PatentDe  


Dokumentenidentifikation EP0966346 10.07.2003
EP-Veröffentlichungsnummer 0966346
Titel VERFAHREN ZUR HERSTELLUNG EINES THERMOPLASTISCHEN PRODUKTES MIT HOHEM KRIECHWIDERSTAND
Anmelder Perstorp AB, Perstorp, SE
Erfinder VALENTINSSON, Anders, S-291 75 Färlöv, SE
Vertreter HOFFMANN · EITLE, 81925 München
DE-Aktenzeichen 69815304
Vertragsstaaten AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 03.03.1998
EP-Aktenzeichen 989099023
WO-Anmeldetag 03.03.1998
PCT-Aktenzeichen PCT/SE98/00378
WO-Veröffentlichungsnummer 0098040199
WO-Veröffentlichungsdatum 17.09.1998
EP-Offenlegungsdatum 29.12.1999
EP date of grant 04.06.2003
Veröffentlichungstag im Patentblatt 10.07.2003
IPC-Hauptklasse B29C 49/00
IPC-Nebenklasse B29C 51/00   B65D 19/32   

Beschreibung[en]

The present invention relates to a process for the manufacturing of products made of thermoplastic material, which products have a high creep strain resistance without the need for reinforcing additives.

Products made of thermoplastic materials can be manufactured by a number of different manufacturing procedures. The most commonly used methods are however, injection moulding, vacuum forming, blow moulding and press moulding. In some fields of application a high load carrying capability is required. Carrying designs made of materials such as steel and concrete will be able to handle a load almost irrespective of factors like time and temperature. This is not the case with thermoplastic materials where relatively small loads can cause a remaining deformation when charged for a long period of time. This phenomenon is called creep strain, creep deformation or creepage. This creep strain is accelerated if the temperature is raised. A design made of thermoplastic material will however be able to withstand loads that are tens of times higher without remaining deformation when charged for shorter periods of time. The relation between the amount of creep strain, time and temperature is depending on type and quality of thermoplastic material.

Carrying thermoplastic designs most often have to be designed to withstand the highest temperature together with the longest period of time and the highest load that it could be exposed to during its useful life. The creep strain can however be decreased by adding filling or reinforcing additives to the thermoplastic material. Among filling additives that are commonly used can be mentioned minerals such as lime, glass beads and mica while reinforcing additives that are commonly used are fibres such as glass fibres, steel fibres or carbon fibres. It is also known to reinforce a thermoplastic product by integrating a metal design with the product. This can for example be constituted by a steel rod applied in a profile in the thermoplastic product. These additives and additions will however decrease some of the good qualities naturally occurring in the thermoplastic material. Among those qualities can be mentioned good impact strength, low weight and being a good electric, acoustic and heat insulator. It will also principally be impossible to recycle the material from a product containing additives. The ability to recycle thermoplastic materials is principally compulsory nowadays.

WO 93/18906 describes a process for manufacturing thermoplastic products having a high creep strain resistance. Product parts of thermoplastic materials are manufactured by blow forming resulting in the formation of double-walled thermoplastic plates. During the blow moulding process moulding bars are slit into the double-walled thermoplastic plate for the formation of spacers inside the double-walled plate. Its bending resistance makes the plastic plate especially suitable for making plastic pallets.

US 4 824 898 describes shaped articles comprised of tetrafluoroethylene which have high compression creep resistance, compression resistance, impact strength, dimensional stability, gas barrier property and tensile strength. The shaped articles are manufactured from a preformed article which is subjected to a shrinkage treatment by heating and compressing the preformed article for the reason of improving the orientation.

US 5 540 879 relates to a method of producing a blow-molded PET-container, wherein a preform is formed into a primary moulded article of a size larger than a final container by orientation blow moulding, the primary article is then heat-treated causing it to contract to smaller than final blow mould cavity, then the contracted article is blown into the final container.

It has, quite surprisingly, according to the present invention, been made possible to manufacture creep stain resistant products of thermoplastic material, without the need of reinforcing additives. Accordingly, the invention relates to a process for manufacturing of thermoplastic products with a high creep strain resistance, which products are free from reinforcing additives, wherein the process includes at least vacuum forming and/or blow moulding of a thermoplastic material such as polyethylene, polypropylene or polybutene, characterized in that product parts (2,3) are manufactured from sheet- shaped work pieces, which work pieces are heated so that the thermoplastic material softens whereby they are given the desired shape by means of a mould and the influence of vacuum and/or pressure, that the product parts produced are allowed to cool and post-shrink for 1 to 2 days and that the product parts hereafter are joined to a unit, optionally together with product parts (4,5) prepared through injection moulding by means of a mould.

According to one embodiment of the invention, at least one of the product parts is manufactured through injection moulding by means of a mould comprising one or more mould cavities. A molten thermoplastic material is injected into a mould cavity of the mould. The thermoplastic material is allowed to solidify. The mould can then be opened and product part be removed from the mould. The product part is then allowed to cool completely and post-shrink.

The product parts is alternatively manufactured through injection moulding by means of a mould comprising one or more mould cavities. The mould includes means for injecting a pressurised gas. Molten thermoplastic material is injected into a mould cavity of the mould, whereupon the pressurised gas is injected into the molten thermoplastic material in the mould cavity. The thermoplastic material is allowed to solidify whereupon the gas is evacuated. The mould is then opened and the product part produced is removed from the mould. The product part is allowed to cool completely and post-shrink. It will hereby be possible to manufacture special features such as for example label pockets which are integrated with the article. Such special features are normally not possible to manufacture through vacuum forming or blow moulding.

According to one embodiment of the invention, one or more of the product parts are manufactured in a mould comprising a first and a second mould half. The mould halves include one shape-giving cavity each. The two shape-giving cavities together form a negative depiction of the outer shape of a product part. The mould halves are placed so that a space is formed between the two mould halves and so that the mould cavities are directed towards each other. Two pre-heated sheet shaped work pieces are applied between the two mould halves. The work pieces are individually forced towards the shape-giving surface of the mould cavities by means of vacuum and/or pressure. The mould halves are pressed together while the thermoplastic material is still hot so that the material in the work pieces confounds and a hollow unit is formed. It has shown to be a great advantage to connect the two surfaces on either side of the intermediate hollow space with each other by means of locally placed ridges or tower-like parts on product part containing large straight surfaces. This will increase the mechanical stability of the product as well as the ability to withstand bending when a load is applied.

The product parts preferably form parts such as a deck, a foot or a skid of a pallet, or a deck, a foot, a side wall or a skid of a pallet container or the like. According to one embodiment of the invention, the injection moulded product parts forms parts such as a foot or a skid to pallet, a foot, a side wall or a skid to a pallet container. These product parts are joined by welding such as butt welding, friction welding or filler welding. The surface of two product parts that are to be joined are heated until they melt when utilising the butt welding procedure. The heating is preferably achieved by bringing the surfaces to be joined in contact with a heated metal plate. The heated product parts are then pressed towards each other while the melted surfaces are allowed to cool.

When utilising friction welding, the surfaces that are to be joined are rubbed until they melt due to the friction heat. The most commonly used variants of this method is ultra-sonic welding, low frequency welding and rotation welding.

Filler welding used on thermoplastic materials is similar to gas welding with filler bar used on metal. The surface of the joint and a filler bar made of the same thermoplastic material as in the product parts are heated with a hot air blower. The filler bar is used for filling the joint in a manner similar to that used for metal welding. The latter method can also be used in combination with the above mentioned methods.

The thermoplastic material used is preferably constituted by a polymer such as polyethylene, polypropylene or polybutene with an average molecular mass in the range 200'000 - 2'000'000 preferably above 300'000. In certain cases, such as for example when manufacturing products with thin walls, polymers with an average molecular mass in the range 1'000'000 - 2'000'000 could show advantageous, while products with heavy walls most often are manufactured of a polymer with an average molecular mass in the range 300'000 - 1'000'000.

According to one embodiment of the invention the tube or sheet shaped work pieces are constituted by a thermoplastic laminate with two or more layers. The layers are constituted by a combination of two or more of the materials selected from the group, virgin solid thermoplastic material, re-cycled solid thermoplastic material, virgin expanded thermoplastic material and re-cycled expanded thermoplastic material.

The invention is further illustrated together with enclosed figures showing different embodiments of the invention and a comparative example, whereby,

  • figure 1 shows, in perspective, product parts of a pallet before the final assembly.
  • figure 2 shows, in cross-section, a part of a pallet manufactured through the process according to the invention.
  • figure 3 shows, in perspective, product parts of a pallet before the final assembly. The pallet is manufactured by an alternative process according to the invention.
  • figure 4 shows, in perspective, product parts of a pallet before the final assembly.

Figure 1 shows, in perspective, product parts of a pallet 1 before the final assembly. The pallet 1 is manufactured by one embodiment of the process according to the invention. The pallet is made from product parts in the shape of a hollow pallet deck 2 and three similar hollow pallet skids 3. The pallet deck 2 and the pallet skids 3 are individually manufactured in one mould each. The moulds comprise a first and a second mould half which together include a shape-giving cavity which is a negative depiction of the pallet deck 2 and the pallet skids 3 respectively. The mould halves are placed so that an intermediate space is formed between the two halves and so that the cavities are directed towards each other. Two sheet-shaped, pre-heated work pieces of high-density polyethylene with an average molecular weight greater than 300'000 are then placed between the two mould halves. The two work pieces are then individually shaped towards the cavity of one mould half each by means of vacuum. The two mould halves are then pressed together while the thermoplastic material is still hot so that the material confound and form a hollow unit. The process is repeated for the different moulds so that a required amount of pallet decks 2 and pallet skids 3 are obtained. The pallet deck 2 and the pallet skids 3 are allowed to cool and post-shrink, which normally takes a day or two, before they are assembled to the final product. The pallet deck 2 and the pallet skids 3 are provided with a number of joining surfaces 6 intended for the joining of the pallet deck 2 and the pallet skids 3. The joining surfaces 6 are heated by being brought into contact with a hot metal plate. The parts 2 and 3 are the pressed together while the material in the joining surfaces 6 is still hot, whereby the parts 2 and 3 confounds so that they form a unit in the form of a pallet 1.

Figure 2 shows in cross-section a part of one embodiment of a pallet 1 obtained by the process according to the invention. A pallet skid 3 which is made from two sheet-shaped work pieces which constitute an upper half 3' and a lower half 3" of a pallet skid 3. The two pallet skid halves 3' and 3" were confounded in connection to the manufacturing as described in connection to figure 1.

The upper half and the lower half are, in addition to being joined along the edges, also joined by a number of local ridge- or tower-like protrusions 7 (see also fig. 1) in larger parallel surfaces to increase the mechanical strength and the dimension stability. A pallet deck 2 is, in a similar way, made of an upper pallet deck half 2" and a lower pallet deck half 2' which halves are confounded in connection to the manufacturing. The two pallet deck halves 2' and 2" are, in addition to being joined along the edges, also joined by a number of local ridge- or tower-like protrusions 7 (see also fig 1) in larger parallel surfaces. The pallet skid 3 and the pallet deck 2 are hollow product parts that together form a pallet 1. The pallet skid 3 is joined with the pallet deck 2 by confounding as described in connection to figure 1.

Figure 3 shows, in perspective, parts of a pallet 1 before the final assembly. The pallet 1 is manufactured by an alternative embodiment according to the invention. The pallet 1 is constituted by a number of product parts in the form of a hollow pallet deck 2, three similar pallet skids 3, four corner feet 4 and five centre feet 5. The pallet deck 2 is given its shape in a mould comprising a first and a second mould half. Each half includes a shape-giving cavity. The two shape-giving cavities together form a negative depiction of the outer shape of the pallet deck 2. The mould cavities are placed so that an intermediate space is formed between the mould halves and that the two cavities are facing each other. Two pre-heated work pieces of high-density polyethylene with an average molecular weight greater than 300'000 are then placed between the two mould halves. The two work pieces are then individually shaped towards the cavity of one mould half each by means of vacuum. The two mould halves are then pressed together while the thermoplastic material is still hot so that the material confounds and forms a hollow unit. The parts obtained are allowed to cool so that the thermoplastic material becomes solid whereby the mould is opened and the part is removed. The process is repeated so that a required amount of pallet decks 2 is obtained. The pallet decks 2 are allowed to cool and post-shrink, which normally takes a day or two, before they are assembled with the other parts to the final product.

The pallet skid 3 is given its shape in a mould comprising a first and a second mould half. Each half includes a shape-giving cavity. The two shape-giving cavities together form a negative depiction of the outer shape of the pallet skid 3. The mould cavities are placed so that an intermediate space is formed between the mould halves and that the two cavities are facing each other. A pre-heated tube-shaped work piece of high-density polyethylene with an average molecular weight greater than 300'000 are then placed between the two mould halves, whereby the mould is closed. Air is blown into the tube-shaped work piece and the air in the space between the work piece and the mould is simultaneously ejected, whereby the work piece is forced towards the shape-giving surface of the mould. A hollow part in the form of a pallet skid is hereby obtained. The part obtained is allowed to cool so that the thermoplastic material becomes solid whereby the mould is opened and the part is removed. The process is repeated so that a required amount of pallet skids 3 is obtained. The pallet skids 3 are allowed to cool and post-shrink, which normally takes a day or two, before they are assembled with the other parts to the final product.

The corner feet 4 and the centre feet 5 are manufactured by injection moulding in a mould including a number of mould cavities. The mould cavities form negative depictions of the corner feet 4 and the centre feet. An amount of molten thermoplastic material is injected into the mould cavities so that they are substantially filled. The thermoplastic material is then allowed to cool so that the thermoplastic material solidifies whereupon the mould is opened and the corner feet 4 and the centre feet 5 are removed from the mould. The procedure is repeated so that a desired amount of corner feet 4 and centre feet 5 are obtained. The feet parts 4 and 5 are allowed to cool and post-skrink, which normally takes a day or two, before they are assembled with other parts to the final products.

The pallet deck 2, the pallet skids 3, the corner feet 4 and the centre feet 5 are provided with a number of joining surfaces 6 which are heated by being brought into contact with a heated plate. One pallet deck 2, four corner feet 4, five centre feet 5 and three pallet skids 3 are then pressed together while the thermoplastic material in the joining surfaces is still hot whereby the different parts confounds so that a,unit in the form of a pallet 1 is obtained.

The product parts are, in addition to being joined along the edges, also joined by a number of local ridge- or tower-like protrusions 7 in larger parallel surfaces in order to increase the mechanical and dimensional stability.

Figure 4 shows, in perspective, product parts of a pallet 1 before the final assembly. The pallet 1 is manufactured according to one embodiment of the process mainly corresponding to that described in connection to figure 1. The pallet 1 obtained through the process is intended for use in extreme conditions. The pallet is made from product parts in the shape of a upper hollow pallet deck 2a, a lower pallet deck 2b and three similar hollow pallet skids 3. The pallet decks 2a and 2b and the pallet skids 3 are individually manufactured in one mould each. The moulds comprise a first and a second mould half which together include a shape-giving cavity which is a negative depiction of the pallet decks 2a and 2b, and the pallet skids 3 respectively. The mould halves are placed so that an intermediate space is formed between the two halves and so that the cavities are directed towards each other. Two sheet-shaped, pre-heated work pieces of high-density polyethylene with an average molecular weight greater than 300'000 are then placed between the two mould halves. The two work pieces are then individually shaped towards the cavity of one mould half each by means of vacuum. The two mould halves are then pressed together while the thermoplastic material is still hot so that the material confounds and forms a hollow unit. The process is repeated for the different moulds so that a required amount of pallet decks 2a and 2 b and pallet skids 3 are obtained. The pallet decks 2a and 2 b, and the pallet skids 3 are allowed to cool and post-shrink, which normally takes a day or two, before they are assembled to the final product. The pallet decks 2a and 2b and the pallet skids 3 are provided with a number of joining surfaces 6 intended for the joining of the pallet decks 2a and 2b and the pallet skids 3. The joining surfaces 6 are heated by being brought into contact with a hot metal plate. The parts 2a, 2b and 3 are then pressed together while the material in the joining surfaces 6 is still hot, whereby the parts 2a, 2b and 3 confound so that they form a unit in the form of a pallet 1.

Example

A pallet similar to the pallet shown in figure 1 and manufactured according to the process described in connection to figure 1 was placed on two beams so that the pallet was resting on 75 mm wide support surfaces on the two short sides. An ordinary pallet, manufactured through injection moulding was in the same way placed on two beams. The two pallets was manufactured, using the same amount of material, i.e. the two pallets have the same weight. The two pallets also have the same outer dimensions. A point load of 10'000 N was applied for 48 h on each of the two pallets. The temperature was 21°C during the test . The deflection, i.e. the downwards warping of the pallet was measured at a point half-way between the beams. The test was then repeated with two new pallets as above at a temperature of 40°C. All pallets were manufactured of high-density polyethylene without any additional reinforcing profiles such as beams of metal, neither was any reinforcing fibre or filler material added to the thermoplastic material. The result is shown in the table below. Test temp. Pallet according to the invention

Deflection at the centre after 48 h
Ordinary pallet

Deflection at the centre after 48 h
21°C 8 mm 73 mm 40°C 12 mm 130 mm

It is evident from the examples that a pallet manufactured according to the present invention will get a deformation considerably lower than the deformation on a pallet manufactured through injection moulding, although the same amount of material is used. A similar improvement will be obtained in other types of products, such as pallet containers and containers, made of thermoplastic material.

The invention is not limited by the embodiments shown since these can be varied in different ways within the scope of the invention as defined in the appended claims.


Anspruch[de]
  1. Verfahren zur Herstellung thermoplastischer Produkte mit einer hohen Kriechspannungsfestigkeit und frei von Verstärkungszusätzen, wobei das Verfahren wenigstens Vakuumformen und/oder Blasformen eines thermoplastischen Materials, wie Polyethylen, Polypropylen oder Polybuten, beinhaltet, wobei die Produktteile (2, 3) aus schichtförmigen Werkstücken gefertigt werden, und die Werkstücke so erwärmt werden, dass das thermoplastische Material erweicht, wodurch ihnen die gewünschte Gestalt mittels einer Form.und dem Einfluss von Vakuum und/oder Druck gegeben wird, dadurch gekennzeichnet, dass man die hergestellten Produktteile abkühlen und für 1 bis 2 Tage nachschrumpfen lässt und dass die Produktteile danach zu einer Einheit verbunden werden, optional zusammen mit Produktteilen (4, 5), die durch Spritzgiessen mittels einer Form hergestellt wurden.
  2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die durch Spritzgiessen hergestellten Produktteile mittels einer Form gefertigt werden, die ein oder mehrere Formhohlräume umfasst, wobei das geschmolzene thermoplastische Material in einen Formhohlraum der Form gespritzt wird, dass man das thermoplastische Material fest werden lässt, wobei die Form geöffnet und das Produktteil aus der Form entfernt werden kann, woraufhin man das Produktteil vollständig abkühlen und für 1 bis 2 Tage nachschrumpfen lässt.
  3. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die durch Spritzgiessen hergestellten Produktteile mittels einer Form gefertigt werden, die einen oder mehrere Formhohlräume umfasst, dass die Form Mittel zum Einspritzen eines Druckgases enthält, wodurch geschmolzenes thermoplastisches Material in einen Formhohlraum der Form eingespritzt wird, woraufhin das Druckgas in das geschmolzene thermoplastische Material in den Formhohlraum eingespritzt wird, dass man das thermoplastische Material fest werden lässt, dass das Gas evakuiert wird, woraufhin die Form geöffnet und das Produktteil aus der Form entfernt werden kann, und man vollständig abkühlen und für 1 bis 2 Tage nachschrumpfen lässt.
  4. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass ein oder mehrere aus Werkstücken hergestellte Produktteile in einer Form gefertigt werden, die eine erste und eine zweite Formhälfte umfasst, wobei die Formhälften jeweils einen formgebenden Hohlraum umfassen, dass die zwei formgebenden Hohlräume zusammen eine negative Abbildung der äusseren Form des Produktteils bilden, wobei die Formhälften so plaziert sind, dass ein Zwischenraum zwischen den beiden Formhälften gebildet wird und dass die Formhohlräume zueinander ausgerichtet sind, woraufhin zwei vorgewärmte schichtförmige Werkstücke zwischen den zwei Formhälften angebracht werden, dass die Werkstücke jedes für sich in Richtung der formgebenden Oberfläche der Formhohlräume mittels Vakuum und/oder Druck gezwungen werden, woraufhin die Formhälften zusammengepresst werden, während das thermoplastische Material immer noch heiss ist, so dass das Material in den Werkstücken verschmilzt und eine hohle Einheit gebildet wird.
  5. Verfahren gemäss einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sowohl die aus Werkstücken hergestellten Produktteile als auch die durch Spritzgiessen hergestellten Produktteile Teile bilden, wie einen Palettenboden, einen Fuss oder eine Kufe einer Palette, einen Palettenboden, einen Fuss, eine Seitenwand oder eine Kufe eines Palettenbehälters oder dergleichen.
  6. Verfahren gemäss einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Spritzgussproduktteile Teile bilden, wie einen Fuss oder eine Kufe einer Palette oder einen Fuss, eine Seitenwand oder eine Kufe eines Palettenbehälters.
  7. Verfahren gemäss einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sowohl die aus Werkstücken hergestellten Produktteile als auch die durch Spritzgiessen hergestellten Produktteile durch Schweissen, wie Stumpfschweissen, Reibungsschweissen oder Füllschweissen, verbunden werden.
  8. Verfahren gemäss einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das thermoplastische Material durch ein Polymer mit einer mittleren Molekularmasse im Bereich von 200.000 bis 2.000.000, bevorzugt über 300.000, aufgebaut ist.
  9. Verfahren gemäss einem oder mehreren der Ansprüche 1, 4, 5, 7 oder 8, dadurch gekennzeichnet, dass die schichtförmigen Werkstücke durch ein thermoplastisches Laminat aus zwei oder mehreren Schichten aufgebaut sind, wobei die Schichten durch eine Kombination aus zwei oder mehreren Materialien, ausgewählt aus der Gruppe festes thermoplastisches Frischmaterial, festes thermoplastisches Altmaterial, expandiertes thermoplastisches Frischmaterial und expandiertes thermoplastisches Altmaterial, aufgebaut sind.
Anspruch[en]
  1. A process for manufacturing thermoplastic products with a high creep strain resistance, which products are free from reinforcing additives, wherein the process includes at least vacuum forming and/or blow moulding of a thermoplastic material such as polyethylene, polypropylene or polybutene, product parts (2,3) being manufactured from sheet shaped work pieces, which work pieces are heated so that the thermoplastic material softens whereby they are given the desired shape by means of a mould and the influence of vacuum and/or pressure, characterized in that the product parts produced are allowed to cool and post-shrink for 1 to 2 days and that the product parts hereafter are joined to a unit, optionally together with product parts (4,5) prepared through injection moulding by means of a mould.
  2. A process according to claim 1, characterized in that the product parts prepared through injection moulding are manufactured by means of a mould comprising one or more mould cavities, whereby molten thermoplastic material is injected into a mould cavity of the mould, that the thermoplastic material is allowed to solidify, whereby the mould can be opened and the product part be removed from the mould, whereupon the product part is allowed to cool completely and post-shrink for 1 to 2 days.
  3. A process according to claim 1, characterized in that the product parts prepared through injection moulding are manufactured by means of a mould comprising one or more mould cavities, that the mould includes means for injecting a pressurized gas, whereby molten thermoplastic material is injected into a mould cavity of the mould, whereupon the pressurized gas is injected into the molten thermoplastic material in the mould cavity, that the thermoplastic material is allowed to solidify, that the gas is evacuated, whereupon the mould can be opened and product part be removed from the mould, allowed to cool completely and post-shrink for 1 to 2 days.
  4. A process according to claim 1, characterized in that one or more of the product parts prepared from work pieces are manufactured in a mould comprising a first and second mould half, which mould halves include one shape-giving cavity each, that the two shape-giving cavities together form a negative depiction of the outer shape of a product part, wherein the mould halves are placed so that a space is formed between the two mould halves and so that the mould cavities are directed towards each other, whereupon two pre-heated sheet shaped work pieces are applied between the two mould halves, that the work pieces are individually forced towards the shape-giving surface of the mould cavities by means of vacuum and/or pressure, whereupon the mould halves are pressed together while the thermoplastic material is still hot so that the material in the work pieces confounds and a hollow unit is formed.
  5. A process according to any of the claims 1 to 4, characterized in that the product parts prepared from work pieces as well as product parts prepared prepared through injection moulding form parts such as a pallet deck, a foot or a skid of a pallet, a pallet deck, a foot, a side wall or a skid of a pallet container or the like.
  6. A process according to any of claims 2 or 3, characterized in that the injection moulded product parts form parts such as a foot or a skid of a pallet, or a foot, a side wall or a skid of a pallet container.
  7. A process according to any of claims 1 to 6, characterized in that the product parts prepared from work pieces as well as product parts prepared through injection moulding are joined by welding such as butt welding, friction welding or filler welding.
  8. A process according to any of the claims 1 to 7, characterized in that the thermoplastic material is constituted by a polymer with an average molecular mass in the range 200'000 - 2'000'000, preferably above 300'000.
  9. A process according to any of claims 1, 4, 5, 7, or 8, characterized in that the sheet shaped work pieces are constituted by a thermoplastic laminate with two or more layers wherein the layers are constituted by a combination of two or more of the materials selected from the group, virgin solid thermoplastic material, re-cycled solid thermoplastic material, virgin expanded thermoplastic material and re-cycled expanded thermoplastic material.
Anspruch[fr]
  1. Un procédé pour la fabrication de produits thermoplastiques présentant une grande résistance à la déformation due au fluage, lesquels produits sont exempts d'additifs de renforcement dans lequel le procédé comprend au moins un formage sous vide et/ou un moulage par soufflage d'un matériau thermoplastique comme du polyéthylène, du polypropylène ou du polybutène, des pièces de produit (2,3) étant fabriquées à partir de pièces de travail conformées en feuille, lesquelles pièces de travail sont chauffées si bien que le matériau thermoplastique se ramollit en leur conférant la forme souhaitée au moyen d'un moule et l'influence du vide et/ou de la pression, caractérisé en ce que les pièces de produit produites sont amenées à refroidir et à se post-contracter pendant 1 à 2 jours et en ce que les pièces de produit sont réunies subséquemment à une unité, éventuellement conjointement avec des pièces de produit (4,5) préparées par moulage par injection au moyen d'un moule.
  2. Un procédé selon la revendication 1, caractérisé en ce que les pièces de produit préparées par moulage par injection sont fabriquées au moyen d'un moule comprenant une ou plusieurs cavités de moule ce par quoi la matière thermoplastique fondue est injectée dans une cavité de moule du moule, en ce que le matériau thermoplastique est amené à se solidifier, si bien que le moule peut être ouvert et la pièce de produit peut être retirée du moule, après quoi la pièce de produit est amenée à refroidir complètement et à se post-contracter pendant 1 à 2 jours.
  3. Un procédé selon la revendication 1, caractérisé en ce que les pièces de produit préparées par moulage par injection sont fabriquées au moyen d'un moule comprenant une ou plusieurs cavités de moule, en ce que le moule comprend un moyen pour injecter un gaz pressurisé, si bien que le matériau thermoplastique fondu est injecté dans une cavité de moule du moule, après quoi le gaz pressurisé est injecté dans le matériau thermoplastique fondu dans la cavité de moule, en ce que le matériau thermoplastique est amené à se solidifier, en ce que le gaz est évacué, après quoi le moule peut être ouvert et la pièce de produit peut être retirée du moule et laissée à refroidir complètement et à se post-contracter pendant 1 à 2 jours.
  4. Un procédé selon la revendication 1, caractérisé en ce que une ou plusieurs des pièces de produit préparées à partir des pièces de travail est (sont) fabriquée(s) dans un moule comprenant une première moitié de moule et une deuxième moitié de moule, lesquelles moitiés de moule comportent chacune une cavité conférant la forme, en ce que les deux cavités conférant la forme forment conjointement un modèle négatif de la forme externe d'une pièce de produit où les moitiés de moule sont placées de telles sorte qu'un espace est formé entre les deux moitiés de moule et de telle sorte que les cavités de moule sont dirigées l'une vers l'autre, après quoi deux pièces de travail conformées en feuille préchauffées sont appliquées entre les deux moitiés de moule, en ce que les pièces de travail sont poussées individuellement vers la surface conférant la forme des cavités de moule au moyen du vide et/ou de la pression, après quoi les moitiés de moule sont comprimées conjointement tandis que le matériau thermoplastique est encore chaud si bien que le matériau dans les pièces de travail se conforme et une unité creuse est formée
  5. Un procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que les pièces de produit préparées à partir des pièces de travail ainsi que les pièces de produit préparées par moulage par injection forment des pièces comme un châssis de palette, un pied ou un patin d'une palette, un châssis de palette, un pied, une paroi latérale ou un patin d'un conteneur de palette ou analogue.
  6. Un procédé selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que les pièces de produit moulées par injection forment des pièces comme un pied ou un patin d'une palette ou un pied, une paroi latérale ou un patin d'un conteneur de palette.
  7. Un procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les pièces de produit préparées à partir des pièces de travail ainsi que les pièces de produit préparées par moulage par injection sont réunies par soudage comme par soudage par aboutement, soudage par friction ou soudage avec apport.
  8. Un procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le matériau thermoplastique est constitué par un polymère ayant une masse moléculaire moyenne comprise dans la gamme de 200000 à 2000000, de préférence supérieure à 300000.
  9. Un procédé selon l'une quelconque des revendications 1,4,5,7 ou 8, caractérisé en ce que les pièces de travail conformées en feuille sont constituées par un stratifié thermoplastique avec deux ou plusieurs couches où les couches sont constituées par une combinaison de deux ou plusieurs matériaux choisis dans le groupe comprenant un matériau thermoplastique solide vierge, un matériau thermoplastique solide recyclé, un matériau thermoplastique expansé vierge et un matériau thermoplastique expansé recyclé.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com