Dokumentenidentifikation EP0962942 28.05.2003
EP-Veröffentlichungsnummer 0962942
Titel Verfahren zur Erzeugung von Ac-225 durch Protonbestrahlung von Ra-226
Anmelder European Community, Luxemburg/Luxembourg, LU
Erfinder Apostolidis, Christos, 69115 Heidelberg, DE;
Janssens, Willem, 76694 Forst, DE;
Koch, Lothar, 76356 Weingarten, DE;
McGinley, John, 76706 Dettenheim, DE;
Molinet, Roger, 76351 Linkenheim, DE;
Ougier, Michel, 76351 Linkenheim, DE;
Van Geel, Jacques, 76275 Ettlingen-Oberweier, DE;
Möllenbeck, Josef, 76344 Leopoldshafen, DE;
Schweickert, Hermann, 76135 Karlsruhe, DE
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69813781
Vertragsstaaten AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 02.06.1998
EP-Aktenzeichen 981099831
EP-Offenlegungsdatum 08.12.1999
EP date of grant 23.04.2003
Veröffentlichungstag im Patentblatt 28.05.2003
IPC-Hauptklasse G21G 1/10
IPC-Nebenklasse H05H 6/00   


The invention refers to a method for producing Ac-225, comprising the steps of preparing a target containing Ra-226, of irradiating this target with protons in a cyclotron and of chemically separating Ac from the irradiated target material. Such a method is known for example from EP-A-0 752 709.

According to this document the protons are accelerated in a cyclotron and are projected onto a target containing Ra-226 so that unstable radionuclei are transformed into Actinium by emitting neutrons. The possible nuclear reactions lead among others to Ac-226, Ac-225 and Ac-224.

Radio-immunotherapeutic methods for locally attacking cancer disease (metastases) become more and more important in view of progresses in immunology and radiotherapy and in the molecular biology field. Generally speaking, short half-life alpha-emitting nuclides are conjugated to a carrier (e.g. monoclonal antibodies) which after having been introduced into the patient body tend to be linked to and be integrated into malign cells and to destroy these cells due to an intense irradiation of very short range. The radionuclide must in this case cope with particular requirements: It must be apt to be linked for conjugation to a convenient antibody, it must have a convenient half-life and it should be readily available.

Among the possible candidates for such a radionuclide, Ac-225 and its daughter Bismuth-213 are preferred for radio-immunotherapy purposes (see for example EP-B-0 443 479). In the above cited document EP-A-0 752 709 it is described that the irradiation of Ra-226 by a proton beam results in the desired Ac-225 but also in considerable quantities of other highly undesired radionuclides, especially Ac-224 and Ac-226. In order to eliminate these undesired radionuclides said document suggests to delay the post-irradiation processing by a waiting period since the undesired nuclides cited above present a fairly short half-life compared with Ac-225 (half-life 10 days). Nevertheless this waiting period also leads to a considerable loss of Ac-225.

A paper "Target Development for Medical Radioisotope Production at a Cyclotron" of S.M. Quaim, published in Nuclear Instruments & Methods in Physics Research(1989) October 1 n°1, Amsterdam pages 289 ff describes the production of several isotopes for medical use and emphasizes the importance of the knowledge of the cross-section data. This document, however, does neither consider radium-226 as starting material nor actinium-225 as final product, and therefore cannot help to find the best proton beam energy which minimizes the cross-section for the production of undesired by-products and enhances the cross-section for the production of Ac-225.

The invention proposes a method allowing to reduce or even eliminate the waiting period mentioned above without impairing the yield and purity of the produced Ac-225. A further object of the invention is to produce Ac-225 by observing the safety regulations for handling the basic very radiotoxic material Ra-226 and the purity specifications of Ac-225 as required for the therapeutic use.

These objects are achieved by the method as claimed in claim 1. It has been found that the highest purity is achieved at an intermediate value of the proton impact energy of about 15 MeV.

Further improvements of the method as far as the preparation of the target, its irradiation and its final processing is concerned, are specified in the secondary claims.

The invention will now be described in more detail by means of a preferred embodiment and with reference to the enclosed drawings which show schematically a target assembly prepared to receive a proton beam from a cyclotron source.

The target nuclide is Ra-226 in the chemical form of RaCl2 (Radiumchloride), obtained from precipitation with concentrated HCl, or radium carbonate RaCO3. This material is then pressed in target pellets 1. Prior to irradiation these pellets are heated to above 150 °C in order to release crystal water therefrom before being sealed in a capsule 2 made of silver. The capsule is then mounted on a frame-like support 3 of a two-part casing 4 held together by screws 10. The capsule is surrounded by a cooling space connected to an outer water cooling circuit 6. This outer circuit comprises a circulation pump 7 and a heat exchanger 8 for extracting the heat produced during irradiation in the capsule. The proton beam passes through a window 9 which is disposed in the wall of the casing 4 in face of the target 1. The square surface area of the target 1 which is hit by the beam may be for example about 1 cm2.

It has been found that the distribution of the different produced Actinium isotopes depends largely upon the impact energy of the protons on the radium target nuclei. Table 1 shows experimental data on the production of different relevant radionuclides under irradiation of Ra-226 for 7 hours with a proton beam (10 µA) of variable impact energy. In this table the ratio Ra-224/Ra-226 is given instead of the ratio Ac-224/Ra-226. However Ra-224 is a daughter product of Ac-224 the latter having a short half-life of only 2.9 hours. This daughter product is particularly undesirable because one of its daughters is a gaseous alpha emitter (Rn-220) and another daughter Tl-208 is a high energy gamma emitter (2.615 MeV).

This table shows that the highest yield in Ac-225 is obtained at an intermediate value of the impact energy, globally situated between 10 and 20 MeV and preferably between 14 and 17 MeV. Of course, the proton current is adjusted as high as possible depending upon the cyclotron capability and the maximum heat load which can be carried away by the cooling circuit 6.

After irradiation, the target 1 is dissolved and then treated in a conventional way in order to separate Ac from Ra, for example in ion-exchangers.

The choice of silver for the capsule material is preferred for its high thermal conductivity which allows an efficient heat extraction, and for its inert chemical nature. The capsule provides a leak-tight seal for the highly radiotoxic material Ra-226, allows target processing after irradiation without introducing impurities into the medical grade product and avoids the introduction of unwanted cations which would interfere with the chelation of the radionuclides. Interactions between the target material and the silver capsule will not occur.

It is nevertheless advisable to monitor the leaktightness in the cooling circuit 6 by an alpha monitor 11. Preferably an alpha-tight outer containment (not shown) surrounds the casing 4 and may further contain Radon traps. Yield of the relevant isotope (in activity percent with respect to Ra-226) Energy of protons incident on 226Ra (MeV) 225Ra/226Ra reaction: p,pn (activ %) 224Ra/226Ra reaction: p,3n (activ %) 225Ac/226Ra reaction: p,2n (activ %) 226Ac/226Ra reaction: p,n (activ %) 24.5 2.19 22 0.85 20.1 1.09 47 4.55 2.1 15.2 0.22 4.5 15.00 10.4 0.02 0 5.00 0 5.5 0.02 0 0.05 0

  1. Verfahren zur Erzeugung von Actinium-225 mit den Verfahrensschritten der Vorbereitung eines Targets (1), das Radium-226 enthält, der Bestrahlung dieses Targets mit Protonen in einem Zyklotron und der chemischen Abtrennung von Actinium aus dem bestrahlten Targetmaterial, dadurch gekennzeichnet, daß die Protonenenergie im Zyklotron so festgelegt wird, daß die Aufprallenergie auf das Ra-226 zwischen 10 und 20 MeV liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Protonenenergie so eingestellt wird, daß die Aufprallenergie auf das Ra-226 zwischen 14 und 17 MeV liegt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Target (1) komprimierte Pellets enthält, die im wesentlichen aus Radiumchlorid (RaCl2) oder Radiumkarbonat (RaCO3) bestehen.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Vorbereitung der Targets einen Verfahrensschritt der Erhitzung des Targetmaterials auf eine Temperatur über 150° enthält, um kristallines Wasser zu entfernen.
  5. Verfahren nach einem beliebigen der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zur Bestrahlung das Target (1) in einer Kapsel (2) aus Silber dicht eingeschlossen ist, wobei diese Kapsel ihrerseits einem geschlossenen Kühlfluidkreis (6) zugeordnet ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der geschlossene Kühlfluidkreis (6) einen Alphastrahlungsmonitor (11) enthält.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Kapsel (2) und ein Gehäuse (4), in dem sie eingeschlossen ist, in einer für Alphastrahlung undurchlässigen Zelle installiert sind.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die gegen Alphastrahlung dichte Zelle mit einer biologischen Abschirmung und mit Radonfallen versehen ist.
  1. A method for producing Actinium-225, comprising the steps of preparing a target (1) containing Radium-226, of irradiating this target with protons in a cyclotron and of chemically separating Actinium from the irradiated target material, characterized in that the proton energy in the cyclotron is adjusted such that the energy incident on the Ra-226 is between 10 and 20 MeV.
  2. A method according to claim 1, characterized in that the proton energy is adjusted such that the energy incident on the Ra-226 is between 14 and 17 MeV.
  3. A method according to claim 1 or 2, characterized in that the target (1) consists of compressed pellets mainly made of radium chloride RaCl2 or from radium carbonate RaCO3.
  4. A method according to claim 3, characterized in that the preparation of the target includes a step of heating the target material to a temperature above 150°C, in order to remove crystalline water.
  5. A method according to any one of the preceding claims, characterized in that in view of the irradiation, the target (1) is tightly sealed in a capsule (2) made of silver, this capsule being itself associated to a closed coolant fluid circuit (6).
  6. A method according to claim 5, characterized in that the closed coolant fluid circuit (6) is equipped with an alpha monitor (11).
  7. A method according to claim 5 or 6, characterized in that the capsule (2) and a casing (4) in which it is inclosed are installed in an alpha-tight cell.
  8. A method according to claim 7, characterized in that the alpha-tight cell is equipped with a biological shielding and with radon traps.
  1. Procédé pour produire de l'Actinium-225 comprenant les étapes de préparation d'une cible (1) qui contient du Ra-226, d'irradiation de la cible par des protons dans un cyclotron et de séparation chimique d'Actinium par rapport au matériau de la cible irradiée, caractérisé en ce que l'énergie des protons dans le cyclotron est ajustée pour que l'énergie incident sur Ra-226 soit située entre 10 et 20 MeV.
  2. Procédé selon la revendication 1, caractérisé en ce que l'énergie des protons est ajustée pour que l'énergie incident sur Ra-226 soit située entre 14 et 17 MeV.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la cible (1) est constituée de pellets comprimés consistant principalement en chlorure de radium (RaCL2) ou en carbonate de radium (RaCO3).
  4. Procédé selon la revendication 3, caractérisé en ce que la préparation de la cible comporte une étape de traitement thermique pour le matériau de la cible à une température au-delà de 150 °C pour expulser l'eau cristalline.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour l'irradiation la cible (1) est enfermée dans une capsule étanche (2) en argent qui quant à elle est associée à un circuit fermé d'un fluide de refroidissement (6).
  6. Procédé selon la revendication 5, caractérisé en ce que le circuit fermé de fluide de refroidissement (6) est équipé d'un moniteur de rayonnement alpha (11).
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que la capsule (2) et un récipient (4) qui l'entoure sont installés dans un caisson imperméable aux rayons alpha.
  8. Procédé selon la revendication 7, caractérisé en ce que le caisson étanche aux rayons alpha est équipé d'un écran de protection biologique et de trappes au Radon.

A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik



Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: