, the quantity of fuel which is able to escape from the supply passage through the control chamber 25 to the control valve 32 and low pressure drain is restricted. As illustrated, in order to ensure that a good seal is formed between the region 22a and the first distance piece 23, the end of the region 22a is shaped to define an annular seating area for engagement with the first distance piece 23. As the drilling 27 is closed, the fuel pressure applied to the part of the end surface of the region 22a will increase, but the increased pressure acts upon only a small effective area and is unable to move the needle 12 towards its seating.

In order to terminate injection, the actuator 38 is de-energized, the drain valve member 42 moving under the action of the spring 49 to permit fuel to escape from the bore 47 and passages in communication therewith to the low pressure fuel reservoir. As a result, the fuel pressure within the delivery chamber 13 is rapidly relieved thus the force urging the valve needle 12 away from its seating is reduced, and a point will be reached beyond which the needle 12 is able to return into engagement with its seating under the action of the spring 21. Once the needle 12 moves into engagement with its seating, injection is terminated.

After termination of injection, continued inward movement of the plunger displaces further fuel to the low pressure drain reservoir. Once the plunger reaches its innermost position, outward movement of the plunger under the action of the return spring draws fuel from the low pressure drain reservoir past the drain valve member 42, charging the bore 47 and passages in communication therewith with fuel at relatively low pressure. The injector is then ready for the commencement of the next injection cycle.

The arrangement described hereinbefore may be modified by replacing the clearance between the region 22a and the bore 20a which restricts the rate at which fuel is able to flow to the control chamber 25 with a passage of restricted dimensions. Regardless as to the nature of the restriction, one important function of the restriction is to restrict the quantity of fuel able to escape from the injector during the period in which the control valve is open but the needle has not reached its fully lifted position. By reducing the quantity of fuel escaping in this manner, the efficiency of the injector can be improved.

If the pump injector is to be used in an arrangement in which it is desired to provide a pilot injection followed by a main injection without de-pressurizing the injector between the pilot and main injections, then this may be achieved by arranging for the drilling 27 to remain unobscured throughout the range of movement of the needle 12 and modifying the control of the injector so that after commencement of injection, injection is interrupted by fully energizing the actuator 38 to move the control valve member 32 into engagement with its seating. Such movement breaks the communication between the control chamber 25 and the low pressure drain reservoir, thus permitting the re-pressurization of the control chamber 25 to an extent sufficient to cause the valve needle 12 to return into engagement with its seating without significantly de-pressurizing the fuel within the bore 47. When it is desired to commence the main injection, the actuator 38 is controlled in such a manner as to allow the control valve member 32 to move away from its seating whilst retaining the drain valve member 42 in engagement with its seating, thus relieving the fuel pressure from the control chamber 25 to allow the needle 12 to lift away from its seating as described hereinbefore. Termination of injection after the main injection is as described hereinbefore.

In the injector and the modifications described hereinbefore, it will be appreciated that as termination of injection occurs as a result of the spring returning the needle into engagement with its seating once the fuel pressure within the delivery chamber has fallen, the risk of the emission of undesirable high levels of smoke and particulates can be reduced.


Anspruch[de]
  1. Kraftstoffeinspritzventil, aufweisend eine Ventilnadel (12), die durch eine Feder (21) bis in Eingriff mit einem Sitz vorgespannt ist, eine der Ventilnadel (12) zugeordnete Oberfläche, die dem Kraftstoffdruck in einer Steuerkammer (25) ausgesetzt ist, begrenzte Verbindungsmittel, die einen begrenzten Flußpfad zwischen einem Zuführdurchgang (40) und der Steuerkammer (25) bilden, ein Ablaßventil (42), das die Verbindung zwischen dem Zuführdurchgang (40) und einem Niederdruck-Vorratsbehälter steuert, ein Einspritzsteuerventil (32), das die Verbindung zwischen der Steuerkammer (25) und dem Niederdruck-Vorratsbehälter steuert, wobei das Ablaßventil (42) und das Einspritzsteuerventil (32) bei Steuerung durch einen einzigen elektromagnetischen Aktuator (38), der eine für die beiden Ventile (32, 42) gemeinsamen Anker (37) umfaßt, bewegbar sind,

       dadurch gekennzeichnet, daß das Einspritzsteuerventil (32), das Ablaßventil (42) und der Aktuator (38) so ausgelegt sind, daß in Ruhe das Einspritzsteuerventil (32) und das Ablaßventil (42) offen sind, und wenn der Aktuator (38) bis zu einem ersten, relativ niedrigen Erregungsniveau erregt ist, das Ablaßventil (42) geschlossen ist und das Einspritzsteuerventil (32) offen ist, und wenn der Aktuator (38) bis zu einem zweiten, höheren Erregungsniveau erregt ist, das Ablaßventil (42) und das Einspritzsteuerventil (32) geschlossen sind.
  2. Kraftstoffeinspritzventil wie in Anspruch 1 beansprucht, wobei der Aktuator (38) ausgelegt ist, um von dem zweiten, höheren Erregungsniveau bis auf das erste, relativ niedrige Erregungsniveau zwangsläufig angetrieben zu werden, um das Einspritzsteuerventil (32) zu öffnen, während das Ablaßventil (42) geschlossen bleibt.
  3. Kraftstoffeinspritzventil wie in Anspruch 1 oder Anspruch 2 beansprucht, wobei das Ablaßventil (42) und das Einspritzsteuerventil (32) in elastischer Verbindung stehen.
  4. Kraftstoffeinspritzventil wie in Anspruch 3 beansprucht, wobei das Ablaßventil (42) und das Einspritzsteuerventil (32) mittels einer Federanordnung (50) miteinander verbunden sind.
  5. Kraftstoffeinspritzventil wie in irgendeinem der Ansprüche 1 bis 4 beansprucht, umfassend ein Widerlagerelement (22, 22a), das an der Feder (21) anliegt, wobei das Widerlagerelement (22, 22a) die der Ventilnadel (12) zugeordnete Oberfläche definiert, die dem Kraftstoffdruck in der Steuerkammer (25) ausgesetzt ist.
  6. Kraftstoffeinspritzventil wie in Anspruch 5 beansprucht, wobei das Widerlagerelement (22, 22a) in einer Bohrung hin- und herbewegbar ist, und das Widerlagerelement (22, 22a) und die Bohrung zusammen mindestens einen Teil des begrenzten Flußpfades zwischen dem Zuführdurchgang (40) und der Steuerkammer (25) definieren.
  7. Kraftstoffeinspritzventil wie in Anspruch 5 oder 6 beansprucht, wobei das Widerlagerelement (22, 22a) so ausgelegt ist, daß bei Verwendung, wenn das Einspritzsteuerventil (32) geschlossen ist, der Kraftstoffabfluß von der Steuerkammer (25) nach dem Niederdruck-Vorratsbehälter minimiert ist.
  8. Kraftstoffeinspritzventil wie in irgendeinem der Ansprüche 1 bis 6 beansprucht, wobei das Einspritzventil die Form einer kombinierten Pumpe/Einspritzventil-Einheit hat.
  9. Verfahren zum Betätigen eines Kraftstoffeinspritzventils wie in irgendeinem der Einsprüche 1 bis 8 beansprucht, das die Schritte aufweist, bei denen:
    • der Aktuator (38) bis auf sein zweites, höheres Niveau erregt wird, um das Ablaßventil (42) und das Einspritzsteuerventil (32) zu schließen, wenn die Unter-Druck-Setzung des Kraftstoffs beginnen soll;
    • dem Erregungsniveau des Aktuators (38) ermöglicht wird, bis auf sein erstes Niveau abzufallen, um dem Einspritzsteuerventil (32) zu ermöglichen, zu öffnen, wenn die Einspritzung beginnen soll; und
    • der Aktuator (38) aberregt wird, um dem Ablaßventil (42) zu ermöglichen, zu öffnen, wenn die Einspritzung beendet werden soll.
  10. Verfahren wie in Anspruch 9 beansprucht, wobei der Schritt, bei dem dem Erregungsniveau des Aktuators (38) ermöglicht wird, abzufallen, den Schritt umfaßt, bei dem der Aktuator zwangsläufig bis auf das erste Erregungsniveau angetrieben wird durch Umkehren der Polarität der Verbindungen zwischen der Aktuatorversorgung und dem Aktuator (38).
  11. Verfahren wie in Anspruch 9 oder 10 beansprucht, das den Schritt umfaßt, bei dem die Kraftstoffeinspritzung nach der Erregung des Aktuators (38) bis auf sein erstes Erregungsniveau unterbrochen wird durch Erregen des Aktuators (38) bis auf das zweite Erregungsniveau, um das Einspritzsteuerventil (32) zu schließen, so daß die Steuerkammer (25) bis zu einem Grad unter Druck gesetzt wird, der ausreicht, um zu bewirken, daß die Ventilnadel (12) bis in den Eingriff mit ihrem Sitz zurückkehrt, ohne den Druck des Kraftstoffs in dem Zuführdurchgang (40) wesentlich zu verringern, wodurch eine Piloteinspritzung von Kraftstoff nach einer Haupteinspritzung von Kraftstoff erhalten wird.
Anspruch[en]
  1. A fuel injector comprising a valve needle (12) biased by a spring (21) into engagement with a seating, a surface associated with the valve needle (12) being exposed to fuel pressure within a control chamber (25), restricted communication means providing a restricted flow path between a supply passage (40) and the control chamber (25), a drain valve (42) controlling communication between the supply passage (40) and a low pressure reservoir, an injection control valve (32) controlling communication between the control chamber (25) and the low pressure reservoir, the drain valve (42) and the injection control valve (32) being moveable under the control of a single electromagnetic actuator (38) including an armature (37) common to both valves (32, 42),

       characterised in that the injection control valve (32), the drain valve (42) and the actuator (38) are arranged such that at rest, the injection control valve (32) and the drain valve (42) are open, when the actuator (38) is energized to a first, relatively low energization level the drain valve (42) is closed and the injection control valve (32) is open, and when the actuator (38) is energized to a second, higher energization level, the drain valve (42) and the injection control valve (32) are both closed.
  2. The fuel injector as claimed in Claim 1, wherein the actuator (38) is arranged to be positively driven from the second, higher energization level to the first, relatively low energization level to open the injection control valve (32) whilst the drain valve (42) remains closed.
  3. The fuel injector as claimed in Claim 1 or Claim 2, wherein the drain valve (42) and the injection control valve (32) are in resilient interconnection.
  4. The fuel injector as claimed in Claim 3, wherein the drain valve (42) and the injector control valve (32) are interconnected by means of a spring arrangement (50).
  5. The fuel injector as claimed in any of Claims 1 to 4, including an abutment member (22, 22a) in abutment with the spring (21), the abutment member (22, 22a) defining the surface associated with the valve needle (12) which is exposed to fuel pressure within the control chamber (25).
  6. The fuel injector as claimed in Claim 5, wherein the abutment member (22, 22a) is reciprocable within a bore, the abutment member (22, 22a) and the bore together defining at least a part of the restricted flow path between the supply passage (40) and the control chamber (25).
  7. The fuel injector as claimed in Claim 5 or 6, wherein the abutment member (22, 22a) is arranged such that, in use, when the injection control valve (32) is closed, fuel leakage from the control chamber (25) to the low pressure reservoir is minimised.
  8. The fuel injector as claimed in any of Claims 1 to 6, wherein the injector takes the form of a unit pump/injector.
  9. A method of operating a fuel injector as claimed in any of Claims 1 to 8, comprising the steps of:
    • energizing the actuator (38) to its second, higher level to close the drain and injection control valves (42, 32) when the pressurization of fuel is to commence;
    • allowing the energization level of the actuator (38) to fall to its first level to allow the injection control valve (32) to open when injection is to commence; and
    • de-energizing the actuator (38) to allow the drain valve (42) to open when injection is to terminate.
  10. The method as claimed in Claim 9, wherein the step of allowing the energization level of the actuator (38) to fall includes the step of positively driving the actuator to the first energization level by reversing the polarity of the connections between an actuator supply and the actuator (38).
  11. The method as claimed in Claim 9 or 10, including the step of, interrupting fuel injection following energization of the actuator (38) to its first energization level by energising the actuator (38) to the second energization level to close the injector control valve (32) so as to pressurize the control chamber (25) to an extent sufficient to cause the valve needle (12) to return into engagement with its seating without significantly de-pressurizing fuel within the supply passage (40), thereby providing a pilot injection of fuel subsequent to a main injection of fuel.
Anspruch[fr]
  1. Injecteur de carburant comprenant un pointeau de soupape (12) mis en état de précontrainte, à l'aide d'un ressort (21), en contact avec un siège, une surface associée au pointeau de soupape (12) étant exposée à la pression de carburant à l'intérieur d'une chambre de commande (25), un moyen de communication restreint procurant une voie d'écoulement restreinte entre un passage d'alimentation (40) et la chambre de commande (25), une soupape de drain (42) qui règle la communication entre le passage d'alimentation (40) et un réservoir basse pression, une soupape de commande d'injection (32) qui règle la communication entre la chambre de commande (25) et le réservoir basse pression, la soupape de drain (42) et la soupape de commande d'injection (32) étant mobiles sous la commande d'un actionneur électromagnétique unique (38) englobant un induit (37) commun aux deux soupapes (32, 42),

       caractérisé en ce que la soupape de commande d'injection (32), la soupape de drain (42) et l'actionneur (38) sont arrangés de telle sorte que dans la position de repos, la soupape de commande d'injection (32) et la soupape de drain (42) sont ouvertes, lorsque l'actionneur (38) est excité jusqu'à un premier niveau d'excitation relativement faible, la soupape de drain (42) est fermée et la soupape de commande d'injection (32) est ouverte, et lorsque l'actionneur (38) est excité jusqu'à un deuxième niveau d'excitation supérieur, la soupape de drain (42) et la soupape de commande d'injection (32) sont toutes deux fermées.
  2. Injecteur de carburant selon la revendication 1, dans lequel l'actionneur (38) est arrangé pour être soumis à un entraînement mécanique depuis le deuxième niveau d'excitation supérieur jusqu'au premier niveau d'excitation relativement inférieur dans le but d'ouvrir la soupape de commande d'injection (32) tandis que la soupape de drain (42) reste fermée.
  3. Injecteur de carburant selon la revendication 1 ou 2, dans lequel la soupape de drain (42) et la soupape de commande d'injection (32) se trouvent en interconnexion résiliente.
  4. Injecteur de carburant selon la revendication 3, dans lequel la soupape de drain (42) et la soupape de commande d'injection (32) sont interconnectées à l'aide d'un arrangement à ressort (50).
  5. Injecteur de carburant selon l'une quelconque des revendications 1 à 4, englobant un élément de butée (22, 22a) venant buter contre le ressort (21), l'élément de butée (22, 22a) définissant la surface associée au pointeau de soupape (12) qui est exposée à la pression de carburant à l'intérieur de la chambre de commande (25).
  6. Injecteur de carburant selon la revendication 5, dans lequel l'élément de butée (22, 22a) est à même d'effectuer un mouvement alternatif à l'intérieur d'un alésage, l'élément de butée (22, 22a) et l'alésage définissant ensemble au moins une partie de la voie d'écoulement restreinte entre le passage d'alimentation (40) et la chambre de commande (25).
  7. Injecteur de carburant selon la revendication 5 ou 6, dans lequel l'élément de butée (22, 22a) est arrangé de telle sorte que, en état de marche, lorsque la soupape de commande d'injection (32) est fermée, on minimise les fuites de carburant depuis la chambre de commande (25) jusqu'au réservoir basse pression.
  8. Injecteur de carburant selon l'une quelconque des revendications 1 à 6, dans lequel l'injecteur prend la forme d'une unité pompe/injecteur.
  9. Procédé de mise en service d'un injecteur de carburant selon l'une quelconque des revendications 1 à 8, comprenant les étapes consistant à :
    • exciter l'actionneur (38) jusqu'à son deuxième niveau supérieur dans le but de fermer la soupape de drain et la soupape de commande d'injection (42, 32) lorsque la mise sous pression du carburant doit débuter;
    • laisser le niveau d'excitation de l'actionneur (38) chuter jusqu'à son premier niveau pour permettre l'ouverture de la soupape de commande d'injection (32) lorsque l'injection doit débuter ;
    • désexciter l'actionneur (38) pour permettre à la soupape de drain (42) de s'ouvrir lorsque l'injection doit se terminer.
  10. Procédé selon la revendication 9, dans lequel l'étape dans laquelle on laisse chuter le niveau d'excitation de l'actionneur (38) englobe l'étape consistant à soumettre l'actionneur à un entraînement mécanique jusqu'au premier niveau d'excitation, en inversant la polarité des connexions entre l'alimentation de l'actionneur et l'actionneur (38).
  11. Procédé selon la revendication 9 ou 10, englobant l'étape consistant à interrompre l'injection de carburant suite à l'excitation de l'actionneur (38) jusqu'à son premier niveau d'excitation en excitant l'actionneur (38) jusqu'à son deuxième niveau d'excitation dans le but de fermer la soupape de commande d'injection (32) de façon à mettre la chambre de commande (25) sous pression dans une mesure suffisante pour faire en sorte que le pointeau de soupape (12) reprenne sa position de mise en contact avec son siège sans soumettre le carburant à l'intérieur du passage d'alimentation (40) à une réduction de pression significative, en procurant ainsi une injection de carburant pilote suite à l'injection de carburant principale.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com