PatentDe  


Dokumentenidentifikation EP1033222 23.01.2003
EP-Veröffentlichungsnummer 1033222
Titel Phaseaustauschzusammensetzungen und selektives Materialabsatzverfahren
Anmelder 3D Systems, Inc., Valencia, Calif., US
Erfinder Bui, Loc V., Valencia, California 91355, US;
Doan, Vu, Winnetka, California 91306, US;
Kwo, Kelly, Valencia, California 91354, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60000946
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 22.02.2000
EP-Aktenzeichen 003013877
EP-Offenlegungsdatum 06.09.2000
EP date of grant 11.12.2002
Veröffentlichungstag im Patentblatt 23.01.2003
IPC-Hauptklasse B29C 41/00
IPC-Nebenklasse B29C 67/00   C09D 11/00   

Beschreibung[en]
Field of the Invention

The present invention relates to compositions and methods for building three-dimensional objects and, more particularly, to phase change compositions and selective deposition modeling methods for building three-dimensional objects utilizing such compositions.

Description of the Related Art

The art of building three-dimensional objects using selective deposition modeling methods is a rapidly developing technology. In one known selective deposition modeling method, a phase change composition, i.e., a composition that is a solid at ambient temperature and a liquid at an elevated temperature above ambient temperature, is melted by heating and deposited in liquid form onto a build platform in a controlled environment to form a multi-layered three-dimensional object on a layer-by-layer basis. The composition is deposited onto the build platform using a modified ink jet print head having a multiplicity of nozzles, e.g., 352 nozzles. A computer program prescribes the configuration of each layer of the object and controls the nozzles from which material is deposited during the deposition of any given layer to meet that layer's configuration. The material of each layer at least partially solidifies as a successive layer of material is selectively deposited thereupon from the print head. In this manner, the object is formed layer-by-layer into a final object having a desired shape and cross-section.

3D Systems, Inc., has previously developed apparatus, methods and compositions for the selective deposition modeling of three-dimensional objects as described above. Thus, published PCT Patent Application No. WO 97-11835 describes a rapid prototyping apparatus and method for building three-dimensional objects employing selective deposition modeling. Published PCT Patent Application No. WO 97-11837 describes computer methods and apparatus for manipulating object and object support data and controlling object build styles for use in building three-dimensional objects by selective deposition modeling. U.S. Patent No. 5,855,836, discloses phase change compositions for use in building three-dimensional objects by selective deposition modeling techniques.

Phase change compositions possessing specific physical properties are desirable in order to avoid various problems that can arise during and after creation of an object by selective deposition modeling techniques. The currently existing problems in building three-dimensional objects using selective deposition modeling are many: Such problems include curling of the object upon or after formation, cohesive failure of the support structures concurrently built with the object to support the object during the build process, adhesive failure or breaks between different materials constituting the object, the formation of stress cracks in the object, and delamination of layers constituting the object

Important physical properties of a suitable phase change composition which influence the above include jetting viscosity, thermal stability at the jetting viscosity, melting point, softening point and softening range, freezing or solidification point, toughness, hardness, tensile strength and elongation.

A variety of factors influence success or failure at different stages of the build process. Initially, various constraints are imposed at the dispensing or jetting point of the process. It is currently eminently desirable to increase the existing deposition rates of build compositions, i.e., to significantly increase the jetting rate or speed of deposition of the build compositions, which requires compositions that are thermally stable and low in viscosity at high temperatures. During the build process itself, it is important to avoid curling, cracking and delamination of the multi-layered object as it forms and solidifies layer-by-layer. Finally, it is important to provide a finished three-dimensional article having the requisite toughness such that the product does not break or crumble easily with handling and use.

Phase change compositions useful in building three-dimensional objects by selective deposition modeling must have an appropriate viscosity range at the temperature range at which jetting or deposition takes place, taking into account the particular ink jet print head used in the build apparatus. Such compositions must also have an appropriate melting point range and freezing point range within the temperature range used in the build process so as to expedite the build process while simultaneously avoiding the development of defects in the object being built.

There is a variety of challenges peculiar to building three-dimensional objects by selective deposition modeling. It is desirable to minimize or completely avoid each of these problems. Cohesive failure is one such problem. Cohesive failure is a break within the material itself after deposition and solidification. Adhesive failure is another concern. Adhesive failure is a break at the interface between different materials after deposition and solidification. Curl is a particularly vexing defect. Curl is the lifting of a deposited multi-layered object in the Z-direction, either during or after solidification, due to large differences in shrinkage stress transmitted from layer to layer of the deposited material. Typically, from about 10% to about 15% shrinkage can be observed in other selective deposition modeling compositions between the time of dispensing (dispensing or jetting temperature) and final formation of the multi-layered object (ambient or solid temperature). Such high shrinkage rates are unacceptable, since they result in severe defects in the formed object, including not only curl, but also stress cracks and delamination of object layers.

Stress cracking is fracturing of a multi-layered object in either the X-axis (Y-Z plane), or Y-axis (X-Z plane), during or after solidification, due to high shrinkage stress from layer to layer of the object, low cohesive strength of the material itself and/or the specific geometry of the object being built. Delamination is the separation of layers of an object in the Z-axis (X-Y plane) due to differences in the surface energy of deposited and solidified solid portions of the object and the surface tension of molten material being deposited onto those solid portions. Thermal meltdown, also known as thermal runaway, is yet another concern. Thermal runaway is the melting of deposited object layers into a puddle of liquid, which can result from a detrimentally low freezing point (solidification point) for the phase change composition.

The selective deposition modeling of three-dimensional objects has heretofore involved one or more of the above-described deficiencies to varying degrees. Phase change compositions used thus far in the selective deposition modeling of three-dimensional objects have proved lacking in terms of their optimal physical properties and the requisite toughness, hardness, elongation and lack of curl, crack and delamination of the finished objects. While a plethora of phase change compositions have been designed as hot melt ink compositions for two-dimensional printing, as disclosed for example in U.S. Patent No. 4,889,560 to Jaeger, et al. issued December 26, 1989, and U.S. Patent No. 4,830,671 to Frihart et al. issued May 16, 1989, such compositions do not possess the requisite properties for successfully building three-dimensional objects by selective deposition modeling.

EP-A-0723999 describes phase change compositions for use in inkjet printers. The compositions are solid at ambient temperature and liquid at an elevated temperature. EP-A-0723999 discloses a phase change ink carrier composition that comprises a tetra-amide and a mono-amide to which various modifying agents can be added including tackifiers and plasticizers, antioxidant and colorant. The tackifiers may be selected from various esters and the plasticizer may be a phthalate ester. The ink composition may also include various waxes such as polyethylene waxes.

Phase change hot-melt solid ink compositions are also disclosed in EP-A-0844287. The compositions are based on a combination of polyamide resin and terpene resin.

It is thus highly desirable and would be a significant advance in the art to develop phase change compositions for use in a building material in selective deposition modeling that not only result in three-dimensional objects devoid of the above-described undesirable defects, but that also permit a significantly more rapid building of such objects than has heretofore been achieved.

In the description that follows ranges and ratios may be combined and are by weight unless otherwise indicated. Temperatures are in degrees Celcius. Viscosity is expressed in units of mPas (milliPascal second = 10-3Ns/m2), where 1mPas = 1 centipoise. Force is expressed in Newtons (N) where 1N=105dyne. "Work" as used in the Tables herein is expressed in kg.m/m3(= 703 lb.in/in3).

SUMMARY OF THE INVENTION AND ITS PRACTICE

The present invention is concerned with both phase change compositions and with methods of selective deposition modeling.

The present invention provides in a first of its aspects a phase change composition that is a solid at ambient temperature and a liquid at an elevated temperature above ambient temperature, adapted for use in selective deposition modeling to form a three-dimensional object, comprising a semi-crystalline mixture of polar and non-polar components, the semi-crystalline mixture having a freezing point of at least about 68° C., a melting point of at least about 88° C., and a viscosity of about 13mPas (13 centipoise) at 135° C.

In a second of its aspects the invention provides a phase change composition that is a solid at ambient temperature and a liquid at an elevated temperature above ambient temperature, adapted for use in selective deposition modeling to form a three-dimensional object, comprising a semi-crystalline mixture of components including a tetra-amide, a mono-amide wax, a petroleum wax, a polyethylene wax, an ethylene-propylene copolymer wax, a modified rosin ester, a hydrocarbon based aromatic resin, an alkyl benzene phthalate, at least one antioxidant and at least one colorant, wherein the tetra-amide is present in an amount of about 5% to about 30% by weight, the mono-amide wax is present in an amount of about 15% to about 40% by weight, the petroleum wax is present in an amount of about 5% to about 25% by weight, the polyethylene wax is present in an amount of up to about 15% by weight, the ethylene-propylene copolymer wax is present in an amount of up to about 10% by weight, the modified rosin ester is present as a tri-ester in an amount of about 10% to about 40% by weight, the aromatic resin is present in an amount of up to about 15% by weight, the alkyl benzene phthalate is present in an amount of up to about 10% by weight, the or each antioxidant is present in an amount of less than about 1% by weight, and the colorant is present in an amount of no greater than about 2% by weight, all weight percentages being based on the total weight of the composition.

According to a third aspect of the invention, there is provided a selective deposition modeling method for forming a three-dimensional object on a layer-by-layer basis comprising the steps of:

  • (a) providing a building material that is a solid at ambient temperature and a liquid at an elevated temperature above the ambient temperature, the building material comprising a semi-crystalline mixture of polar and non-polar components having a freezing point of at least about 68° C., a melting point of at least about 88° C., and a viscosity of about 13mPas (13 centipoise) at about 135° C.;
  • (b) elevating the temperature of the building material to a temperature sufficient to cause the mixture to become liquid;
  • (c) selectively dispensing the material at the elevated temperature to form a layer of the material as a cross-section of the three-dimensional object; and
  • (d) lowering the temperature of the dispensed material to at least partially solidify the material.

As used in this specification in relation to phase change compositions of the present invention, the term "ambient temperature" refers to typical room temperatures of about 20°C to about 25°C.

There will be described below phase change compositions for use as a building material for selective deposition modeling techniques used in building three-dimensional objects. The practice and implementation of the invention has the following objectives in techniques for selective deposition modeling:

  • improved phase change compositions that facilitate the use of increased jetting and deposition rates for the compositions, coupled with rapid solidification of the compositions after jetting and deposition;
  • improved compositions having higher freezing and melting temperatures that solidify quickly after deposition and are not subject to thermal meltdown;
  • improved phase change compositions for building three-dimensional objects possessing minimal shrinkage characteristics;
  • improved phase change compositions that result in three-dimensional objects that do not have undesired curl and stress cracks or are subject to delamination of the various layers of the objects;
  • improved phase change compositions that provide superior toughness, hardness and elongation properties in three-dimensional objects built from such compositions;
  • phase change compositions that result in three-dimensional objects formed by selective deposition modeling techniques that are not brittle, but rather are characterized by a superior elongation and ductility than hitherto known three-dimensional objects formed by such processes.

The present invention also provides a phase change composition that is a solid at ambient temperature and a liquid at an elevated temperature above ambient temperature comprising a semi-crystalline mixture of components including a tetra-amide and a plurality of waxes, the plurality of waxes having a melting point range from about 85° C. to about 130° C. and a molecular weight range from about 150 to about 5000.

The wax components of the phase change composition are viscosity modifiers. The plurality of waxes possesses low viscosity, a broad melting point range, a broad molecular weight range and low shrinkage upon cooling. A particularly preferred melting point range for the plurality of waxes is from about 88° C. to about 110° C. and a preferred molecular weight range is from about 200 to about 3000. The waxes have melting points in the range selected from the group consisting of: 86° C. to 90° C., 91° C. to 94° C., or 90° C. to 97° C., and 104° C. to 116° C. In this regard, each wax has a melting point and a molecular weight that is different from each of the melting points and molecular weights of each of the remaining waxes. Each wax has a melting point and a molecular weight that falls within the specified range.

In one preferred implementation of the first aspect of the present invention, the semi-crystalline mixture of components includes a tetra-amide, a mono amide wax, at least one wax selected from the group consisting of petroleum waxes and synthetic waxes to minimize shrinkage of the formed object, and a first tackifier to increase toughness of the formed object. Preferably, the first tackifier is a modified rosin ester, and more particularly a tri-ester of hydrogenated abietic acid with glycerol.

In another preferred implementation of the above first aspect of the present invention, the semi-crystalline mixture of components includes a tetra-amide, a first tackifier to increase toughness of the composition and a second tackifier to increase hardness of the composition. Preferably, the first tackifier is a modified rosin ester and the second tackifier is a hydrocarbon based aromatic resin.

In a further implementation of the first aspect of the invention, the semi-crystalline mixture of components includes a tetra-amide; a mono-amide wax; and at least one ester component for hydrogen-bonding with the tetra-amide and the mono-amide wax, thereby increasing the toughness of the composition. Preferably, the ester component comprises an ester tackifier and an ester plasticizer for increasing both the toughness and ductility of the composition.

There will be described below a selective deposition modeling method for forming a three-dimensional object on a layer-by-layer basis employs a phase change composition formulated in accordance with the present invention. The method comprises providing the phase change composition as a building material for a three-dimensional object; elevating the temperature of the building material to a temperature sufficient to cause the material to become fluid; selectively dispensing the material at the elevated temperature to form a layer of the material as a cross-section of the three-dimensional object, and lowering the temperature of the dispensed material to at least partially solidify the material.

DETAILED DESCRIPTION OF THE INVENTION

Selective deposition modeling compositions for forming three-dimensional objects in accordance with the present invention contain, in various preferred embodiments, an array of individual polar and non-polar crystalline and amorphous components that will now be described in detail. The various components are combined prior to use into a semi-crystalline phase change mixture having diverse properties that are important to the successful selective deposition modeling of three-dimensional objects. The semi-crystalline phase change mixture also is substantially homogeneous. There now follows a discussion of the components of preferred formulations of a phase change composition for use as a building material in selective deposition modeling.

The phase change composition includes a tetra-amide component which is a low molecular weight amorphous, polar polymer or oligomer that has a low viscosity to facilitate jettability during the object build process. Suitable tetra-amides are disclosed, for example, in U.S. Patent No. 4,830,671, U.S. Patent No. 5,194,638, U.S. Patent No. 4,889,560, and U.S. Patent No. 5,645,632.

Typical tetra-amides useful in the practice of the present invention, as disclosed for example in U.S. Patent No. 4,830,671, are represented by the following formula: R4―CONH―R2―NHCO―R1―CONH―R3―NHCO―R5 wherein R1 is a polymerized fatty acid residue with 2 carboxylic acid groups removed; R2 and R3 are the same or different and each represents an alkylene with up to 12 carbon atoms, a cycloalkylene with 6 to 12 carbon atoms; an arylene with 6 to 12 carbon atoms, or an alkarylene with 7 to 12 carbon atoms; and R4 and R5 are the same or different and each represents an alkyl, a cycloalkyl, an aryl, or an alkaryl with up to 36 carbon atoms.

The tetra-amide typically has a molecular weight in the range of about 1294 to about 2162 and a viscosity of less than 250mPas (250 centipoise) at 150° C., typically 50 to 100mPas (50 to 100 centipoise) at 150° C. A particularly preferred tetra-amide is available commercially from Union Camp Corporation under the designation X37-523-235, which has a viscosity of 52mPas (52 centipoise) at 150° C. and a softening point of about 128° C.

The tetra-amide is a low molecular weight resinous binder having four amide sites that provide the venue for hydrogen bonding with other components of the formulation, as will be described below, leading to enhanced toughness in the final formed object. The tetra-amide additionally has a low viscosity to enable jettability of the formulation at high temperatures. The tetra-amide component is present in the compositions of the present invention in amounts preferably ranging from about 5% to about 30% by weight of the total composition, more preferably ranging from about 10% to about 20% by weight, and most preferably in an amount of about 17.61% by weight.

The phase change composition further includes wax components which function as viscosity modifiers and are characterized by low viscosity, a collective broad melting point range and low shrinkage. A preferred ratio of the combined weight percentages of the waxes to the weight percentage of the tetra-amide in the formulations of the present invention ranges from about 2:1 to about 6:1.

A first wax component is a mono-amide wax. The mono-amide wax component is a secondary amide resulting from the reaction of saturated and unsaturated fatty acids with saturated and unsaturated primary amines. A variety of compounds result, as exemplified by the known compounds stearyl erucamide, erucyl erucamide, oleyl palmitamide, stearyl stearamide and erucyl stearamide.

Suitable mono-amides are known per se and are disclosed, for example, in U.S. Patent No. 4,889,560 and U.S. Patent No. 5,372,852. Typical mono-amides useful in the practice of the present invention, as disclosed for example in U.S. Patent No. 4,889,560, are represented by the following formula: CXHY―CONH―CAHB wherein X is an integer from 5 to 21; Y is an integer from 11 to 43; A is an integer from 6 to 22; and B is an integer from 13 to 45.

The mono-amide typically has a molecular weight in the range of about 199 to 647 and a viscosity ranging from about 1 to about 15mPas (about 1 to about 15 centipoise) at 135° C. A particularly preferred mono-amide is stearyl stearamide, available commercially, for example, from Witco Corporation under the designation Kemamide S-180. Kemamide S-180 has a viscosity of about 5.9mPas (5.9 centipoise) at 135° C. and a melting point ranging from about 92° C. to about 95° C.

The hydrocarbon, stearyl groups at each end of the secondary mono-amide provide it with a crystalline, waxy nature. The short carbon chain length gives the mono-amide a desired low melt viscosity. Nevertheless, the mono-amide is sufficiently non-polar to solubilize waxy, hydrocarbon components in the formulation. The secondary amide group at the core provides the requisite polarity to make it compatible with polar compounds in the formulation, for example, the tetra-amide and, as will be described below, the ester tackifier and ester plasticizer. The amide group in the secondary mono-amide increases the melting point, which helps the formulation in terms of providing a higher freezing point, which in turn results in quick solidification of the formulation after dispensing. Finally, the amide site of the mono-amide also provides the venue for hydrogen bonding with other components of the formulation, as will be described below, leading to enhanced toughness in the final object formed.

Overall, then, the mono-amide is a polar component of the formulation and acts as a viscosity modifier for the formulation and a co-solubilizer of polar and non-polar components in the formulation, while possessing both a desirably high and sharp melting point and low viscosity. That is, the mono-amide has sufficient non-polar hydrocarbon properties to solubilize non-polar materials even though it is classed as a polar compound.

The mono-amide component is present in the phase change composition in amounts preferably ranging from about 15 % to about 40% by weight of the total composition, more preferably from about 20% to about 30% by weight, and most preferably in an amount of about 26.91% by weight. A preferred ratio of the weight percentage of the mono-amide to the weight percentage of the tetra-amide in the formulations ranges from about 4:1 to about 1:1.

A second wax component of the phase change composition is a petroleum wax. Petroleum waxes are a class of petroleum waxes that are produced in known manner by the solvent recrystallization of selected petroleum fractions into materials consisting of n-paraffinic, branched paraffinic and naphthenic hydrocarbons in the C30 to C60 range.

Petroleum waxes suitable for use in the practice of the present invention are known. They typically have molecular weights ranging from about 422 to about 842 and melting points ranging from about 88° C. to about 96° C. A particularly preferred petroleum wax is available commercially from Baker Petrolite Corporation under the designation C-700, has a melting point of about 93° C. and has a viscosity of about 8.6mPas (8.6 centipoise) at 135° C.

The petroleum wax component is present in amounts preferably ranging from about 5% to about 25% by weight of the total composition, more preferably from about 10% to about 20% by weight, and most preferably in an amount of about 16.63% by weight. The petroleum wax has the dual functions of increasing the hardness and reducing the shrinkage of the final formulation.

A third wax component of the phase change composition is a polyethylene wax. Such synthetic waxes are known per se, belong to the family of fully saturated crystalline homopolymers of ethylene, and are characterized by unusually narrow melt distribution, low melt viscosities and extreme hardness at elevated temperatures. They exhibit outstanding heat stability and resistance to chemical attack due to being fully saturated.

Polyethylene waxes suitable for use in the practice of the present invention typically have molecular weights ranging from about 500 to about 3000 and melting points ranging from about 88° C. to about 129° C. A particularly preferred polyethylene wax is available commercially from Baker Petrolite Corporation under the designation PEW 500, or Polywax 500, which has a melting point of about 88° C. and a viscosity of about 4.1 centipoise at 135° C.

The polyethylene wax component is preferably present in amounts ranging up to about 15% by weight of the total composition, conveniently from about 3% to about 10% by weight, preferably about 4% to about 9%, and most preferably in an amount of about 5.87% by weight. A preferred ratio of the weight percentage of the petroleum wax to the weight percentage of the polyethylene wax in the formulation ranges from about 3:1 to about 1:1. The hard polyethylene wax is used in the formulation because of its outstanding thermal stability, high hardness and high melting point.

A fourth wax component of the phase change composition is a synthetic branched wax. Particularly useful synthetic branched waxes for use in the practice of the present invention include synthetic microcrystalline analogs of polywax, such as ethylene-propylene copolymers, which are more consistent and reproducible than the petroleum derived waxes. Such waxes exhibit desirable flexibility at low temperatures.

Ethylene-propylene copolymer waxes suitable for use in the practice of the present invention typically have molecular weights ranging from about 650 to about 1200 and melting points ranging from about 96° C. to about 112° C. A particularly preferred ethylene-propylene copolymer wax is available commercially from Baker Petrolite Corporation under the designation EP 1100, which has a melting point of about 110° C. and a viscosity of about 17.6mPas (17.6 centipoise) at 135° C.

The synthetic branched wax component is preferably present in amounts ranging up to about 10% by weight of the total composition preferably about 1% to about 6% by weight, more preferably from about 2% to about 5% by weight, and most preferably in an amount of about 2.94% by weight A preferred ratio of the weight percentage of the polyethylene wax to the weight percentage of the synthetic branched wax in the formulation ranges from about 3:1 to about 1:1. The synthetic branched wax is used in the formulation because of its high melting point and low temperature flexibility. The branching from, for example, the propylene group in the ethylene-propylene copolymer wax helps minimize shrinkage of the formulation.

Optionally, the formulation of the phase change composition may include an ester wax in amounts typically up to about 10% by weight of the total composition, and more preferably in amounts of about 1% to about to about 5% by weight, more preferably about 1.5% to 4.5% by weight. A particularly preferred ester wax for use in the practice of the present invention is available commercially from Hoechst Corporation under the designation Wax E. Wax E is an ester wax derived from Montan wax and has a molecular weight range of from about 730 to about 750, a viscosity of 14.5mPas (14.5 centipoise) at 130° C. and a melting point of about 77.34° C. The ester wax increases the hardness of the formulation. In this regard, the ester wax provides a synergistic effect on the hydrogen bonding that occurs in the formulation, as will be discussed in more detail below, and also favorably affects the formulation's heat stability.

Each wax in the formulation of the phase change composition has a different melting point than each of the remaining waxes in the formulation. The distribution of melting points of the various waxes in the composition provides a formulation having a large temperature transition from a liquid to a solid state after deposition, which minimizes shrinkage in the deposited material. This broad transition gives the deposited material time to relax and minimizes internal stresses which build up due to shrinkage of the material during cooling, which stresses would be much greater if the material solidified quickly at or about a single temperature.

A first tackifier component of the phase change composition is a modified rosin ester. Such rosin esters are highly purified for use where extremely low metallic content is needed, as well as low odor, taste and water white color. Particularly useful rosin esters for use in the practice of the present invention include tri-esters of hydrogenated abietic acid with glycerol, which are known per se, as disclosed in U.S. Patent No. 4,889,560 1989 and U.S. Patent No. 5,372,852.

A particularly preferred tri-ester tackifier for use in the practice of the present invention is available commercially from Arakawa Chemical, Inc. under the designation KE-100. KE-100 has a molecular weight of about 962, a softening point of about 102.97° C. ± 0.88° C., a softening point range from about 66° C. to about 110° C. and a viscosity in a 50/50 mixture with the mono-amide wax component of about 15.2mPas (15.2 centipoise)at 135° C. The first tackifier component is present in amounts conveniently ranging from about 10 % to about 40% by weight of the total composition, more preferably about 12% to about 35% by weight, even more preferably from about 15% to about 30% by weight, and most preferably in an amount of about 16.63% by weight. A preferred ratio of the weight percentage of the ester tackifier to the weight percentage of the tetra-amide in the formulation ranges from about 0.5:1 to about 5:1. A preferred ratio of the combined weight percentages of the tetra-amide and the mono-amide wax to the weight percentage of the ester tackifier ranges from about 1:1 to about 3:1.

The ester tackifier interacts with both the tetra-amide and the mono-amide wax to synergistically increase the toughness of the final formed object. In this regard, an intermolecular attraction between the unsaturated oxygen atoms of the (polar) ester tackifier and the hydrogen atoms at the amide sites of the tetra-amide and the mono-amide wax, generally known in the chemical field as hydrogen bonding, provides this synergistic increase in toughness.

A second tackifier component of the phase change composition is a hydrogenated hydrocarbon based aromatic resin. The non-polar hydrocarbon hydrogenated based aromatic resin is compatible with the waxes in the formulation and increases the hardness of the formulation. The increased hardness decreases cohesive and adhesive failure between the material of the formed object and the material of the support structures for the object, which in turn facilitates subsequent removal of the support structures from the final formed object.

Hydrocarbon based aromatic resins suitable for use in the practice of the present invention are manufactured in known manner by the selective partial hydrogenation of based resins that have been polymerized from mixed aromatic monomer feed streams. They typically have molecular weights in the range of from about 700 to about 1300 and softening points in the range from about 90° C. to about 125° C. A particularly preferred hydrocarbon based aromatic resin is available commercially from Hercules under the designation Regalite R101. Regalite R101 has a molecular weight of about 850, a softening point of about 99° C. and a viscosity in a 50/50 mixture with the mono-amide wax component of about 17.8mPas (17.8 centipoise) at 135° C.

The hydrocarbon based aromatic resin is preferably present in amounts ranging up to about 15% by weight of the total composition, more preferably from about 5% to about 12% by weight, and most preferably in an amount of about 9.1% by weight. A preferred ratio of the combined weight percentages of the hydrocarbon waxes to the weight percentage of the hydrocarbon based tackifier ranges from about 2:1 to about 3:1. In this regard, the hydrocarbon waxes include the petroleum wax, the polyethylene wax, the synthetic branched wax and the ester wax, but do not include the mono-amide wax.

The second tackifier is used to increase the hardness of the formulation. This facilitates removal of the various support structures from the surfaces of the final formed object.

A plasticizer component of the phase change composition is a polar compound chosen to help increase elongation and decrease the modulus of elasticity, thus decreasing brittleness and correspondingly increasing flexibility of the final formed object. Benzyl phthalates, and preferably alkyl benzene phthalates (such as mixed esters), have been found to be particularly suitable for these purposes.

A particularly preferred plasticizer for use in the practice of the present invention is available commercially from Monsanto under the designation Santicizer 278. Santicizer 278 is a liquid high molecular weight benzyl phthalate possessing low volatility, excellent permanence and aggressive solvating characteristics, with a molecular weight of about 455 and a viscosity of about 5.2 centipoise at 135° C. The plasticizer is present in amounts preferably ranging up to about 10% by weight of the total composition, more preferably from about 2% to about 6% by weight, and most preferably in an amount of about 3.91% by weight. A preferred ratio of the weight percentage of amide (tetra-amide plus mono-amide wax) to the weight percentage of ester (ester tackifier plus ester plasticizer) in the formulation ranges from about 0.75:1 to about 2.5:1.

The plasticizer is used to increase the elongation and decrease the modulus of elasticity of the final formed object. An elongation of up to about 73%, advantageously ranging from about 14% to about 200%, is achievable. This decreases brittleness of the final formed object, providing an object that is more ductile than heretofore known in the art. This increased ductility facilitates part handling of thin wall features of the final formed object and provides an object less subject to curl, crack and delamination. The ester plasticizer also provides additional ester sites for hydrogen bonding with the amide sites of the tetra-amide and the mono-amide wax, thus favorably influencing the toughness of the formulation.

The phase change compositions of the present invention preferably have a formulation including at least one antioxidant. A primary antioxidant can be used as a free radical scavenger. A secondary antioxidant can be used as an alkyl hydroperoxide scavenger.

The primary and secondary antioxidants are each present in the formulation in amounts preferably less than about 1% by weight of the total formulation and most preferably in amounts of about 0.2% by weight. A particularly preferred free radical scavenger antioxidant for use in the practice of the present invention is available commercially from Uniroyal Chemical Co., Inc. under the designation Naugard 524. A particularly preferred alkyl hydroperoxide scavenger antioxidant for use in the practice of the present invention is 4,4'-bis(alpha, alpha-dimethylbenzyl)diphenylamine, available commercially from Uniroyal Chemical Co., Inc. under the designation Naugard 445. Naugärd 445 has a molecular weight of about 405 and a melting point of about 98° C. to about 100° C.

The formulation of the phase change composition optionally includes at least one colorant. In this regard, the colorant is preferably a solvent dye. Virtually any acid dye, dispersed dye, or solvent dye or combination thereof may be employed. A particularly preferred solvent dye is available commercially from Clariant Corporation under the designation Savinyl Black RLS, which is a trivalent chromium complex of an azo dye known as C.I. Solvent Black 45.

The colorant can be present in the formulation in any desired amount. However, an excessive amount of colorant in the formulation reduces filtration efficiency not only during the formulation manufacturing process, but also during jetting from the print head during object building. Accordingly, the colorant is preferably present in an amount no greater than about 2% by weight of the total composition, more preferably in an amount no greater than about 1% by weight, and most preferably in an amount of about 0.09% by weight As little as about 0.001% by weight of colorant may be used. In this regard, large quantities of colorant are not needed to effectively color the object built.

Phase change compositions of the present invention formulated as discussed above possess many advantages in comparison to phase change compositions used heretofore in the selective deposition modeling of three-dimensional objects. The increased freezing point of the formulation, at least 68° C., increases the temperature delta or differential between ambient temperature and the freezing point in comparison to the most advanced known formulations, which possess freezing points of about 56° C. This increased temperature differential allows the deposited liquid material to solidify more quickly after deposition than previously possible. The increase in solidification rate permits the use of significantly faster deposition rates of the molten material during the build process than hitherto achievable. As a consequence, three-dimensional objects can now be built much more quickly using selective deposition modeling methods by employing a significantly faster build speed coupled with a substantially quicker solidification of the deposited melted material.

The decreased viscosity of the formulation, of less than 18mPas (18 centipoise), and preferably about 13mPas (13 centipoise) at 135° C., allows for optimum jetting performance using preferred ink jet print heads, which are designed for optimum performance when used in conjunction with phase change materials having a viscosity of 13mPas (13 centipoise) at 135°C.

The formulations discussed above provide phase change compositions that are characterized by superior thermal stability in relation to known formulations. They demonstrate a viscosity increase of only 18% after being thermally aged for 28 days at 140° C., in comparison to known three-dimensional modeling compositions, which are characterized by viscosity increases of up to 48.1% under similar conditions.

The combination of waxes defining broad molecular weight and melting point ranges provides a formulation with lower shrinkage, which results in three-dimensional objects having reduced curl. In a particularly preferred embodiment, curl is optimally reduced by formulating the phase change composition with a combination of four waxes. Each wax has a different melting point within the range from about 88° C. to about 110° C. and a different molecular weight within the range from about 200 to about 3000.

The combination of amide and ester components in the above-described formulations leads to enhanced toughness in the finished three-dimensional objects over that obtained by previous selective deposition modeling methods for building three-dimensional objects. Thus, the intermolecular attraction between the amides of the formulation, i.e., the tetra-amide and the mono-amide wax, and the esters of the formulation, i.e., the rosin ester tackifier and/or the ester plasticizer, results largely from hydrogen bonding between these components, which results in a tougher final product than heretofore known.

The above described formulations are also characterized by superior ductility in relation to known formulations. The phase change compositions according to these formulations demonstrate an advantageous Elongation ranging from at least about 14% to about 73% and a Flex Modulus that result in an extremely flexible material that is less brittle, and less subject to curl, stress crack and delamination, than other materials. In turn, ease of removal of the support structures from the finished three-dimensional object is enhanced and simplified.

The described phase change compositions of the present invention can be used to build superior three-dimensional objects. In this regard, they are especially suitable for building three-dimensional objects of substantial size, e.g., objects having a minimum height of at least 1 cm., measured in the Z-direction.

EXAMPLE 1

A formulation is made in accordance with the present invention by mixing the individual components in a kettle equipped with a mixing blade and preheated to 115° C. The mixture is heated at 115° C. after the addition of each component with moderate stirring, for example at 5 RPM, until a homogenized, molten state is achieved. The next component is then added and the heating and melting steps repeated. Component Melting Pt. (° C.) Weight % PEW 500 88 5.87 C700 96 16.63 Naugard 445 99 0.2 X37-523-235 128 17.61 Naugard 524 0.2 Santicizer 278 Liquid 3.91 KE-100 66.73 16.63 Regalite R101 100 9.1 EP 1100 110.46 2.94 Kemamide S-180 93.7 26.91

After components are mixed and melted, the formulation is heated further for 1 hour at 115° C. with mixing at 60 RPM, followed by mixing at 10 RPM, until a uniform liquid is obtained. The formulation is then tested for viscosity, after which 0.09 weight % of a colorant, Savinyl RLS Black, is added. The formulation is mixed again at 60 RPM for 1 hour at 115° C. The final homogeneous formulation is then tested again to assure a final desired viscosity.

The above formulation has the physical properties shown in the following Table 2: Jetting Temperature (° C.) 135° C. Viscosity (Centipoise-mPas) 13.0 ± 0.3 at 135° C. Hardness (Shore D) 45 Elongation (%E) 73 Flex Modulus (MPa) 230 Surface Tension (dyne/cm) 32 Density (g/ml) 0.86 Melting Point (° C.) 88° C. Freezing Point (° C.) 68° C. Work (in-lb/in3)

   (kg-m/m3
12

8400
Stress Yield (MPa) 3

EXAMPLES 2 TO 7

A variety of formulations are made in accordance with the present invention in the same manner as set forth in Example 1. The compositions are formulated as shown in the following Table 3, wherein amounts of each component of the formulation are indicated as percentages by weight of the total formulation: Component Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Kemamide S180 25.5 30.8 25.5 25.8 23 26 C700 17 9 17 17 17 21 PEW500 6 6 6 6 9 0 EP1100 3 3 3 3 0 2 Wax E 0 0 0 0 0 5 Santicizer 278 4 6 4 4 4.8 4.5 KE100 17 36 27.3 23 23 21.3 RegaliteR101 9.3 0 0 0 0 0 X-37-523-235 18 9 17 21 23 20 N524 0.2 0.2 0.2 0.2 0.2 0.2

Three-dimensional objects are made using a selective deposition modeling method employing the formulations of Examples 2 to 7. The formulations are selectively deposited onto the building platform of a three-dimensional modeling system layer-by-layer using an ink jet print head manufactured by Tektronix, Inc. designed for optimum jetting performance for phase change compositions having a viscosity of 13mPas (13 centipoise) at 135° C. The materials are very tough, flexible and not subject to thermal meltdown during the high temperature build process, as demonstrated by tests conducted to measure various critical properties of the formulations and objects built using those formulations.

Hardness of the three-dimensional object is measured using the ASTM D2240-95 (Shore D) standard test for measuring durometer hardness. This test measures penetration into the object by a specific type of indentor, PTS instrument Model 409. Toughness of the three-dimensional object is defined as the integration of the area under the stress strain curve for the material (Work) and is measured, along with Stress Yield (MPa) and Elongation (%), using the ASTM D638-87a standard test for measuring tensile properties. The Flex Modulus of the three-dimensional object is measured using the ASTM D790-97 standard test for flexural properties (MPa).

Physical properties of the formulations, as well as the physical properties of three-dimensional objects made therefrom, are indicated in the following Table 4: Physical Property Ex.2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Viscosity @ 135° C. (mPas) 12.9 12.9 13 13.4 13.2 13.3 Hardness (Shore D) 45 46 45 44 43 43 Melting Point (° C.) 90 88 89 91 91 91 Freezing Point (° C.) 69 69 68 68 71 71 Work (in-lb/in3)

   (kg-m/m3)
11.8

8297
12

8437
13.5

9492
9.8

6980
2.9

2039
5.2

3656
% Elongation 14 73 23 9 3 4 Stress Yield (MPa) 3 2.2 3 3 2.8 3.8 Flex Modulus (MPa) 218 185 222 ** 230 ** Qualitative Result Tough Hard Tough Tough Tough Tough

COMPARATIVE EXAMPLE

A hot melt ink composition disclosed in U.S. Patent No. 4,889,560 to Jaeger, et al. issued December 26, 1989 for two-dimensional printing is formulated with a tetra-amide, a mono-amide, a tackifier, a plasticizer and an antioxidant. The composition is formulated as shown in the following Table 5, wherein amounts of each component are indicated as percentages by weight of the total formulation: Component Weight % Kemamide S-180 48 X-37-523-235 20.8 KE-100 23 Santicizer 278 8 N-524 0.2

The composition is employed to make a three-dimensional object by selective deposition modeling, in the same manner as the formulations of Examples 2 to 7. The properties of the composition, measured in the same manner as in Examples 2 to 7, are enumerated in the following Table 6: Jetting Temperature (° C.) 135° C. Viscosity (Centipoise) 13 at 135° C. Hardness (Shore D) 37 Melting Point (° C.) 91 Freezing Point (° C.) 71 Work (in-lb/in3)

   (kg-m/m3
3.8

2672
% Elongation 6 Stress Yield (MPa) 2 Surface Tension (dyne/cm)

      (N/m)
29.53

29.53x10-6
Density (g/ml) 0.85 Flex Modulus (MPa) 176

Three-dimensional objects manufactured using the phase change ink of the Comparative Example and using the phase change formulations of Examples 2 to 7 according to the present invention are subjected to process evaluation at a room temperature of 26° C. to determine curl, crack and delamination characteristics. The results of the process evaluation are indicated in the following Table 7: C. Ex. Ex.2 Ex.3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Left Curl (mm) 2.7 1.5 1.5 1.5 2 2 2.5 Right Curl (mm) 2.7 1.5 1.5 1.5 2 2 2.5 Crack (mil) 50 50 None None None None None Delamination (MLS) 14 20 23 18 18 16 18 Support Removal Average Easy Easy Easy Easy Easy Gummy Thermal Runaway 13,13,8 13,13,9 13,13,8 13,13,9 13,13,8 13,13,9 13,13,9

Curl is determined by building a set of four bars of 252 x 6mm with increasing thickness of 1, 2, 4, and 8mm. Each of Examples 2 to 7 and the Comparative Example is built using an Actua 2100 Concept Modeler, a three-dimensional modeling apparatus available from 3D Systems, Inc. of Valencia, California. The amount by which the left and right ends of each block raise up off the build platform 24 hours after the build is completed is then measured. The block is also examined at this time for any cohesive or adhesive failure, including failure at the interface between the build platform and the block, failure within the support structures for the object, and failure at the solid interface between the object and the support structures for the object.

It will be observed from Table 7 that all formulations reported therein result in three-dimensional objects characterized by reduced curl (as little as 1.5mm) in relation to three-dimensional objects built attempting to use a two-dimensional printing phase change compositions, i.e., using the formulation of the Comparative Example (left and right curl of 2.7mm). This is a significant advance in the selective deposition modeling production of desirable three-dimensional objects.

Additionally, three-dimensional objects built using the formulations of the present invention are generally notable for their absence of stress cracks. Three crack diagnostic bars of 50 mil (1.27 mm), 75 mil (1.91 mm) and 100 mil (2.54 mm) of varying widths are built using an Actua 2100 Concept Modeler for each of the formulations of Examples 2 to 7 and the Comparative Example. Each bar is examined for cracks immediately after the build and 24 hours after completion of the build. A measurement of 'none" indicates that no cracks are observed in any of the three bars. A measurement of "50" indicates that cracks are observed in the 50 mil (1.27 mm) bar, but not in the other bars. As can be seen from Table 7, the tested formulations of the present invention generally result in bars of 50 mil (1.27 mm), 75 mil (1.91 mm) and 100 mil (2.54 mm) having no observable cracks at all, while the 50 mil (1.27 mm) bar of the Comparative Example cracks.

The tabulated formulations embodying the present invention also result in support structures that are not characterized by cohesive failure. A fractal support is used to evaluate the ease of support removal, 30 minutes after the object build is complete. The strong cohesiveness of the support structures results in their easy and complete removal after the build process from the three-dimensional objects they support during the build process. Removal of the support structures from the three-dimensional object of the Comparative Example is problematic and typical of the difficulty of cleanly and easily removing support structures experienced in using a two-dimensional ink formulation for three dimensional modeling.

The formulations of Examples 2 to 7 and the Comparative Example are also tested for thermal runaway. A thermal test block of each formulation is built using an Actua 2100 Concept Modeler to a size of 3x1.25x1 inch (7.62 x 3.18 x 2.54 cm) with square holes that run vertically through the block. Thirteen approximately 0.254mm holes are built into the left portion of the block, thirteen approximately 0.254mm holes are built into the right portion of the block, and nine holes of various sizes ranging from about 0.254mm to about 2.3mm are built into the central portion of the block. The reported data indicates the number of holes on the left, right and middle, respectively, that are built successfully on each block. A hole is successfully built if light passes through it. It will be seen from the results shown in Table 7 that the formulations of Examples 2, 4, 6 and 7 resulted in blocks in which all the holes were successfully built (13, 13, 9). Conversely, the formulation of the Comparative Example resulted in a block with a hole in the central portion that had deteriorated due to thermal meltdown (13, 13, 8).

Finally, the tabulated formulations embodying the present invention result in three-dimensional objects not subject to delamination. A minimum layer second (MLS) test is used to visually evaluate delamination of a 3x1.25x1 inch (7.62 x 3.18 x 2.54 cm) thermal diagnostic block built with a single pass build style (single layer thickness of about 0.0015 mil) (3.8 x 10-3 cm) using an Actua 2100 Concept Modeler. Under such conditions, an MLS of at least 16 is necessary to ensure that delamination will not occur. As can be seen from Table 7, the formulations reported therein all had MLS values of at least 16, whereas the formulation of the Comparative Example had an MLS value of 14, which is insufficient to prevent delamination and typical of a two-dimensional ink formulation.


Anspruch[de]
  1. Eine Phasenaustauschzusammensetzung, die bei Umgebungstemperatur ein Festkörper und bei einer erhöhten Temperatur über der Umgebungstemperatur eine Flüssigkeit ist angepasst zur Verwendung bei der selektiven Ablagerungsbildung zum Bilden eines dreidimensionalen Objektes, aufweisend eine halbkristalline Mischung von polaren und unpolaren Komponenten, wobei die halbkristalline Mischung einen Erstarrungspunkt von zumindest ungefähr 68°C, einen Schmelzpunkt von zumindest ungefähr 88°C und eine Viskosität von ungefähr 13 mPas (13 centipoise) bei 135°C aufweist.
  2. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, umfasst einen Erstarrungspunkt in dem Bereich von ungefähr 68°C bis ungefähr 71°C und einen Schmelzpunkt in dem Bereich von ungefähr 88°C bis ungefähr 91°C.
  3. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, umfasst eine Dehnung von zumindest ungefähr 14%.
  4. Die Phasenaustauschzusammensetzung gemäß Anspruch 3, umfasst eine Dehnung in dem Bereich von ungefähr 14% bis ungefähr 73%.
  5. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei zumindest zwei Wachse vorhanden sind, die einen Schmelzpunkt in dem Bereich ausgewählt aus der Gruppe bestehend aus 86°C bis 90°C, 91°C bis 94°C oder 90°C bis 97°C und 104°C bis 116°C aufweisen.
  6. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei sie zumindest drei Wachse umfasst, die Schmelzpunkte in dem Bereich ausgewählt aus der Gruppe bestehend aus 86°C bis 90°C, 91°C bis 94°C, 90°C bis 97°C und 104°C bis 116°C aufweisen.
  7. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei sie vier Wachse umfasst und die Schmelzpunkte der Wachse in den Bereichen von 86°C bis 90°C, 91°C bis 94°C, 90°C bis 97°C und 104°C bis 116°C liegen.
  8. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei die halbkristalline Mischung der Komponenten ein Tetraamid und eine Mehrzahl von Wachsen umfasst, wobei jedes Wachs der Mehrzahl von Wachsen einen anderen Schmelzpunkt als jedes andere Wachs in der Mehrzahl von Wachsen aufweist und wobei jedes Wachs einen Schmelzpunkt innerhalb des Bereiches von ungefähr 85°C bis ungefähr 130°C aufweist.
  9. Die Phasenaustauschzusammensetzung gemäß Anspruch 8, wobei jedes Wachs der Mehrzahl von Wachsen einen anderen Schmelzpunkt innerhalb des Bereiches von ungefähr 88°C bis ungefähr 110°C aufweist.
  10. Die Phasenaustauschzusammensetzung gemäß Anspruch 8, wobei sich das Verhältnis der kombinierten Gewichtsprozente der Mehrzahl der Wachse zu den Gewichtsprozenten des Tetraamids in der Mischung in einem Bereich von ungefähr 2 : 1 bis ungefähr 6 : 1 bewegt.
  11. Die Phasenaustauschzusammensetzung gemäß Anspruch 8, wobei jedes Wachs der Mehrzahl von Wachsen ein anderes Molekulargewicht als jedes andere Wachs der Mehrzahl von Wachsen aufweist und wobei jedes Wachs ein Molekulargewicht innerhalb des Bereichs von ungefähr 150 - 5000 aufweist.
  12. Die Phasenaustauschzusammensetzung gemäß Anspruch 8, wobei jedes Wachs der Mehrzahl von Wachsen ausgewählt ist aus der Gruppe bestehend aus Monoamid-Wachs, Petroleum-Wachs und synthetischem Wachs.
  13. Die Phasenaustauschzusammensetzung gemäß Anspruch 12, wobei das synthetische Wachs ausgewählt ist aus der Gruppe bestehend aus Polyethylen-Wachs und synthetisch verzweigtem Wachs.
  14. Die Phasenaustauschzusammensetzung gemäß Anspruch 13, wobei das synthetisch verzweigte Wachs ein Etyhlen-Propylen-Copolymer-Wachs ist.
  15. Eine Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei die halbkristalline Mischung der Komponenten weiterhin ein Tetraamid, ein Monoamid-Wachs, zumindest ein Wachs ausgewählt aus der Gruppe bestehend aus Petroleum-Wachsen und synthetischen Wachsen und ein Esterklebemittel umfasst.
  16. Die Phasenaustauschzusammensetzung gemäß Anspruch 15, wobei das Esterklebemittel ein modifiziertes Harzester ist.
  17. Die Phasenaustauschzusammensetzung gemäß Anspruch 16, wobei das modifizierte Harzester ein Glycerintriester einer hydrierten Kolophoniumsäure ist.
  18. Die Phasenaustauschzusammensetzung gemäß Anspruch 17, wobei sich das Verhältnis der Gewichtsprozente des Esterklebemittels zu den Gewichtsprozenten des Tetraamids in der Mischung in einem Bereich von ungefähr 0,5 : 1 bis ungefähr 5 : 1 bewegt.
  19. Die Phasenaustauschzusammensetzung gemäß Anspruch 15, wobei sich das Verhältnis der kombinierten Gewichtsprozente der Tetraamide und des Mono-amid-Wachses zu den Gewichtsprozenten des Esterklebemittels in der Mischung in einem Bereich von ungefähr 1 : 1 bis ungefähr 3 : 1 bewegt.
  20. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Esterklebemittel und ein Kohlenwasserstoffharzklebemittel umfasst.
  21. Die Phasenaustauschzusammensetzung gemäß Anspruch 20, wobei das Esterklebemittel ein modifiziertes Harzester und das Kohlenwasserstoffharzklebemittel ein aromatisches Harz auf einer Kohlenwasserstoffbasis ist.
  22. Die Phasenaustauschzusammensetzung gemäß Anspruch 21, wobei das modifizierte Harzester ein Glycerintriester einer hydrierten Kolophoniumsäure ist.
  23. Die Phasenaustauschzusammensetzung gemäß Anspruch 20, wobei sich das Verhältnis der Gewichtsprozente des Esterklebemittels zu den Gewichtsprozenten des Tetraamids in der Zusammensetzung in einem Bereich von ungefähr 0,5 : 1 bis ungefähr 5 : 1 bewegt.
  24. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Monoamid-Wachs und zumindest eine Esterkomponente zur Wasserstöffbrückenbindung mit dem Tetraamid und dem Monoamid-Wachs umfasst.
  25. Die Phasenaustauschzusammensetzung gemäß Anspruch 24, wobei die zumindest eine Esterkomponente ausgewählt ist aus der Gruppe bestehend aus Esterklebemitteln und Esterplastifizierern.
  26. Die Phasenaustauschzusammensetzung gemäß Anspruch 25, wobei das Esterklebemittel ein modifiziertes Harzester ist.
  27. Die Phasenaustauschzusammensetzung gemäß Anspruch 26, wobei das modifizierte Harzester ein Glycerintriester der hydrierten Kolophoniumsäure ist.
  28. Die Phasenaustauschzusammensetzung gemäß Anspruch 25, wobei der Esterplastifizierer ein Alkylbenzolphthalat ist.
  29. Die Phasenaustauschzusammensetzung gemäß Anspruch 24, wobei die zumindest eine Esterkomponente ein Esterklebemittel und einen Esterplastifizierer umfasst.
  30. Die Phasenaustauschzusammensetzung gemäß Anspruch 29, wobei das Esterklebemittel ein modifiziertes Harzester und der Esterplastifizierer ein Alkylbenzolphthalat ist.
  31. Die Phasenaustauschzusammensetzung gemäß Anspruch 30, wobei das modifizierte Harzester ein Glycerintriester der hydrierten Kolophoniumsäure ist.
  32. Die Phasenaustauschzusammensetzung gemäß Anspruch 24, wobei sich das Verhältnis der kombinierten Gewichtsprozente des Tetraamids und des Monoamidwachses zu den Gewichtsprozenten der Esterkomponente in der Zusammensetzung in einem Bereich von ungefähr 0,75 : 1 bis ungefähr 2,5 : 1 bewegt.
  33. Die Phasenaustauschzusammensetzung gemäß Anspruch 24, wobei sich das Verhältnis der kombinierten Gewichtsprozente des Tetraamids und des Monoamidwachses zu den Gewichtsprozenten des Esterklebemittel in der Zusammensetzung in einem Bereich von ungefähr 1 : 1 zu ungefähr 3 : 1 bewegt.
  34. Die Phasenaustauschzusammensetzung gemäß Anspruch 24, wobei zumindest zwei Wachse vorhanden sind, die Schmelzpunkte in dem Bereich von 86°C bis 90°C, 91°C bis 94°C, 90°C bis 97°C und 104°C bis 116°C aufweisen.
  35. Die Phasenaustauschzusammensetzung gemäß Anspruch 1, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Monoamid-Wachs und zumindest ein Wachs ausgewählt aus der Gruppe bestehend aus Petroleum-Wachsen und synthetischen Wachsen umfasst.
  36. Die Phasenaustauschzusammensetzung gemäß Anspruch 35 weiterhin aufweisend einen Plastifizierer.
  37. Die Phasenaustauschzusammensetzung gemäß Anspruch 35, wobei zumindest zwei Wachse vorhanden sind, die Schmelzpunkte in den Bereichen von 86°C bis 90°C, 91°C bis 94°C, 90°C bis 97°C und 104°C bis 116°C aufweisen.
  38. Die Phasenaustauschzusammensetzung gemäß einem der Ansprüche 1, 8, 15, 20, 24 und 35 weiter aufweisend zumindest ein Oxidationsinhibitor.
  39. Die Phasenaustauschzusammensetzung gemäß einem der Ansprüche 1, 8, 15, 20, 24 und 35 weiter aufweisend ein Färbemittel.
  40. Eine Phasenaustauschzusammensetzung, die bei Umgebungstemperatur ein Festkörper und bei einer erhöhten Temperatur oberhalb der Umgebungstemperatur eine Flüssigkeit ist und die zur Verwendung bei der selektiven Ablagerungsbildung angepasst ist, um ein dreidimensionales Objekt zu bilden, aufweisend: eine halbkristalline Mischung der Komponenten umfassend ein Tetraamid, ein Monoamid-Wachs, ein Petroleum-Wachs, ein Polyethylen-Wachs, ein Ethylen-Propylen-Copolymer-Wachs, ein modifiziertes Harzester, ein aromatisches Harz auf Kohlenwasserstoffbasis, ein Alkylbenzolphthalat, zumindest ein Oxidationsinhibitor und zumindest ein Färbemittel, wobei das Tetraamid zu einem Betrag von ungefähr 5 bis ungefähr 30 Gewichtsprozent vorhanden ist, das Monoamid-Wachs zu einem Betrag von ungefähr 15 bis ungefähr 40 Gewichtsprozent vorhanden ist, das Petroleum-Wachs zu einem Betrag von ungefähr 5 bis ungefähr 25 Gewichtsprozent vorhanden ist, das Polyethylen-Wachs zu einem Betrag von bis zu 15 Gewichtsprozent vorhanden ist, das Ethylen-Propylen-Copolymer-Wachs zu einem Betrag von bis zu ungefähr 10 Gewichtsprozent vorhanden ist, das modifizierte Harzester als ein Triester zu einem Betrag von ungefähr 10 bis ungefähr 40 Gewichtsprozent vorhanden ist, das aromatische Harz zu einem Betrag von bis zu 15 Gewichtsprozent vorhanden ist, das Alkylbenzolphthalat zu einem Betrag von bis zu ungefähr 10 Gewichtsprozent vorhanden ist, der oder jeder Oxidationsinhibitor zu einem Betrag von weniger als ungefähr 1 Gewichtsprozent vorhanden ist und das Färbemittel zu einem Betrag von nicht größer als ungefähr 2 Gewichtsprozent vorhanden ist, wobei alle Gewichtsprozente auf dem gesamten Gewicht der Zusammensetzung basieren.
  41. Die Phasenaustauschzusammensetzung gemäß Anspruch 40, wobei zumindest zwei vorhandene Wachse Schmelzpunkte in dem Bereich von 86°C bis 90°C, 91°C bis 94°C, 90°C bis 97°C und 104°C bis 116°C aufweisen.
  42. Ein Verfahren zur selektiven Ablagerungsbildung zum Bilden eines dreidimensionalen Objektes auf einer Schicht-für-Schicht-Basis die folgenden Schritte aufweisend:
    • (a)Bereitstellen eines Aufbaumaterials, das bei Umgebungstemperatur ein Festkörper und bei einer erhöhten Temperatur oberhalb der Umgebungstemperatur eine Flüssigkeit ist, wobei das Aufbaumaterial umfasst eine halbkristalline Mischung von polaren und unpolaren Komponenten mit einem Erstarrungspunkt von zumindest ungefähr 86°C, einem Schmelzpunkt von zumindest ungefähr 68°C und einer Viskosität von ungefähr 13 mPas (13 centipoise) bei ungefähr 135°C;
    • (b)Erhöhen der Temperatur des Aufbaumaterials auf eine Temperatur, die ausreichend ist, um zu bewirken, dass die Mischung flüssig wird;
    • (c) selektives Ausgeben des Materials bei einer erhöhten Temperatur, um eine Schicht des Materials als einen Querschnitt des dreidimensionalen Objektes zu bilden; und
    • (d)Verringern der Temperatur des ausgegebenen Materials um zumindest teilweise das Material zu verfestigen.
  43. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei das Aufbaumaterial einen Erstarrungspunkt in dem Bereich von ungefähr 86°C bis ungefähr 71°C und einen Schmelzpunkt in dem Bereich von ungefähr 88°C bis ungefähr 91°C aufweist.
  44. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung eine Dehnung von zumindest ungefähr 14% aufweist.
  45. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung eine Dehnung in dem Bereich von ungefähr 14% bis ungefähr 73% aufweist.
  46. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 45, wobei die halbkristalline Mischung der Komponenten weiter eine Mehrzahl von Wachsen umfasst, wobei jedes Wachs einen anderen Schmelzpunkt innerhalb des Bereiches von ungefähr 85°C bis ungefähr 130°C aufweist.
  47. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 46, wobei die halbkristalline Mischung der Komponenten ein Tetraamid umfasst und wobei sich das Verhältnis der kombinierten Gewichtsprozente der Mehrzahl von Wachsen zu den Gewichtsprozenten des Tetraamids in der Zusammensetzung in einem Bereich von ungefähr 2 : 1 bis ungefähr 6 : 1 bewegt.
  48. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Monoamid-Wachs, zumindest ein Wachs ausgewählt aus der Gruppe bestehend aus Petroleum-Wachsen und synthetischen Wachsen und ein Esterklebemittel umfasst.
  49. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Esterklebemittel und ein Kohlenwasserstoffharzklebemittel umfasst.
  50. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Monoamid-Wachs und zumindest eine Esterkomponente zur Wasserstoffbrückenbindung mit dem Tetraamid und dem Monoamid-Wachs aufweist.
  51. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Monoamid-Wachs, zumindest ein Wachs ausgewählt aus der Gruppe bestehend aus Petroleum-Wachsen und synthetischen Wachsen und einem Plastifizierer aufweist.
  52. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 42, wobei die halbkristalline Mischung der Komponenten ein Tetraamid, ein Monoamid-Wachs, ein Petroleum-Wachs, ein Polyethylen-Wachs, ein Ethylen-Propylen-Copolymer-Wachs, ein modifiziertes Harzester, ein aromatisches Harz auf Kohlenwasserstoffbasis, ein Alkylbenzolphthalat, zumindest ein Oxidationsinhibitor und zumindest ein Färbemittel umfasst.
  53. Das Verfahren zur selektiven Ablagerungsbildung gemäß Anspruch 52, wobei das Tetraamid zu einem Betrag von ungefähr 5 bis ungefähr 30 Gewichtsprozent vorhanden ist, das Monoamid-Wachs zu einem Betrag von ungefähr 15 bis ungefähr 40 Gewichtsprozent vorhanden ist, das Petroleum-Wachs zu einem Betrag von ungefähr 5 bis ungefähr 25 Gewichtsprozent vorhanden ist, das Polyethylen-Wachs zu einem Betrag von bis zu ungefähr 15 Gewichtsprozent vorhanden ist, das Ehtylen-Propylen-Copolymer-Wachs zu einem Betrag von bis zu ungefähr 10 Gewichtsprozent vorhanden ist, das modifizierte Harzester als ein Triester zu einem Betrag von ungefähr 10 bis ungefähr 40 Gewichtsprozent vorhanden ist, das aromatische Harz zu einem Betrag von bis zu ungefähr 15 Gewichtsprozent vorhanden ist, das Alkylbenzolphthalat zu einem Betrag von bis zu ungefähr 10 Gewichtsprozent vorhanden ist, der oder jeder Oxidationsinhibitor zu einem Betrag von weniger als ungefähr 1 Gewichtsprozent vorhanden ist und das Färbemittel zu einem Betrag von nicht mehr als ungefähr 2 Gewichtsprozent vorhanden ist, wobei alle Gewichtsprozente auf dem gesamten Gewicht des Aufbaumaterials basieren.
Anspruch[en]
  1. A phase change composition that is a solid at ambient temperature and a liquid at an elevated temperature above ambient temperature, adapted for use in selective deposition modeling to form a three-dimensional object, comprising a semi-crystalline mixture of polar and non-polar components, the semi-crystalline mixture having a freezing point of at least about 68° C., a melting point of at least about 88° C., and a viscosity of about 13mPas (13 centipoise) at 135° C.
  2. The phase change composition according to claim 1, having a freezing point in the range of about 68° C. to about 71° C. and a melting point in the range of about 88° C. to about 91°C.
  3. The phase change composition according to claim 1, having an elongation of at least about 14%.
  4. The phase change composition according to claim 3, having an elongation in the range of about 14% to about 73%.
  5. The phase change composition according to claim 1, wherein there are at least two waxes present which have melting points in the range selected from the group consisting of: 86° C. to 90° C., 91° C. to 94° C., or 90° C. to 97° C., and 104° C. to 116° C.
  6. The phase change composition according to claim 1, wherein there are at least three waxes present which have melting points in the range selected from the group consisting of: 86° C. to 90° C., 91° C. to 94° C., 90° C. to 97° C., and 104° C. to 116° C.
  7. The phase change composition according to claim 1, wherein there are four waxes present and the melt points of the waxes are in the ranges of 86° C. to 90° C., and 91° C. to 94° C., and 90° C. to 97° C., and 104° C. to 116° C.
  8. The phase change composition according to claim 1, wherein the semi-crystalline mixture of components includes a tetra-amide and a plurality of waxes, wherein each wax of the plurality of waxes has a different melting point than each other wax in the plurality of waxes, and each wax has a melting point within the range from about 85° C. to about 130°C.
  9. The phase change composition according to claim 8, wherein each wax of the plurality of waxes has a different melting point within the range from about 88° C. to about 110° C.
  10. The phase change composition according to claim 8, wherein the ratio of the combined weight percentages of the plurality of waxes to the weight percentage of the tetra-amide in the composition ranges from about 2:1 to about 6:1.
  11. The phase change composition according to claim 8, wherein each wax of the plurality of waxes has a different molecular weight than each other wax of the plurality of waxes, and each wax has a molecular weight within the range from about 150 to about 5000.
  12. The phase change composition according to claim 8, wherein each wax of the plurality of waxes is selected from the group consisting of mono-amide wax, petroleum wax and synthetic wax.
  13. The phase change composition according to claim 12, wherein the synthetic wax is selected from the group consisting of polyethylene wax and synthetic branched wax.
  14. The phase change composition according to claim 13, wherein the synthetic branched wax is an ethylene-propylene copolymer wax.
  15. A phase change composition according to claim 1, wherein the semi-crystalline mixture of components further includes a tetra-amide, a mono-amide wax, at least one wax selected from the group consisting of petroleum waxes and synthetic waxes, and an ester tackifier.
  16. The phase change composition according to claim 15, wherein the ester tackifier is a modified rosin ester.
  17. The phase change composition according to claim 16, wherein the modified rosin ester is a glycerol tri-ester of hydrogenated abietic acid.
  18. The phase change composition according to claim 17, wherein the ratio of the weight percentage of the ester tackifier to the weight percentage of the tetra-amide in the composition ranges from about 0.5:1 to about 5:1.
  19. The phase change composition according to claim 15, wherein the ratio of the combined weight percentages of the tetra-amide and the mono-amide wax to the weight percentage of the ester tackifier in the composition ranges from about 1:1 to about 3:1.
  20. The phase change composition according to claim 1, wherein the semi-crystalline mixture of components includes a tetra-amide, an ester tackifier and a hydrocarbon resin tackifier.
  21. The phase change composition according to claim 20, wherein the ester tackifier is a modified rosin ester and the hydrocarbon resin tackifier is a hydrocarbon based aromatic resin.
  22. The phase change composition according to claim 21, wherein the modified rosin ester is a glycerol tri-ester of hydrogenated abietic acid.
  23. The phase change composition according to claim 20, wherein the ratio of the weight percentage of the ester tackifier to the weight percentage of the tetra-amide in the composition ranges from about 0.5:1 to about 5:1.
  24. The phase change composition according to claim 1, wherein the semi-crystalline mixture of components includes a tetra-amide, a mono-amide wax and at least one ester component for hydrogen-bonding with the tetra-amide and the mono-amide wax.
  25. The phase change composition according to claim 24, wherein the at least one ester component is selected from the group consisting of ester tackifiers and ester plasticizers.
  26. The phase change composition according to claim 25, wherein the ester tackifier is a modified rosin ester.
  27. The phase change composition according to claim 26, wherein the modified rosin ester is a glycerol tri-ester of hydrogenated abietic acid.
  28. The phase change composition according to claim 25, wherein the ester plasticizer is an alkyl benzene phthalate.
  29. The phase change composition according to claim 24, wherein the at least one ester component comprises an ester tackifier and an ester plasticizer.
  30. The phase change composition according to claim 29, wherein the ester tackifier is a modified rosin ester and the ester plasticizer is an alkyl benzene phthalate.
  31. The phase change composition according to claim 30, wherein the modified rosin ester is a glycerol tri-ester of hydrogenated abietic acid.
  32. The phase change composition according to claim 24, wherein the ratio of the combined weight percentages of the tetra-amide and the mono-amide wax to the weight percentage of the ester component in the composition ranges from about 0.75:1 to about 2.5:1.
  33. The phase change composition according to claim 24, wherein the ratio of the combined weight percentages of the tetra-amide and the mono-amide wax to the weight percentage of the ester tackifier in the composition ranges from about 1:1 to about 3:1.
  34. The phase change composition according to claim 24, wherein there are at least two waxes present which have melting points in the range of 86° C. to 90° C., and 91° C. to 94° C., and 90° C. to 97° C., and 104° C. to 116° C.
  35. The phase change composition according to claim 1, wherein the semi-crystalline mixture of components includes a tetra-amide, a mono-amide wax, and at least one wax selected from the group consisting of petroleum waxes and synthetic waxes.
  36. The phase change composition according to claim 35, further comprising a plasticizer.
  37. The phase change composition according to claim 35, wherein there are at least two waxes present which have melting points in the range of 86° C. to 90° C., and 91° C. to 94° C., and 90° C. to 97° C., and 104° C. to 116° C.
  38. The phase change composition according to any one of claims 1, 8, 15,20,24 and 35, further comprising at least one antioxidant.
  39. The phase change composition according to any one of claims 1, 8, 15, 20, 24 and 35, further comprising a colorant.
  40. A phase change composition that is a solid at ambient temperature and a liquid at an elevated temperature above ambient temperature, adapted for use in selective deposition modeling to form a three-dimensional object, comprising a semi-crystalline mixture of components including a tetra-amide, a mono-amide wax, a petroleum wax, a polyethylene wax, an ethylene-propylene copolymer wax, a modified rosin ester, a hydrocarbon based aromatic resin, an alkyl benzene phthalate, at least one antioxidant and at least one colorant, wherein the tetra-amide is present in an amount of about 5% to about 30% by weight, the mono-amide wax is present in an amount of about 15% to about 40% by weight, the petroleum wax is present in an amount of about 5% to about 25% by weight, the polyethylene wax is present in an amount of up to about 15% by weight, the ethylene-propylene copolymer wax is present in an amount of up to about 10% by weight, the modified resin ester is present as a tri-ester in an amount of about 10% to about 40% by weight, the aromatic resin is present in an amount of up to about 15% by weight, the alkyl benzene phthalate is present in an amount of up to about 10% by weight, the or each antioxidant is present in an amount of less than about 1% by weight, and the colorant is present in an amount of no greater than about 2% by weight, all weight percentages being based on the total weight of the composition.
  41. The phase change composition according to claim 40, wherein at least two waxes present have melting points in the range of 86° C. to 90° C., and 91 ° C. to 94° C., and 90° C. to 97° C., and 104° C. to 116° C.
  42. A selective deposition modeling method for forming a three-dimensional object on a layer-by-layer basis comprising the steps of:
    • (a) providing a building material that is a solid at ambient temperature and a liquid at an elevated temperature above the ambient temperature, the building material comprising a semi-crystalline mixture of polar and non-polar components having a freezing point of at least about 68° C., a melting point of at least about 88° C., and a viscosity of about 13mPas (13 centipoise) at about 135° C.;
    • (b) elevating the temperature of the building material to a temperature sufficient to cause the mixture to become liquid;
    • (c) selectively dispensing the material at the elevated temperature to form a layer of the material as a cross-section of the three-dimensional object; and
    • (d) lowering the temperature of the dispensed material to at least partially solidify the material.
  43. The selective deposition modeling method according to claim 42, wherein the building material has a freezing point in the range of about 68° C. to about 71° C. and a melting point in the range of about 88° C. to about 91° C.
  44. The selective deposition modeling method according to claim 42, wherein the semi-crystalline mixture has an elongation of at least about 14%.
  45. The selective deposition modeling method according to claim 42, wherein the semi-crystalline mixture has an elongation in the range of about 14% to about 73%.
  46. The selective deposition modeling method according to claim 45, wherein the semi-crystalline mixture of components further includes a plurality of waxes each having a different melting point within the range from about 85° C. to about 130° C.
  47. The selective deposition modeling method according to claim 46, wherein the semi-crystalline mixture of components includes a tetra-amide and the ratio of the combined weight percentages of the plurality of waxes to the weight percentage of the tetra-amide in the composition ranges from about 2:1 to about 6:1.
  48. The selective deposition modeling method of claim 42, wherein the semi-crystalline mixture of components includes a tetra-amide, a mono-amide wax, at least one wax selected from the group consisting of petroleum waxes and synthetic waxes, and an ester tackifier
  49. The selective deposition modeling method of claim 42, wherein the semi-crystalline mixture of components includes a tetra-amide, an ester tackifier and a hydrocarbon resin tackifier.
  50. The selective deposition modeling method of claim 42, wherein the semi-crystalline mixture of components includes a tetra-amide, a mono-amide wax and at least one ester component for hydrogen-bonding with the tetra-amide and the mono-amide wax.
  51. The selective deposition modeling method of claim 42 wherein the semi-crystalline mixture of components includes a tetra-amide, a mono-amide wax, at least one wax selected from the group consisting of petroleum waxes and synthetic waxes, and a plasticizer.
  52. The selective deposition modeling method according to claim 42 wherein the semi-crystalline mixture of components includes a tetra-amide, a mono-amide wax, a petroleum wax, a polyethylene wax, an ethylene-propylene copolymer wax, a modified rosin ester, a hydrocarbon based aromatic resin, an alkyl benzene phthalate, at least one antioxidant and at least one colorant.
  53. The selective deposition modeling method according to claim 52, wherein the tetra-amide is present in an amount of about 5% to about 30% by weight, the mono-amide wax is present in an amount of about 15% to about 40% by weight, the petroleum wax is present in an amount of about 5% to about 25% by weight, the polyethylene wax is present in an amount of up to about 15% by weight, the ethylene-propylene copolymer wax is present in an amount of up to about 10% by weight, the modified resin ester is present as a tri-ester in an amount of about 10% to about 40% by weight, the aromatic resin is present in an amount of up to about 15% by weight, the alkyl benzene phthalate is present in an amount of up to about 10% by weight, the or each antioxidant in an amount of less than about 1% by weight, and the colorant is present in an amount of no greater than about 2% by weight, all weight percentages being based on the total weight of the building material.
Anspruch[fr]
  1. Composition à changement de phase, qui est solide à la température ambiante et liquide à une température élevée supérieure à la température ambiante, adaptée à une utilisation en modélisation par dépôt sélectif pour former un objet tridimensionnel, comprenant un mélange semi-cristallin de composants polaires et de composants non polaires, le mélange semi-cristallin ayant un point de congélation d'au moins environ 68°C, un point de fusion d'au moins environ 88°C et une viscosité à 135°C d'environ 13 mPa.s (13 centipoises).
  2. Composition à changement de phase selon la revendication 1, qui a un point de congélation compris dans la plage d'environ 68 à environ 71°C et un point de fusion compris dans la plage d'environ 88 à environ 91°C.
  3. Composition à changement de phase selon la revendication 1, qui a une allongement d'au moins environ 14 %.
  4. Composition à changement de phase selon la revendication 3, qui a un allongement compris dans la plage d'environ 14 à environ 73 %.
  5. Composition à changement de phase selon la revendication 1, dans laquelle au moins deux cires sont présentes, qui ont des points de fusion compris dans les plages de 86 à 90°C, de 91 à 94°C ou de 90 à 97°C et de 104 à 116°C.
  6. Composition à changement de phase selon la revendication 1, dans laquelle au moins trois cires sont présentes, qui ont des points de fusion compris dans les plages de 86 à 90°C, de 91 à 94°C, de 90 à 97°C et de 104 à 116°C.
  7. Composition à changement de phase selon la revendication 1, dans laquelle quatre cires sont présentes, les points de fusion des cires étant compris dans les plages de 86 à 90°C et de 91 à 94°C et de 90 à 97°C et de 104 à 116°C.
  8. Composition à changement de phase selon la revendication 1, dans laquelle le mélange semi-cristallin de composants comprend un tétramide et une pluralité de cires, chaque cire de la pluralité de cires ayant un point de fusion différent de chacune des autres cires de la pluralité de cires, et chaque cire ayant un point de fusion compris dans la plage d'environ 85 à environ 130°C.
  9. Composition à changement de phase selon la revendication 8, dans laquelle chaque cire de la pluralité de cires a un point de fusion différent, compris dans la plage d'environ 88 à environ 110°C.
  10. Composition à changement de phase selon la revendication 8, dans laquelle le rapport entre le pourcentage pondéral combiné de la pluralité de cires et le pourcentage pondéral du tétramide dans la composition es compris dans la plage d'environ 2:1 à environ 6:1.
  11. Composition à changement de phase selon la revendication 8, dans laquelle chaque cire de la pluralité de cires a une masse moléculaire différente de celle de chacune des autres cires de la pluralité de cires, chaque cire ayant une masse moléculaire comprise dans la plage d'environ 150 à environ 5000.
  12. Composition à changement de phase selon la revendication 8, dans laquelle chaque cire de la pluralité de cires est choisie dans l'ensemble comprenant les cires de monoamide, les cires de pétrole et les cires synthétiques.
  13. Composition à changement de phase selon la revendication 12, dans laquelle la cire synthétique est choisie dans l'ensemble comprenant les cires de polyéthylène et les cires synthétiques ramifiées.
  14. Composition à changement de phase selon la revendication 13, dans laquelle la cire synthétique ramifiée est une cire d'un copolymère éthylène-propylène.
  15. Composition à changement de phase selon la revendication 1, dans laquelle le mélange semi-cristallin de composants comprend en outre un tétramide, une cire de monoamide, au moins une cire choisie dans l'ensemble comprenant les cires de pétrole et les cires synthétiques, et un tackifiant de type ester.
  16. Composition à changement de phase selon la revendication 15, dans laquelle le tackifiant de type ester est un ester de colophane modifié.
  17. Composition à changement de phase selon la revendication 16, dans laquelle l'ester de colophane modifié est un triester du glycérol de l'acide abiétique hydrogéné.
  18. Composition à changement de phase selon la revendication 17, dans laquelle le rapport entre le pourcentage pondéral du tackifiant de type ester et le pourcentage pondéral du tétramide dans la composition est compris dans la plage d'environ 0,5:1 à environ 5:1.
  19. Composition à changement de phase selon la revendication 15, dans laquelle le rapport entre le pourcentage pondéral combiné du tétramide et la cire de mono-amide et le pourcentage pondéral du tackifiant de type ester dans la composition est compris dans la plage d'environ 1:1 à environ 3:1.
  20. Composition à changement de phase selon la revendication 1, dans laquelle le mélange semi-cristallin de composants comprend un tétramide, un tackifiant de type ester et un tackifiant de type résine hydrocarbonée.
  21. Composition à changement de phase selon la revendication 20, dans laquelle le tackifiant de type ester est un ester de colophane modifié et le tackifiant de type résine hydrocarbonée est une résine aromatique à base hydrocarbonée.
  22. Composition à changement de phase selon la revendication 21, dans laquelle l'ester de colophane modifié est un triester du glycérol de l'acide abiétique hydrogéné.
  23. Composition à changement de phase selon la revendication 20, dans laquelle le rapport entre le pourcentage pondéral du tackifiant de type ester et le pourcentage pondéral du tétramide dans la composition est compris dans la plage de 0,5:1 à environ 5:1.
  24. Composition à changement de phase selon la revendication 1, dans laquelle le mélange semi-cristallin de composants comprend un tétramide, une cire de mono-amide et au moins un composant ester pour assurer une liaison hydrogène avec le tétramide et la cire de mono-amide.
  25. Composition à changement de phase selon la revendication 24, dans laquelle le ou les composants de type ester sont choisis dans l'ensemble comprenant les tackifiants de type ester et les plastifiants de type ester.
  26. Composition à changement de phase selon la revendication 25, dans laquelle le tackifiant de type ester est un ester de colophane modifié.
  27. Composition à changement de phase selon la revendication 26, dans laquelle l'ester de colophane modifié est un triester du glycérol de l'acide abiétique hydrogéné.
  28. Composition à changement de phase selon la revendication 25, dans laquelle le plastifiant de type ester est un alkylbenzènephtalate.
  29. Composition à changement de phase selon la revendication 24, dans laquelle le ou les composants de type ester comprennent un tackifiant de type ester et un plastifiant de type ester.
  30. Composition à changement de phase selon la revendication 29, dans laquelle le tackifiant de type ester est un ester de colophane modifié, et le plastifiant de type ester est un alkylbenzènephtalate.
  31. Composition à changement de phase selon la revendication 30, dans laquelle l'ester de colophane modifié est un triester du glycérol de l'acide abiétique hydrogéné.
  32. Composition à changement de phase selon la revendication 24, dans laquelle le rapport entre le pourcentage pondéral combiné du tétramide et de la cire de monoamide et le pourcentage pondéral du composant de type ester dans la composition est compris dans la plage d'environ 0,75:1 et environ 2,5:1.
  33. Composition à changement de phase selon la revendication 24, dans laquelle le rapport entre le pourcentage pondéral combiné du tétramide et de la cire de monoamide et le pourcentage pondéral du tackifiant de type ester dans la composition est compris dans la plage d'environ 1:1 à environ 3:1.
  34. Composition à changement de phase selon la revendication 24, dans laquelle au moins deux cires sont présentes, qui ont des points de fusion compris dans les plages de 86 à 90°C et de 91 à 94°C et de 90 à 107°C et de 104 à 116°C.
  35. Composition à changement de phase selon la revendication 1, dans laquelle le mélange semi-cristallin de composants comprend un tétramide, une cire de mono-amide et au moins une cire choisie dans l'ensemble comprenant les cires de pétrole et les cires synthétiques.
  36. Composition à changement de phase selon la revendication 35, qui comprend en outre un plastifiant.
  37. Composition à changement de phase selon la revendication 35, dans laquelle au moins deux cires sont présentes, qui ont des points de fusion compris dans les plages de 86 à 90°C et de 91 à 94°C et de 90 à 97°C et de 104 à 116°C.
  38. Composition à changement de phase selon l'une quelconque des revendications 1, 8, 15, 20, 24 et 35, qui comprend en outre au moins un antioxydant.
  39. Composition à changement de phase selon l'une quelconque des revendications 1, 8, 15, 20, 24 et 35, qui comprend en outre une substance colorante.
  40. Composition à changement de phase qui est solide à la température ambiante et qui est liquide à une température élevée au-delà de la température ambiante, adaptée à une utilisation en modélisation par dépôt sélectif pour former un objet tridimensionnel, qui comprend un mélange semi-cristallin de composants comprenant un tétramide, une cire de monoamide, une cire de pétrole, une cire de polyéthylène, une cire d'un copolymère éthylène-propylène, un ester de colophane modifié, une résine aromatique à base hydrocarbonée, un alkylbenzènephtalate, au moins un antioxydant et au moins une substance colorante, dans laquelle le tétramide est présent en une quantité d'environ 5 à environ 30 % en poids, la cire de monoamide est présente en une quantité d'environ 15 à environ 40 % en poids, la cire de pétrole est présente en une quantité d'environ 5 à environ 25 % en poids, la cire de polyéthylène est présente en une quantité allant jusqu'à environ 15 % en poids, la cire d'un copolymère éthylène-propylène est présente en une quantité allant jusqu'à environ 10 % en poids, l'ester de colophane modifié est présent sous forme d'un triester en une quantité d'environ 10 à environ 40 % en poids, la résine aromatique est présente en une quantité allant jusqu'à environ 15 % en poids, l'alkylbenzènephtalate est présent en une quantité allant jusqu'à environ 10 % en poids, le ou chaque antioxydant est présent en une quantité inférieure à environ 1 % en poids, et la substance colorante est présente en une quantité non supérieure à environ 2 % en poids, tous les pourcentages pondéraux étant rapportés au poids total de la composition.
  41. Composition à changement de phase selon la revendication 40, dans laquelle au moins deux cires sont présentes, qui ont des points de fusion compris dans les plages de 86 à 90°C et de 91 à 94°C et de 90 à 97°C et de 104 à 116°C.
  42. Procédé de modélisation par dépôt sélectif pour former un objet tridimensionnel couche par couche, qui comprend les étapes consistant :
    • (a) à mettre à disposition un matériau de construction qui est solide à la température ambiante et liquide à une température élevée supérieure à la température ambiante, le matériau de construction comprenant un mélange semi-cristallin de composants polaires et de composants non polaires ayant un point de congélation d'au moins environ 68°C, un point de fusion d'au moins environ 88°C et une viscosité à environ 135°C d'environ 13 mPa.s (13 centipoises) ;
    • (b) à élever la température du matériau de construction à une température suffisante pour amener le mélange à devenir liquide ;
    • (c) à distribuer sélectivement le matériau à la température élevée pour former une couche du matériau sous forme d'une section transversale de l'objet tridimensionnel ; et
    • (d) à abaisser la température du matériau distribué, pour au moins partiellement solidifier le matériau.
  43. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le matériau de construction a un point de congélation compris dans la plage d'environ 68 à environ 71°C et un point de fusion compris dans la plage d'environ 88 à environ 91°C.
  44. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin a un allongement d'au moins environ 14 %.
  45. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin a un allongement compris dans la plage d'environ 14 à environ 73 %.
  46. Procédé de modélisation par dépôt sélectif selon la revendication 45, dans lequel le mélange semi-cristallin de composants comprend en outre une pluralité de cires ayant chacune un point de fusion différent compris dans la plage d'environ 85 à environ 130°C.
  47. Procédé de modélisation par dépôt sélectif selon la revendication 46, dans lequel le mélange semi-cristallin de composants comprend un tétramide, et le rapport entre le pourcentage pondéral combiné de la pluralité de cires et le pourcentage pondéral du tétramide dans la composition est compris dans la plage d'environ 2:1 à environ 6:1.
  48. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin de composants comprend un tétramide, une cire de monoamide, au moins une cire choisie dans l'ensemble comprenant les cires de pétrole et les cires synthétiques, et un tackifiant de type ester.
  49. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin de composants comprend un tétramide, un tackifiant de type ester et un tackifiant de type résine hydrocarbonée.
  50. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin de composants comprend un tétramide, une cire de monoamide et au moins un composant de type ester pour assurer une liaison hydrogène avec le tétramide et la cire de mono-amide.
  51. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin de composants comprend un tétramide, une cire de monoamide, au moins une cire choisie dans l'ensemble comprenant les cires de pétrole et les cires synthétiques, et un plastifiant.
  52. Procédé de modélisation par dépôt sélectif selon la revendication 42, dans lequel le mélange semi-cristallin de composants comprend un tétramide, une cire de monoamide, une cire de pétrole, une cire de polyéthylène, une cire d'un copolymère éthylène-propylène, un ester de colophane modifié, une résine aromatique à base hydrocarbonée, un alkylbenzènephtalate, au moins un antioxydant et au moins une substance colorante.
  53. Procédé de modélisation par dépôt sélectif selon la revendication 52, dans lequel le tétramide est présent en une quantité d'environ 5 à environ 30 % en poids, la cire de monoamide est présente en une quantité d'environ 15 à environ 40 % en poids, la cire de pétrole est présente en une quantité d'environ 5 à environ 25 % en poids, la cire de polyéthylène est présente en une quantité allant jusqu'à environ 15 % en poids, la cire d'un copolymère éthylène-propylène est présente en une quantité allant jusqu'à environ 10 % en poids, l'ester de colophane modifié est présent sous forme d'un triester en une quantité d'environ 10 à environ 40 % en poids, la résine aromatique est présente en une quantité allant jusqu'à environ 15 % en poids, l'alkylbenzènephtalate est présent en une quantité allant jusqu'à environ 10 % en poids, le ou chaque antioxydant est présent en une quantité inférieure à environ 1 % en poids, et la substance colorante est présente en une quantité non supérieure à environ 2 % en poids, tous les pourcentages pondéraux étant rapportés au poids total du matériau de construction.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com