PatentDe  


Dokumentenidentifikation DE10207234A1 04.09.2003
Titel Verfahren zum Erkennen einer Hindernissituation eines motorisch angetriebenen bewegten Elementes
Anmelder Leopold Kostal GmbH & Co KG, 58507 Lüdenscheid, DE
Erfinder Königshaus, Markus, Dipl.-Ing., 44149 Dortmund, DE
Vertreter Patentanwälte Schröter und Haverkamp, 58636 Iserlohn
DE-Anmeldedatum 21.02.2002
DE-Aktenzeichen 10207234
Offenlegungstag 04.09.2003
Veröffentlichungstag im Patentblatt 04.09.2003
IPC-Hauptklasse H02H 7/085
IPC-Nebenklasse G01D 5/20   G01P 3/44   
Zusammenfassung Ein Verfahren zum Erkennen einer Hindernissituation eines motorisch angetriebenen bewegten Elementes durch Auswerten einer eine Drehgeschwindigkeitsinformation des Motors beinhaltenden Größe, ist dadurch gekennzeichnet, daß ausgehend von einem aktuellen Zeitpunkt die ermittelten Werte der die Drehgeschwindigkeitsinformation beinhaltenden Größe unmittelbar zurückliegender Erfassungszeitpunkte in bezug auf ihr Änderungsverhalten zueinander über die Zeit untersuchten und mit einem für die Hindernissituation typischen Wertebereich der untersuchten Größe verglichen werden.

Beschreibung[de]

Die Erfindung betrifft ein Verfahren zum Erkennen einer Hindernissituation eines motorisch angetriebenen bewegten Elementes durch Auswerten einer eine Drehgeschwindigkeitsinformation des Motors beinhaltenden Größe.

Zum Betrieb eines motorisch, etwa elektromotorisch angetriebenen Elementes werden Verfahren eingesetzt, mit denen Hindernissituationen, beispielsweise Einklemmfälle, detektierbar sind. Derartige Verfahren werden beispielsweise zum Betrieb eines Fensterhebermotors zum Schließen einer Scheibe eines Kraftfahrzeuges eingesetzt. Mit dem Verfahren soll sichergestellt werden, daß beim Schließen der Scheibe keine Gegenstände, insbesondere keine Körperteile von Personen, in dem sich schließenden Scheibenspalt eingeklemmt werden. Als Drehgeschwindigkeitsinformation des Motors wird die Motorperiode benutzt, die in aller Regel durch Anordnen eines in Umfangsrichtung mehrpolig ausgebildeten Magneten auf der Ankerwelle des Antriebsmotors bereitgestellt wird. Die jeweilige Polarität wird mit einem ortsfesten Hall-Sensor bzw. mit einer ortsfesten Hall-Sensoranordnung erfaßt. Über die zeitliche Länge einer erfaßten Polarität, die ein Analogon zu einem bestimmten Drehwinkelbetrag der Motordrehbewegung darstellt, ist die Drehgeschwindigkeit ermittelbar. Bei einem Einklemmfall verlängern sich die Motorperioden, da der Motor durch das Hindernis abgebremst wird. Zur Detektion einer solchen Hindernissituation bzw. eines solchen Einklemmfalles wird die Länge jeder erfaßten Motorperiode mit einem vordefinierten Schwellwert verglichen. Die Größe des Schwellwertes ist so konzipiert, daß bei einer Schließbewegung der Scheibe unter Normalbedingungen der Schwellwert nicht überschritten wird. Wird dieser auch als Abschaltwert bezeichnete Schwellwert überschritten, deutet dies auf einen Einklemmfall hin. Zur Verifikation, daß bei Überschreiten des Abschaltwertes mit größerer Wahrscheinlichkeit ein Einklemmfall tatsächlich gegeben ist, werden wenige weitere Motorperioden bezüglich ihrer Länge ausgewertet. Überschreiten diese ebenfalls den Abschaltwert, wird auf das Vorliegen eines Einklemmfalles geschlossen und der Motor zum Absenken der Scheibe umgeschaltet.

Auch wenn mit diesem Verfahren grundsätzlich in zufriedenstellendem Maße Einklemmfälle beim Schließen motorisch angetriebener Scheiben bei Kraftfahrzeugen detektierbar sind, wird systemseitig auch in anderen Fällen auf das Vorhandensein einer Einklemmsituation geschlossen, nämlich immer dann, wenn die oben genannten Bedingungen erfüllt sind. Diese sind auch dann erfüllt, wenn die Scheibe beim Zufahren Schlägen ausgesetzt ist, etwa beim Durchfahren von Schlaglöchern bei einer Schlechtwegfahrt. Derartige Fehlumschaltungen können grundsätzlich dadurch reduziert werden, daß der Abschaltwert relativ hoch gesetzt wird. Bei einem derart eingestellten Erkennungsverfahren erfolgt jedoch die Erkennung eines Einklemmfalles erst in einem relativ späten Zeitpunkt.

Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, ein eingangs genanntes, gattungsgemäßes Verfahren dergestalt weiterzubilden, daß das Erkennen einer Hindernissituation, beispielsweise eines Einklemmfalles beim Schließen einer motorisch angetriebenen Scheibe bereits zu einem möglichst frühen Zeitpunkt erkannt wird, ohne jedoch die beim vorbekannten Stand der Technik sich einstellenden Nachteile eines zu tief angesetzten Abschaltwertes in Kauf nehmen zu müssen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ausgehend von einem aktuellen Zeitpunkt die ermittelten Werte der die Drehgeschwindigkeitsinformation beinhaltenden Größe unmittelbar zurückliegender Erfassungszeitpunkte in Bezug auf ihr Änderungsverhalten zueinander über die Zeit untersuchen und mit einem für die Hindernissituation typischen Wertebereich der untersuchten Größe verglichen werden.

Bei dem beanspruchten Verfahren wird systemseitig auf das Vorliegen einer Hindernissituation dann geschlossen, wenn sich die ermittelten Werte unmittelbar zurückliegender Erfassungszeitpunkte bezüglich ihres Änderungsverhaltens zueinander über die Zeit in einem für die zu erkennende Hindernissituation typischen, sich über mehrere Werte erstreckenden Wertebereich der untersuchten Größe befinden. Somit erfolgt beim Gegenstand dieses Verfahrens ein Mustervergleich, wobei eine Hindernissituation nicht mit einem Schwellwert, sondern mit dem typischen Änderungsverhalten der ermittelten Werte bei Auftreten einer solchen Situation als Vergleichsbasis dient. Mit einem solchen Mustervergleich ist mit sehr viel höherer Genauigkeit das tatsächliche Vorliegen einer Hindernissituation erkennbar. Für den Fall, daß das Verfahren zum Betreiben einer elektromotorisch angetriebenen Scheibe eines Kraftfahrzeuges eingesetzt wird und mit diesem Verfahren ein Einklemmfall zu detektieren ist, ist der zum Vergleich vorgesehene Wertebereich einer solchen Einklemmsituation nachgestellt. Somit stellt der Vergleichswertebereich eine typische zeitliche Entwicklung der sich aus der die Drehgeschwindigkeitsinformation beinhaltenden Größe ermittelten Werte als Maß für die sich einstellende Verlangsamung der Drehgeschwindigkeit des Motors dar. Ein solcher Einklemmfall ist erkennbar an einer nicht linearen Verlangsamung der Drehgeschwindigkeit des Motors und somit anhand einer sich dergestalt vergrößernden Motorperiode erkennbar, die die federartige Kraftanstiegsrate widerspiegelt.

Grundsätzlich eignet sich dieses Verfahren auch, um anhand unterschiedlicher Vergleichswertebereiche, darstellend unterschiedliche Hindernissituationsmuster, aus einer Anzahl unterschiedlicher Hindernisse, die sich durch unterschiedliche Motoränderungsprotokolle auszeichnen, unterschiedliche Hindernissituationen voneinander zu unterscheiden. Auf diese Weise kann eine tatsächliche Einklemmsituation unterschieden werden von einem in der Führung der Scheibe befindlichen Hindernis. Es kann dann in Abhängigkeit von der detektierten Hindernissituation systemseitig auf unterschiedliche Weise reagiert werden, beispielsweise durch Umschalten des Antriebsmotors im Falle eines Einklemmens und lediglich durch Anhalten des Motors etwa in einem anderen Falle. Auf diese Weise ist ebenfalls das Einfahren der Scheibe in die obere Dichtung detektierbar.

Um eine hinreichende Übereinstimmung zwischen dem eine Hindernissituation darstellenden Vergleichswertebereich und der Folge der aktuell ermittelten Werte zu erreichen, ist es grundsätzlich ausreichend, daß drei aufeinander folgende aktuell ermittelte Werte Teil des die Hindernissituation definierten Wertebereiches sind. Aus Redundanzgründen wird es jedoch vorteilhaft sein, fünf bis sieben aufeinander folgende aktuell ermittelte Werte als Maß einer hinreichenden Übereinstimmung vorzusehen.

Die Ermittlung der Werte aus der die Drehgeschwindigkeitsinformation enthaltenden Größe kann unter Zugrundelegung eines Kraftmodells erfolgen, durch das Systemkomponenten und Systemparameter berücksichtigt sind. Anstelle eines Kraftmodells kann ebenfalls ein Energiemodell des Systems herangezogen werden, wobei letzteres ebenfalls zur Interpolation des oder der nächsten bei einem Hindernisfall zu erwartenden Wertes eingesetzt werden kann.

Nachfolgend ist die Erfindung anhand eines Ausführungsbeispieles unter Bezugnahme auf die beigefügten Figuren beschreiben. Es zeigen:

Fig. 1 ein über die Zeit aufgetragenes Diagramm der aus einer eine Drehgeschwindigkeitsinformation enthaltenden Größe ermittelten Werte beim Eintreten einer Hindernissituation nach einem Betrieb unter Normalbedingungen und

Fig. 2 ein über die Zeit aufgetragenes Motorperiodendiagramm.

Auf der Welle eines elektrischen Fensterhebermotors eines Kraftfahrzeuges ist ein in Umfangsrichtung vierpoliger Magnet angeordnet. Eine ortsfest zu diesem Magneten angeordnete Hall-Sensoranordnung dient zur Erfassung der jeweilig am Hall-Sensor anliegenden Polarität des Magneten. Somit ist bei diesem dargestellten Ausführungsbeispiel eine Umdrehung der Ankerwelle um 360° durch das Durchlaufen von vier, im folgenden als Motorperioden bezeichneten Perioden gekennzeichnet. Die Länge einer solchen Motorperiode ist somit ein unmittelbares Maß für die Drehgeschwindigkeit der Fensterhebermotors.

Bei einem Schließvorgang der durch den Fensterhebermotor angetriebenen Scheibe unter Normalbedingungen dreht sich der Fensterhebermotor im Idealfall konstant; im Realfall ist dieser jedoch statistisch verteilten Schwankungen unterworfen. Diese Schwankungen sind begründet durch das Kraftübertragungssystem und/oder durch die nicht konstante Reibung der Scheibe in ihrer Führung. Ein Betrieb des Antriebsmotors mit gleichbleibender Drehgeschwindigkeit ist in Fig. 2 durch die gleichbleibende Länge der ersten Motorperioden T erkennbar. Im Zeitpunkt x0 berührt die die Fensteröffnung schließende Scheibe ein Hindernis, wodurch der Fensterhebermotor abgebremst wird. Dies resultiert in einer Zunahme der Dauer der sich an den Zeitpunkt x0 anschließenden Motorperioden T.

Unter Zugrundelegung eines Kraftmodells bei diesem Ausführungsbeispiel wird nach jedem erfaßten Polaritätswechsel und somit nach jedem Periodendurchlauf die jeweils zuletzt erfaßte Motorperiodendauer in einem Ringspeicher mit beispielsweise fünf Speicherplätzen gespeichert.

Unter Zugrundelegung eines vereinfachten Kraftmodells gilt bei einem Schließvorgang der Scheibe unter Normalbedingungen





wobei FM die Motorkraft, Fg die Gewichtskraft der Scheibe und FR die Reibungskraft sind. Bei den letztgenannten Größen handelt es sich um Konstanten. Somit ist die Motorkraft FM bei einem Normalbetrieb konstant, so daß eine konstante Motorperiode T erhaltbar ist (vgl. auch Fig. 2). Im Zeitpunkt x0 wird die Scheibe gegen ein Hindernis gefahren, so daß anschließend eine Kraftänderung eintritt dergestalt, daß zu der ursprünglichen Motorkraft FM die als Federkraft FF ausgedrückte Nachgiebigkeit des angefahrenen Gegenstandes hinzukommt, so daß sich folgende Gleichung ergibt:





wobei Fges die Gesamtkraft und FF die Federkraft ist. Entsprechend der Federkraft FF verlängert sich die aktuelle Motorperiode, in der das Hindernis angefahren wird. Ebenfalls verlängern sich die nachfolgenden Motorperioden, und zwar um die Kraft der Feder. Ausdrücken läßt sich dies auch über die Motorperiode, die vor dem Zeitpunkt x0 konstant ist und die durch die Einklemmsituation in Abhängigkeit von der Federkraft verlängert wird. Nach Zusammenfassen der konstanten Faktoren läßt sich dieses ausdrücken als





Bei dieser Beschreibung des Motorperiodenverlaufes ist die Masseträgheit der Scheibe unberücksichtigt. Dies wird im vorliegenden Fall jedoch gerade ausgenutzt, so daß im Auflaufpunkt der Scheibe auf das Hindernis die ermittelbare Federkonstante zunächst niedriger erscheint und sich mit zunehmendem Einfahren in das Hindernis erhöht.

Die oben genannte Gleichung weist drei unbekannte Konstanten (K, B, A) auf, die jedoch im Rahmen einer Gleitkommaberechnung aus drei Stützstellen ermittelt werden können. Da jedoch in aller Regel eine solche Gleitkommaberechnung die Leistung eines heutzutage in der Praxis eingesetzten Mikrocontrollers überschreitet, wird in dem dargestellten Ausführungsbeipiel das Anstiegsverhalten der Motorperiode T bewertet. Bei dieser Bewertung werden mehrere aufeinanderfolgende Periodendauermessungen bezüglich ihres jeweiligen Änderungsverhaltens zu der vorangegangenen Periode untersucht entsprechend folgender Gleichung





Die sich aus dieser Gleichung ergebende Aussage zeigt, daß der Differentialquotient von drei unmittelbar aufeinanderfolgenden Motorperioden in dem vereinfachten Kräftemodell bei einem Einklemmfall gleich 1 ist. Gleichfalls wird aus dieser Gleichung deutlich, daß im Idealfall bei konstanter Motordrehzahl und somit konstanten Motorperioden diese Gleichung nicht definiert ist. Da in der Praxis diese Idealisierung jedoch nicht eintritt, streut das Ergebnis, was zu deutlich schwankenden Differentialquotienten führt, wie dies in dem Diagramm der Fig. 1 vor dem Zeitpunkt x0 dargestellt ist. Durch die Definition des Einklemmfalles im vorliegenden Fall dadurch, daß der Differentialquotient "1" ergeben soll, liegt im Einklemmfall ein typisches Verhalten der sich ergebenden Differentialquotienten vor. Diese liegen zu Beginn des Einklemmfalles aufgrund der in dem Kräftemodell nicht berücksichtigten Masseträgheit der Scheibe etwas höher als "1" und reduzieren sich sukzessive mit der Erfassung jeder weiteren Motorperiode und den daraus gebildeten Differentialquotienten. Hinterlegt wird daher in dem Ringspeicher jeweils der zuletzt ermittelte Differentialquotient. In Fig. 1 ist ein Wertebereich W angegeben, in dem die sich bei einem Einklemmfall ergebenden Differentialquotienten aufgetragen sind. Die in diesem Wertebereich W eingetragenen einzelnen Differentialquotienten sind mit einem Toleranzbereich versehen. Im Falle einer Einklemmsituation muß somit die Bedingung erfüllt sein, daß bei zwei aufeinander folgenden Differentialquotienten der zuletzt erfaßte kleiner ist als der jeweils vorausgegangene. Überdies kann als weiteres Kriterium betrachtet werden, daß die Differenz der Differentialquotienten eines ersten aus zwei aufeinander folgenden Differentialquotienten gebildeten Differentialquotientenpaares größer ist als die Differenz der Differentialquotienten eines weiteren Differentialquotientenpaares, gebildet aus dem zuletzt ermittelten Differentialquotienten des ersten Differentialquotientenpaares und dem unmittelbar anschließend gebildeten Differentialquotienten. Im vorliegenden Falle ist vorgesehen, daß fünf aufeinander folgende Differentialquotienten diese Bedingungen erfüllen müssen, damit systemseitig auf einen Einklemmfall geschlossen werden kann.

Aus der Beschreibung dieses Verfahrens wird deutlich, daß nach einmaligem Eichen des jeweiligen Systems, beispielsweise eines Fensterhebersystems bei einem Kraftfahrzeug durch Festlegen des Wertebereiches auf einfache Weise und mit hoher Sicherheit ein Einklemmfall detektierbar ist. Schlechtwegfahrten, die als Schläge auf die sich schließende Scheibe wirken, machen sich zwar in einer kurzzeitigen Änderung der Motorperiode bemerkbar. Jedoch genügen die daraus gebildeten Differentialquotienten nicht den genannten Bedingungen und fallen daher nicht in das in Fig. 1 beispielsweise beschriebene Muster. Daher werden sämtliche, auf die Scheibe einwirkenden Kräfte unberücksichtigt bleiben, die sich nicht in einer federähnlichen Krafterhöhung im Gesamtsystem bemerkbar machen. Denn nur wenn dieses vorliegt, sind Differentialquotienten ermittelbar, die in Bezug auf die jeweils vorangegangenen den oben genannten Kriterien zum Erkennen eines Einklemmfalles genügen. Da dies unabhängig von der absoluten Kraft ist, ist dieses Verhalten unabhängig von der tatsächlichen, einen Einklemmfall darstellenden Federkraft. Somit wird auf eine Einklemmsituation bereits dann geschlossen, wenn ein geringer federartig wirkender Widerstand auf die Schließbewegung der Scheibe einwirkt. Somit ist ein Einklemmfall zu einem sehr frühen Zeitpunkt detektierbar, wobei im vorliegenden Fall bei einer Berücksichtigung von fünf den Kriterien genügenden Differentialquotienten die Detektion des Einklemmfalles bereits nach einem Drehwinkelbetrag der Ankerwelle von 450° erfolgt.


Anspruch[de]
  1. 1. Verfahren zum Erkennen einer Hindernissituation eines motorisch angetriebenen bewegten Elementes durch Auswerten einer eine Drehgeschwindigkeitsinformation des Motors beinhaltenden Größe, dadurch gekennzeichnet, daß ausgehend von einem aktuellen Zeitpunkt die ermittelten Werte der die Drehgeschwindigkeitsinformation beinhaltenden Größe unmittelbar zurückliegender Erfassungszeitpunkte in Bezug auf ihr Änderungsverhalten zueinander über die Zeit untersuchten und mit einem für die Hindernissituation typischen Wertebereich der untersuchten Größe verglichen werden.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der die Hindernissituation darstellende Wertebereich der untersuchten Größe das Änderungsverhalten der untersuchten Größe darstellt, das sich einstellt, wenn das motorisch angetriebene Element gegen einen Gegenstand fährt und dieses zu einer nichtlinearen und somit federartigen Kraftanstiegsrate führt.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Vergleichswertebereich einen Toleranzbereich aufweist.
  4. 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der die Hindernissituation darstellende Wertebereich durch einen nicht linearen Abfall mit zunehmender Zeit bestimmt ist.
  5. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die die Drehgeschwindigkeitsinformation beinhaltende Größe durch einen in Umfangsrichtung zumindest zweipolig ausgebildeten, auf der Ankerwelle des Motors positionierten Magneten erzeugt und durch einen ortsfest vorgesehenen Hall-Sensor oder eine ortsfest vorgesehene Hall-Sensoranordnung die sich bei einer Drehbewegung der Ankerwelle periodisch ändernde Polarität erfaßt wird und somit die Länge einer durchlaufenden Periode der Wert in einem Erfassungszeitpunkt ist.
  6. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine hinreichende Übereinstimmung zwischen dem Wertebereich und der Folge der aktuell erfaßten Werte vorliegt, wenn zumindest drei aufeinander folgende Werte Teil des die Hindernissituation definierenden Vergleichswertebereichs sind.
  7. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die aufeinander folgend ermittelten Werte sukzessive in einen Ringspeicher mit einer solchen Speicherplatzanzahl geschrieben werden, die für eine hinreichende Übereinstimmung benötigt werden.
  8. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Werte der die Drehinformation enthaltenden Größe unter Zugrundelegung eines Systemkomponenten und/oder Parameter berücksichtigenden Kraftmodells ermittelt werden.
  9. 9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Werte der die Drehgeschwindigkeitsinformation enthaltenden Größe unter Zugrundelegung eines Systemkomponenten und Parameter berücksichtigenden Energiemodells ermittelt werden.
  10. 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Verfahren zum Erkennen eines eine Schließbewegung einer motorisch angetriebenen Scheibe eines Kraftfahrzeuges behindernden Einklemmfalz eingesetzt wird.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

  Patente PDF

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com