PatentDe  


Dokumentenidentifikation EP1135215 10.04.2003
EP-Veröffentlichungsnummer 1135215
Titel SYSTEM ZUM AUFTRAG VON HEISSSCHMELZMATERIALIEN MIT EINER HOCHTEMPERATURBESTÄNDIGEN DRUCKSTEUERUNG UND EINEM GEHEIZTEN, REZIRKULIERENDEN VERTEILER
Anmelder Nordson Corp., Westlake, Ohio, US
Erfinder ROOS, P., John, Wakeman, US;
LOPARO, A., Thomas, Sheffield Lake, US;
PALMER, L., William, Lakewood, US;
WARYU, C., Joseph, Amherst, US;
STEWART, P., Stephen, Stockton, US;
NAGY, F., Charles, North Ridgeville, US;
BORDERS, L., Lenzie, Cleveland Heights, US;
DILLON, C., John, Lorain, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69905756
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 29.10.1999
EP-Aktenzeichen 999568017
WO-Anmeldetag 29.10.1999
PCT-Aktenzeichen PCT/US99/25540
WO-Veröffentlichungsnummer 0000032318
WO-Veröffentlichungsdatum 08.06.2000
EP-Offenlegungsdatum 26.09.2001
EP date of grant 05.03.2003
Veröffentlichungstag im Patentblatt 10.04.2003
IPC-Hauptklasse B05C 5/04
IPC-Nebenklasse B05B 1/24   B05B 9/00   B05C 5/00   

Beschreibung[en]
Background

The present invention pertains generally to automated materials applications systems and, more particularly, to automated systems adapted for application of hot melt materials which must be heated to high temperatures in order to flow through applications equipment.

Automated material applications systems for hot melt materials typically have a pump which draws material from a reservoir, and directs it through a heated manifold to one or more application devices such as spray guns. The spray guns are controlled or triggered to apply the material to a substrate at a desired rate and pattern. In the case of hot melt materials, i.e., materials which are fluid only at relatively high temperatures, the material must be heated continuously throughout the system in order to insure adequate flow and application. This may be done by heating the material within the reservoir, heating the reservoir directly, using a heated manifold which is connected to the reservoir to preheat the material before it is pumped through a heated line, and attaching a secondary manifold to the gun application device.

In such systems it is helpful to be able to closely monitor and regulate temperature and pressure of the material. In more complex systems with large or multiple reservoirs, and with multiple application devices and separate lines leading to the application devices, monitoring and regulating material temperature and pressure and application rate is more problematic. Non-uniformities in material temperature and pressures throughout the system can produce flaws in the applied coatings. For example, in systems which employ piston pumps to pump material from a reservoir and through a manifold to an applicator such as a spray gun, pressure spikes are created during the power or compression stroke of the pump. This adversely affects the application or distribution of material from the spray gun applicator. The pressure spike problem is compounded if multiple guns are connected to a single manifold of a hot melt unit. Improved systems are needed which perform uniform and consistent material heating from reservoir to spray gun, and which create equal and constant pressures in each of the application devices. Improvements are also needed in the area of monitoring and controlling temperature and pressure for each application device.

EP-A-0562888 discloses an apparatus for applying coating material to inner surfaces of cans with a coating material spray gun mounted on a manifold block. Heated coating material is supplied to the manifold block and may be recirculated therefrom.

Summary of the Invention

The invention provides a system for supplying heated material and applying it to a substrate, wherein the system includes a hot melt unit which heats and pumps material from a material reservoir through at least one material output line, each said material output line being connected to a device manifold, each said device manifold being connected to a material application device, said heated material being applied by said material application device to said substrate, characterised in that each said device manifold includes a flow restricting orifice and a pressure transducer, said heated material flowing from said material output line and through said orifice of said device manifold and into said material application device, and in that said transducer has a sensing face exposed to the flow of said heated material.

The present invention provides an improved automated system for applying hot melt materials in a continuous manner wherein hot melt material may be uniformly heated and pressurized for controlled application to a substrate, and wherein pressure in each application device may be individually monitored. The system is usable applying hot melt materials in liquid form wherein the materials to be applied must be heated, for example to within an approximate temperature range of 100°F to 400°F (37.78-204.44°C) or greater (also referred to herein generally as "high temperature") and pumped from a reservoir to an application device such as a spray gun. The system includes a hot melt unit having a material pump connected to a material reservoir. The hot melt unit has a manifold with an output connected to an application device such as one or more spray guns. The application device has a material passageway which leads to a nozzle, and a device manifold attached to the body of the application device. The device manifold has a material passageway connected to the material passageway of the application device and connected to an output from the hot melt unit.

In one preferred embodiment the device manifold has a sensor cavity, and a pressure sensor in the sensor cavity operative to sense pressure of material flowing through the device manifold and the application device.

In another preferred embodiment, a heated recirculating manifold is connected to the hot melt unit and to the application device in such a manner that material pumped from the hot melt unit passes through the heated recirculating manifold prior to reaching the application device. The heated recirculating manifold has a manifold body with a material passageway, an entry port to the material passageway connected to an output of the hot melt unit, an exit port from the material passageway connected to the application device, a recirculating exit port from the material passageway connected to the hot melt unit, a heating element in thermal communication with the body of the manifold, a pressure regulator associated with the material passageway between the entry port and exit port, and a recirculation control valve associated with the material passageway and the recirculation exit port.

These and other aspects of the invention are further described herein in detail with reference to the accompanying Figures.

Brief Description of the Figures

In the accompanying Figures:

  • FIG. 1 is a schematic diagram of a hot melt material application system of the present invention;
  • FIG. 2 is a cross-sectional view of a spray gun material application device and associated connections of the present invention;
  • FIG. 2A is an alternative embodiment of the cross-sectional view of the spray gun material application device and associated connections of FIG. 2;
  • FIG. 2B is a part cross-sectional view of the FIG. 2A embodiment taken along section line 2B - 2B;
  • FIG. 3 is a schematic diagram of an automated material application system which includes spray pressure control heated recirculating manifolds of the present invention, and
  • FIG. 4 is a schematic diagram of an alternate embodiment of an automated material application system which includes spray pressure control heated recirculating manifolds of the present invention.

Detailed Description of Preferred and Alternate Embodiments of the Invention

FIG. 1 schematically illustrates an automated hot melt material application system, indicated generally at 100. The system 100 includes a hot melt unit 102, which may be, for example, a Nordson Series 3000 product. The hot melt unit functions in part to heat a material to be applied to within an approximate temperature range of 37.78 to 204.44°C (100°F to 400°F) or greater, which is defined herein as "high temperature". The hot melt unit 102 includes a pumping device 104 which may be a gear pump or piston pump connected to pump hot melt material from a reservoir 115 to a heated manifold 106. Material exits from the manifold 106 through a heated hose 110. The heated hose 110 runs from the hot melt unit 102 to one or more application devices 120, which may be for example a controlled spray gun, such as a Nordson E-201 spray gun, or any other type of suitable material application device. In a typical automated applications system, the application devices are located within a chamber or booth B through which parts P to be coated are passed by a conveyor. Attached to the application device 120 is a device manifold 122, which is preferably a heated manifold when used with a hot melt material. The application device 120 and device manifold 122 are sometimes referred to collectively herein as the "gun" or "gun assembly" or "application device". A temperature controller 108 of the hot melt unit 102 is connected by line 109 to the device manifold 122.

A main controller 130, connected to the application devices 120 by line 132, functions to monitor the state of each of the application devices 120, including such parameters as temperature, pressure, duration and timing of on and off conditions, and flow states (e.g. clogged, unclogged) of spray nozzles on the application devices. This type of application device system monitoring is described in U.S. Patent Nos. 4,430,886 and 5,481,260.

A gun driver 140 is connected by line(s) 142 to each of the application devices 120. The gun driver 140 functions to control operational states of the application devices 120 as is known in the art.

As shown in FIG. 2, a sensor, such as a high temperature pressure transducer 134 is operatively connected to or otherwise attached or physically associated with the device manifold 122, also referred to herein as a "heated element" or "heated manifold". In this particular embodiment, the transducer 134 includes a sensing face 137 and a fitting 135 which is thread-engaged in an opening or sensor cavity 123 in manifold 122 (an alternative embodiment for the mounting and location of transducer 134 in manifold 122 is shown in FIGs. 2A and 2B and further described below). Cavity 123 communicates with passageway 125. In the FIG. 2 embodiment, the sensing element or sensing face of the transducer 137, is recessed in cavity 123 relative to passageway 125. Hose 110 includes a fitting 111 which is connected to an opening or intake/entry port to passageway 125. A feeder passageway 121 in the body 124 of application device 120 is aligned with passageway 125.

A calibrated orifice 112 in an orifice plate 113 within heated hose fitting 111 causes a change in pressure, such as for example, a pressure drop in material as it flows through passageway 125 of the device manifold 122 into passageway 121 in gun body 124, and ultimately to the gun nozzle 126. Alternatively, the passageway 125 in the device manifold 122 may be configured to include a calibrated orifice across which a pressure change is created (see FIGS. 2A and 2B, for example, and description, below). The pressure change is converted by the transducer 134 to a voltage which is amplified by amplifier 136 and sent to the main controller 130. The main controller 130 may be programmed to compare the pressure readings from transducer 134 to a range of control parameters in order to identify readings which are out of the range. A display associated with the main controller 130 can then alert an operator of a discrepancy in the hydraulic operation of the system, which could adversely affect the material application process. The orifice in fitting 111 is matched to the size of nozzle 126 for desired flow rates through the gun. For different flow rates as required for application of different types of hot melt materials, the fitting 111 is adapted to be interchangable with fittings of different size orifices.

Referring now to FIGS. 2A and 2B, a sensor, such as a high temperature pressure transducer 134' is similarly operatively connected to, or otherwise attached or physically associated with, the heated device manifold, or "device manifold" or heated manifold" 122'. In this embodiment, the transducer 134' includes a fitting 135' which is thread-engaged, or otherwise mounted, such as press fit with a retainer or clip (not shown), in an opening or sensor cavity 123' in device manifold 122'. Sensor cavity 123' communicates with fluid chamber 128 so that sensing face 137' of transducer 134' can sense the pressure of the fluid proximate the calibrated orifice 112'. In this embodiment, fluid material enters hose 110 which is attached to device manifold 122' via fitting 111' (which, in this embodiment does not contain the calibrated orifice 112'). The fluid path through device manifold 122' is as follows: fluid material enters passageway 125', flows through orifice 112' in orifice plate 113', discharges from orifice 112' into a fluid chamber 128 (where it is sensed by sensing face 137' of transducer 134'), and flows into application device 120 via fluid passageway 129. This is in contradistinction to the generally straight fluid passageway 125 shown in the FIG. 2 embodiment. In the FIG. 2 embodiment, the sensing face 137 of the transducer 134, is recessed substantially in cavity 123 relative to passageway 125. In this embodiment shown in FIGs. 2A and 2B, the sensing face 137' of transducer 134' is much closer to passageway 125' than in the FIG. 2 embodiment. By placing the sensing element 137' proximate the fluid flow path as shown in FIG. 2B (or substantially flush with an inner wall defining the fluid flow path), transducer face 137' is constantly washed by the flow stream of moving hot melt fluid material, which improves sensitivity and performance of the system. Whether transducer face 137' is substantially flush with an inner wall of the fluid passageway or is slightly recessed from the flow path, of from 0 inches up to about 0.25 inches, or even slightly more, sensor face 137' will be subjected to a constant washing of moving hot melt fluid material. Again, the important performance aspect is to insure that whatever the position of sensor face 137' with respect to the passageway 125', the fluid flow of hot melt material through the fluid passageway constantly washes, or replenishes hot melt fluid to be sensed, across sensor face 137'. This increases sensitivity and performance of the system. In addition, a plug or screw 144 is operatively associated with manifold 122' in this embodiment. The addition of plug 144 creates an access port 145 in manifold 122' to access and service the calibrated orifice 112' and calibrated orifice plate 113' held inside. In the illustrated embodiment, plug 144 is a screw plug threadbly connected to device manifold 122', however, other configurations would work and are within the scope of this invention, such as a press fit plug with retainer arrangement (not shown).

A calibrated orifice 112' in an orifice plate 113' within the passageway 125' in the device manifold 122' creates a pressure change. The pressure change is converted by the transducer 134' to a voltage, as described above for the FIG. 2 embodiment. The orifice 112' in orifice plate 113' has precise tolerances and is similarly matched to the size of nozzle (not shown in FIG. 2A, but would be mounted at the end of valve 127 to communicate with material through valve 127, such as nozzle 126 shown in FIG. 2) for desired flow rates through the gun as described above for the FIG. 2 embodiment. Thus, depending on the type of hot melt material provided by hose 110, the orifice plate 113' with corresponding orifice 112' and nozzle (such as 126 in FIG. 2) would be selected to achieve the desired material flow rates.

Referring again to FIG. 1, the manifold 106 associated with the hot melt unit 102 heats material prior to transfer through hose or hoses 110 connected to the application devices 120. In hot melt units such as the Nordson 3000, which may typically have only one or two application devices connected to the unit, the manifold 106 has only one or two outlet ports (connectable to for example hose 110) and a single fluid connection to the material reservoir 115.

As schematically shown in FIGS. 3 and 4, the invention further includes one or more remote or secondary manifolds 200, also referred to herein as heated recirculation manifolds, fluidly connected by heated intake lines 202 and exhaust lines 204 to the main manifold 106 of the hot melt unit 102 described with reference to FIG. 1. The remote or secondary manifolds 200 are preferably heated manifolds which include internal fluid circuits, each with a cartridge heater 206 which may include an RTD and wiring box, a flow regulator 208, a pressure gauge 210 operatively connected to the internal circuit, and an output line 212 connectable to an application device such as a spray gun, such as spray gun 120 described with reference to FIG. 1. A shut-off valve 214 may be provided in the output line 212 between the secondary manifold 200 and an application device. The internal circuit of the manifold 200 further includes a circulation or recirculation path 216 with valve 218, connected to line 204 which returns the main manifold 106, and exiting the main manifold to a material reservoir.

In operation, fluid enters the secondary manifold 200 from the main manifold 106, passes heater 206 and is pressure regulated by regulator 208, and passes through valve 214 to a spray gun or other application device. Fluid which does not go the gun is circulated within the manifold 200 and directed through valve 218 and line 204 to the hot melt unit, and recirculated back to the main reservoir 115.

The manifolds 200, when combined with multiple gun/applicator setups wherein a separate manifold is in fluid communication with each gun/applicator, perform at least four different functions which include:

  • 1. independent fluid pressure regulation and pressure read-out of one or more spray guns;
  • 2. consistent pressure control to the spray guns with either piston or gear pump type hot melt units;
  • 3. recirculation of fluid back to the hot melt unit and associated reservoir, and
  • 4. independent recirculation rates back to the hot melt unit in multiple gun/applicator setups.
Also, because the pressure regulation is discrete among each gun/applicator in such a setup, individual gun pressure monitoring, such as described in U.S. Patent Nos. 4,430,886 and 5,481,260, is facilitated by the secondary manifolds 200. For example, by providing separate adjustment/setting controls for each of the pressure regulators 208 in each of the manifolds 200, the spray pressure of the associated gun/applicator can be individually and precisely controlled. Similarly, the heating temperature of each of the heaters 206 of the manifolds 200 can be separately controlled, either through controls of the hot melt unit 106, or through separate controls.

The secondary manifolds 200 may be physically located proximate or closely proximate to the main manifold 106 of the hot melt unit 102 as shown in FIG. 4, or remotely located and fluidly connected by heated hoses as shown in FIG. 3.

The invention as thus described provides an improved system for automated temperature and pressure controlled application of hot melt and other materials which must be heated during the application process. The high temperature pressure transducer in connection with the application devices provides accurate real-time data on the flow of material through each of the guns. The secondary recirculating manifolds provide independent fluid pressure regulation and pressure read-outs for each gun or application device; consistent pressure control to each of the gun/application devices whether the hot melt unit is driven by a piston or gear pump; recirculation of material back to the hot melt unit and associated reservoir, and individual gun/applicator pressure and temperature control and monitoring.


Anspruch[de]
  1. System (100) zum Zuführen erhitzter Materialien und deren Applizierung auf ein Substrat, wobei das System eine Heißschmelzeinheit (102) beinhaltet, die Material erhitzt und von einem Materialreservoir (115) durch zumindest eine Materialausgabeleitung (110, 202, 212) pumpt, wobei jede Materialausgabeleitung (110, 202, 212) mit einer Verteilereinheit (122, 122') verbunden ist und jede Verteilereinheit (122, 122') mit einer Materialapplikationsvorrichtung (120) verbunden ist und das erhitzte Material von der Materialapplikationsvorrichtung (120) auf das Substrat appliziert wird, dadurch gekennzeichnet, dass jede der Verteilereinheiten eine Flussbegrenzungsöffnung (112, 112') und einen Druckwandler (134, 134') beinhaltet, das erhitzte Material aus der Materialausgabeleitung (110, 202, 212) und durch die Öffnung (112, 112') der Verteilereinheit und in die Materialapplikationsvorrichtung (120) fließt und dadurch, dass Wandler (134, 134') eine dem erhitzten Material ausgesetzten Messfläche (137, 137') hat.
  2. System nach Anspruch 1, mit zusätzlich zumindest einem geheizten Rückführungsverteiler (200), wobei jeder der geheizten Rückführungsverteiler mit dem Materialreservoir (115) und zumindest einer Materialausgabeleitung (110) kommuniziert, der geheizte Rückführungsverteiler (200) eine Rezirkulationsleitung (216) und ein Überdruckventil (218) für jede der Materialausgabeleitungen (110) hat und jede Rezirkulationsleitung (216) mit dem Reservoir (115) der Heißschmetzeeinheit (102) durch das Überdruckventil verbunden ist.
  3. System nach Anspruch 2, wobei jeder der geheizten Rückführungsverteiler (200) zusätzlich einen Heizer (206) und einen Druckregulator (208) umfasst.
  4. System nach Anspruch 3, wobei jeder der geheizten Rückführungsverteiler (200) geheiztes Material durch zwei Materialausgabeleitungen (212) abgibt.
  5. System nach Anspruch 3 oder 4, wobei der Druckregulator (208) in dem geheizten Rückführungsverteiler (200) unabhängig den Druck des geheizten Materials in der Materialausgabeleitung (212) kontrolliert.
  6. System nach einem der Ansprüche 2 bis 5, wobei zumindest zwei geheizte Rückführungsverteiler (200) vorgesehen sind, und jeder der geheizten Rückführungsverteiler erhitztes Material durch mindestens eine Materialausgabeleitung (212) abgibt.
  7. System nach einem der vorstehenden Ansprüche, wobei die Messoberfläche (137, 137') jeder der beiden Druckwandler (134, 134') im Wesentlichen direkt dem Fluss des geheizten Materials innerhalb eines Strömungskanals (125, 125') für das geheizte Material durch die Verteilereinheit zugewandt ist.
  8. System nach einem der vorstehenden Ansprüche, wobei jede Materialappiikationsvorrichtung (120) eine Düse (126) hat und wobei die Flussbegrenzungsöffnungen (112, 112') in der Größe mit den Öffnungen der Düse (126) korrespondieren.
  9. System nach einem der vorstehenden Ansprüche, wobei jede Verteilereinheit (122, 122') einen Heizer beinhaltet, um Hitze in das erhitzte Material, das durch die Verteilereinheit (122, 122') fließt, einzubringen und die eine unabhängige Kontrolle der Temperatur des erhitzten Material, das aus der Verteilereinheit in die Materialapplikationsvorrichtung fließt, gewährleistet.
  10. Materialapplikationssystem (100) zur Abgabe erhitzten Materials auf ein Substrat, das einen Rückführungsverteiler (200) und eine Heißschmelzeinheit (102) umfasst, die das Material erhitzt und von einem Materialreservoir (115) in zumindest eine Materialapplikationsvorrichtung (120) pumpt, bei dem der Rückführungsverteiler (200) so angepasst ist, dass er in einem Flüssigkeitskreislauf mit der Heißschmelzeinheit (102) und der Applikationsvorrichtung (120) installiert werden kann, bei dem der Rückführungsverteiler (200) einen Verteilerkörper hat, der einen Materialdurchlass hat, das einen Einlassanschluss an den Materialdurchlass hat, der so angepasst ist, dass er an einen Auslass der Heißschmelzeinheit angeschlossen werden kann und einen Rezirkulationsausgang aus dem Materialauslass umfasst, der so angepasst ist, dass er an die Heißschmelzeinheit (102) angeschlossen werden kann,

    dadurch gekennzeichnet, dass der Rückführungsverteiler (200) ein geheizter Rückführungsverteiler (200) mit einem Heizelement (206) ist, das in thermischem Kontakt mit dem Körper des Verteilers ist und dadurch, dass der geheizte Rückführungsverteiler (200) des Weiteren einen Druckregulator (208) umfasst, der dem Materialdurchlass zwischen dem Eingangsanschluss und dem Ausgangsanschluss zugeordnet ist und ein Rezirkulationskontrollventil (214) umfasst, das dem Materialdurchlass und den Rezirkulationsausgangsanschluss zugeordnet ist.
Anspruch[en]
  1. A system (100) for supplying heated material and applying it to a substrate, wherein the system includes a hot melt unit (102) which heats and pumps material from a material reservoir (115) through at least one material output line (110, 202, 212), each said material output line (110, 202, 212) being connected to a device manifold (122, 122'), each said device manifold (122, 122') being connected to a material application device (120), said heated material being applied by said material application device (120) to said substrate, characterised in that each said device manifold includes a flow restricting orifice (112, 112') and a pressure transducer (134, 134'), said heated material flowing from said material output line (110, 202, 212) and through said orifice (112, 112') of said device manifold and into said material application device (120), and in that said transducer (134, 134') has a sensing face (137, 137') exposed to the flow of said heated material.
  2. The system of claim 1 further comprising at least one heated recirculating manifold (200), each said heated recirculating manifold in fluid communication between said material reservoir (115) and at least one said at least one material output line (110), said heated recirculating manifold (200) having a recirculation line (216) and a pressure relief valve (218) for each said material output line (110), each said recirculation line (216) being connected to said reservoir (115) of said hot melt unit (102) through said pressure relief valve (218).
  3. The system of claim 2 wherein each said heated recirculating manifold (200) further comprises a heater (206) and a pressure regulator (208).
  4. The system of claim 3 wherein each said heated recirculating manifold (200) supplies heated material through two material output lines (212).
  5. The system of either claim 3 or claim 4 wherein said pressure regulator (208) in said heated recirculating manifold (200) provide independent control of the pressure of said heated material in said material output lines (212).
  6. The system of any one of claims 2 to 5 wherein at least two heated recirculating manifolds (200) are provided, each of said the heated recirculating manifolds supplying heated material through at least one said material output line (212).
  7. The system of any preceding claim wherein said sensing face (137, 137') of each said pressure transducer (134, 134') is substantially directly exposed to the flow of said heated material within a flow passage (125, 125') through said device manifold (122, 122') for said heated material.
  8. The system of any preceding claim wherein each of said material application devices (120) has a nozzle (126) and wherein said flow restricting orifices (112, 112') correspond in size to the openings of the nozzle (126).
  9. The system of any preceding claim wherein each of said device manifolds (122, 122') includes a heater to apply heat to said heated material flowing through said device manifolds (122, 122'), said device manifold heaters providing independent control of the temperature of said heated material flowing from said device manifolds into said material application devices (120).
  10. A material application system (100) for supplying heated material to a substrate, comprising a recirculating manifold (200) and a hot melt unit (102) which heats and pumps material from a material reservoir (115) to at least one application device (120), the recirculating manifold (200) adapted to be installed in a fluid circuit with the hot melt unit (102) and the application device (120), the recirculating manifold (200) comprising a manifold body having a material passageway, an entry port to the material passageway adapted to be connected to an output of the hot melt unit, an exit port from the material passageway adapted to be connected to an input to an application device, a recirculating exit port from the material passageway adapted to be connected to the hot melt unit (102), characterised in that the recirculating manifold (200) is a heated recirculating manifold (200) with a heating element (206) in thermal communication with the body of the manifold, and in that the heated recirculating manifold (200) further comprises a pressure regulator (208) associated with the material passageway between the entry port and exit port, and a recirculation control valve (214) associated with the material passageway and the recirculation exit port.
Anspruch[fr]
  1. Système (100) pour fournir un matériau chauffé et pour l'appliquer à un substrat, dans lequel le système comprend une unité de thermofusion (102) chauffant et pompant un matériau à partir d'un réservoir de matériau (115) par l'intermédiaire d'au moins une ligne de sortie de matériau (110, 202, 212), chaque dite ligne de sortie de matériau (110, 202, 212) étant raccordée à un collecteur de dispositif (122, 122'), chaque dit collecteur de dispositif (122, 122') étant connecté à un dispositif d'application de matériau (120), ledit matériau chauffé étant appliqué par ledit dispositif d'application de matériau (120) sur ledit substrat, caractérisé en ce que chaque dit collecteur de dispositif comprend un orifice d'étranglement de débit (112, 112') et un transducteur de pression (134, 134'), ledit matériau chauffé s'écoulant depuis ladite ligne de sortie de matériau (110, 202, 212) et par l'intermédiaire dudit orifice (112, 112') dudit collecteur de dispositif et dans ledit dispositif d'application de matériau (120), et en ce que ledit transducteur (134, 134') possède une face de détection (137, 137') exposée à l'écoulement dudit matériau chauffé.
  2. Système selon la revendication 1, comprenant, de plus, au moins un collecteur chauffé de remise en circulation (200), chaque dit collecteur chauffé de remise en circulation (200) étant en communication par fluide entre ledit réservoir de matériau (115) et au moins une dite ligne de sortie de matériau (110), ledit collecteur chauffé de remise en circulation (200) possédant une ligne de remise en circulation (216) et une soupape de sûreté (218) pour chaque dite ligne de sortie de matériau (110), chaque dite ligne de remise en circulation (216) étant raccordée audit réservoir (115) de ladite unité de thermofusion (102) par l'intermédiaire de ladite soupape de sûreté (218).
  3. Système selon la revendication 2, dans lequel chaque dit collecteur chauffé de remise en circulation (200) comprend, de plus, un moyen de chauffage (206) et un régulateur de pression (208).
  4. Système selon la revendication 3, dans lequel chaque dit collecteur chauffé de remise en circulation (200) fournit du matériau chauffé par l'intermédiaire de deux lignes de sortie de matériau (212).
  5. Système selon la revendication 3 ou 4, dans lequel ledit régulateur de pression (208) dans ledit collecteur chauffé de remise en circulation (200) assure une commande indépendante de la pression dudit matériau chauffé dans lesdites lignes de sortie de matériau (212).
  6. Système selon l'une quelconque des revendications 2 à 5, dans lequel au moins deux collecteurs chauffés de remise en circulation (200) sont prévus, chacun desdits collecteurs chauffés de remise en circulation fournissant du matériau chauffé par l'intermédiaire d'au moins une dite ligne de sortie de matériau (212).
  7. Système selon l'une quelconque des revendications précédentes, dans lequel ladite face de détection (137, 137') de chaque dit transducteur de pression (134, 134') est sensiblement directement exposée à l'écoulement dudit matériau chauffé dans un passage d'écoulement (125, 125') par l'intermédiaire dudit collecteur de dispositif (122, 122') pour ledit matériau chauffé.
  8. Système selon l'une quelconque des revendications précédentes, dans lequel chacun desdits dispositifs d'application de matériau (120) possède une buse (126) et dans lequel lesdits orifices d'étranglement de débit (112, 112') ont une taille correspondante aux ouvertures de la buse (126).
  9. Système selon l'une quelconque des revendications précédentes, dans lequel chacun desdits collecteurs de dispositif (122, 122') comprend un moyen de chauffage pour appliquer de la chaleur audit matériau chauffé traversant lesdits collecteurs de dispositif (122, 122'), lesdits moyens de chauffage de collecteurs de dispositif assurant une commande indépendante de la température dudit matériau chauffé passant desdits collecteurs de dispositif dans lesdits dispositifs d'application de matériau (120).
  10. Système d'application de matériau (100) pour fournir un matériau chauffé à un substrat, comprenant un collecteur de remise en circulation (200) et une unité de thermofusion (102) chauffant et pompant un matériau à partir d'un réservoir, de matériau (115) vers au moins un dispositif d'application (120), le collecteur de remise en circulation (200) étant adapté pour être installé dans un circuit de fluide avec l'unité de thermofusion (102) et le dispositif d'application (120), le collecteur de remise en circulation (200) comprenant un corps de collecteur possédant un passage de matériau, un orifice d'entrée vers le passage de matériau adapté pour être raccordé à une sortie de l'unité de thermofusion, un orifice de sortie à partir du passage de matériau adapté pour être raccordé à une entrée d'un dispositif d'application, un orifice de sortie de remise en circulation à partir du passage de matériau adapté pour être raccordé à l'unité de thermofusion (102), caractérisé en ce que le collecteur de remise en circulation (200) est un collecteur de remise en circulation (200) chauffé avec un élément de chauffage (206) en communication thermique avec le corps du collecteur, et en ce que le collecteur de remise en circulation (200) chauffé comprend, de plus, un régulateur de pression (208) associé au passage de matériau entre l'orifice d'entrée et l'orifice de sortie, et une soupape de commande de remise en circulation (214) associée au passage de matériau et à l'orifice de sortie de remise en circulation.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com