PatentDe  


Dokumentenidentifikation EP0756170 02.10.2003
EP-Veröffentlichungsnummer 0756170
Titel System zur Messung des Feuchtigkeitsgehalts eines mehrlagigen ballenförmigen Materials
Anmelder Malcam Ltd., Tel Aviv, IL
Erfinder Greenwald,Alexander, 17000 Nazareth-Illit, IL;
Moshe,Danny, 55024 Kiryat Ono, IL;
Tsentsiper,Boris, 97729 Jerusalem, IL
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69629634
Vertragsstaaten DE, FR, IT
Sprache des Dokument EN
EP-Anmeldetag 11.07.1996
EP-Aktenzeichen 961111879
EP-Offenlegungsdatum 29.01.1997
EP date of grant 27.08.2003
Veröffentlichungstag im Patentblatt 02.10.2003
IPC-Hauptklasse G01N 22/04
IPC-Nebenklasse G01N 22/00   

Beschreibung[en]
FIELD OF THE INVENTION

This invention relates to a system for the measurement of moisture content of a material, particularly a multi-layer bale of cotton.

BACKGROUND OF THE INVENTION

During the processing of cotton gins are used for separating the cotton fibers from the seeds. For smooth operation of the processing machinery, and in order to optimize the quality of the cotton fiber whilst minimizing output wastage, it is necessary to control the moisture of the cotton fibers during the ginning process. Specifically, cotton fibers having too high a moisture content tend to cling to the processing machinery and form wads which decompose during storage. On the other hand, cotton fibers having too low a moisture content cling to metal surfaces as a result of static electricity generated on the fibers. Furthermore, as the moisture content of the cotton fibers is lowered, their strength is reduced resulting in more frequent breakage of the fibers. As a result, the effective throughput of the processing plant is reduced.

The optimum moisture content of cotton fibers is from 6.5 to 8%. However, depending on the period during the cotton harvest, cotton may arrive at the gins with a moisture content from less than 4% to more than 12%. For these reasons, steps must be taken, during the ginning process, either to reduce the moisture content of the cotton fibers or, alternatively, to increase it in order that the resulting moisture content may fall between the stated optimum limits. A moisture measuring device is thus an integral component of the moisture control system.

Cotton bales are massive structures typically having width of 0.5 m, a height of 0.7 m and a length of 1.4 m and a weight of 250 Kg ± 10%. Each bale typically comprises many layers which are bound together using metal bars. The moisture content through the bale may vary from one point to another by approximately 3%.

A moisture measuring device for measuring the moisture content of a cotton bale must be capable of processing one bale every 1.5-2 min for an average bale speed of approximately 1 ms-1.

U.S. Patent No. 4,578,998 describes a moisture content measuring system for sheet material which uses microwave radiation. Two pairs of microwave radiators and receivers are combined with surface and below surface temperature measuring sensors to furnish data to a computer which interprets the data and yields moisture readings. Each pair of microwave radiator and receiver straddles the sheet test material and checks microwave transmission through the material and reflected from it, but the two radiators are crossed-polarized so that signal interchange between then is avoided.

In such a system, the two radiators are cross-polarized to each other and one irradiates the bottom surface of the test material whilst the other irradiates the top. In fact, a pair of radiators and receivers are employed: one radiator being above the sheet material and the other below, the respective receivers being aligned with the radiators and, themselves, being disposed on opposite sides of the sheet material. In order to discriminate which radiated signal emanates from which radiator and to prevent cross-talk between the two radiators, the respective microwave signals in the two radiators are cross-polarized so that each receiver receives only the signal from its corresponding radiator. However, it is to be understood that the polarization of the signals, whilst being used for signal separation, is not actually employed to determine the moisture content of the sheet material. Furthermore, the system would not appear to be suitable for measuring the moisture content of multi-layer bales of material, such as cotton, having non-uniform moisture content through a section thereof.

Additionally, when measuring the moisture content of multi-layer bales of cotton, the results will vary according to whether the layers are parallel or not and it is therefore desirable to assess the extent to which the layers are parallel or not. No provision is made in U.S. Patent No. 4,578,998 to achieve such an objective.

It will also be noted, particularly from the Figure and accompanying description of U.S. Patent No. 4,578,998 that the respective radiators and receivers are disposed on either side of the sheet material in very close proximity thereto. Consequently, there is very little air between the respective radiators and receivers and therefore no compensation need be provided for the ambient moisture content of the air itself. However, owing to the massive structure of cotton bales, and the like, and their nonuniformity, there inevitably is a substantial air gap between the radiators and the receivers surrounding the cotton bale. Owing to the presence of this air gap, the resulting computation of the moisture content also includes the effect of any ambient moisture in the air surrounding the bale between the respective radiator and receiver. Unless this is compensated for, the resulting computation of the bale's moisture content will be inaccurate.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a system for measuring the moisture content of a multi-layer bale of material, in which the drawbacks of hitherto proposed such systems are significantly reduced or eliminated.

According to a broad aspect of the invention, there is provided a system for measuring the moisture content of a multi-layer bale of material, the system comprising:

  • a source of microwave radiation disposed on a first side of the bale for directing a polarized source beam through the bale in a direction substantially parallel to the layers thereof so as to exit from the bale as an exit beam,
  • conveyor means for conveying the bale past the source of microwave radiation,
  • microwave antenna means disposed on an opposite side of the bale for receiving the exit beam,
  • bale alignment means for determining when the bale is correctly aligned between the radiation source and the antennas and producing an alignment signal,
  • amplitude determination means coupled to the microwave antenna means and to the bale alignment means and being responsive to said alignment signal for determining a maximum amplitude of the exit beam corresponding to an amplitude of the exit beam,
  • attenuation determination means coupled to the amplitude determination means for determining an attenuation of the source beam, and
  • moisture determination means coupled to the attenuation determination means and being responsive to said attenuation for determining the moisture content of the bale.

More in detail, the system for measuring the moisture content of a multi-layer bale of material according to the invention comprises :

  • a source of microwave radiation disposed on a first side of the bale for directing a circularly polarized source beam through the bale in a direction substantially parallel to the layers thereof so as to exit from the bale as an exit beam,
  • conveyor means for conveying the bale past the source of microwave radiation,
  • first and second microwave antennas for receiving mutually orthogonal components of the exit beam,
  • bale alignment means for determining when the bale is correctly aligned between the radiation source and the antennas, and producing an alignment signal in response to the exit beam emanating entirely from the bale,
  • first and second amplitude determination means coupled to the first and second microwave antenna means, respectively, and to the bale alignment means and being responsive to the alignment signal for determining respective maximum amplitudes of the exit beam corresponding to an amplitude of the exit beam in respective first and second directions normal and parallel to the layers of the bale,
  • first and second attenuation determination means coupled to the amplitude determination means for determining respective first and second attenuations of the source beam in the direction normal and parallel to the layers of the bale, and
  • moisture determination means coupled to the first and second attenuation determination means and being responsive to the first and second attenuations for determining the moisture content of the bale.

Advantageously, the bale alignment means is coupled to the first and second microwave antennas and is responsive to the exit beam for determining when the bale is correctly aligned between the radiation source and the antennas.

The bale alignment means includes:

  • leading edge transition means for detecting when a leading edge of the bale passes the source of microwave radiation and producing a leading edge transition signal after a time periods τ1,
  • interval timing means coupled to the leading edge transition means and being responsive to the leading edge transition signal for producing the alignment signal for a time period τ2 whose magnitude is a function of a length and velocity of the bale, and
  • trailing edge transition means for detecting when a trailing edge of the bale passes the source of microwave radiation and producing a trailing edge transition signal after a time period, τ3.

The moisture determination means is responsive to the trailing edge transition signal for correcting for ambient moisture content, and there are further provided:

  • first and second filtering means respectively coupled to the first and second attenuation means and to the bale alignment means and being responsive to the trailing edge transition signal for filtering from the first and second components of the exit beam respective ambient moisture components representative of the ambient moisture content so as to produce corresponding first and second corrected attenuation signals,
  • first and second digital sampling means coupled to the filtering means for sampling the first and second corrected attenuation signals as the bale is conveyed past the first and second microwave antennas so as to produce respective sampled attenuation signals, and
  • component moisture computing means coupled to the first and second digital sampling means for computing respective moisture samples.

Advantageously, the moisture determination means includes:

  • ratio determining means coupled to the component moisture computing means for determining a respective ratio of each pair of moisture samples so as to produce respective ratios,
  • comparator means coupled to the ratio determining means for comparing the respective ratios with a predetermined constant K characteristic of the layers in the bale being parallel,
  • parallel layer moisture determination means coupled to the comparator means and responsive to the ratios being equal to K for determining the moisture content as an average value of the corrected digitized sampled component moisture contents associated with one of the microwave antennas, and
  • non-parallel layer moisture determination means coupled to the comparator means and responsive to the ratios being unequal to K for determining the moisture content as an average value for all slices of the corrected digitized sampled component moisture contents associated with one of the microwave antennas, the average value being corrected by an empirical function of the ratios and the respective moisture samples.

Preferably, a circularly polarized source beam is employed and is detected by a pair of cross-polarized antennas for receiving mutually orthogonal components of the exit beam. The moisture content associated with each of these components may then be determined after which a ratio may be calculated of the respective components of the moisture content in the two directions of the bale. It has been found that when the layers of the bale are parallel so that one component of the source beam is parallel to the layer structure and the other normal thereto, a characteristic ratio K is produced. Any difference between the measured ratio and the characteristic ratio K provides a measure of the deviation of the layer structure from the ideal parallel structure.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how the same may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

  • Fig. 1 shows pictorially a system according to the invention for measuring the moisture content of a multi-layer bale of cotton;
  • Figs. 2 and 3 show schematically the amplitudes of circularly polarized input and output beams, respectively;
  • Fig. 4 shows schematically similar forms of the amplitudes when the layers are not parallel to the source beam such that the angle at which the output beam has a maximum amplitude is normal to the bale;
  • Fig. 5 is a block diagram showing functionally the principal components in a system according to the invention;
  • Fig. 6 is a flow diagram showing the principal method steps associated with the system of Fig. 5;
  • Fig. 7 shows graphically an empirical relationship between signal attenuation and moisture content; and
  • Fig. 8 shows graphically an exit signal received by the microwave antennas having associated therewith three distinct time periods τ1, τ2 and τ3.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Fig. 1 shows part of a system 10 for measuring the moisture content of a multi-layer bale of material 11. The bale 11 has a plurality of layers 12 which, in the Figure, are substantially parallel to one another and to a base 13. At a first side 14 of the bale 11 there is disposed a source of microwave radiation 15 for directing a circularly polarized source beam 16 of microwave radiation having a frequency in the range 8 to 10 GHz in a direction substantially parallel to the layers 12 so as to exit from the bale 11 as a circularly polarized exit beam 17. For ease of reference, there is also shown in the Figure a Cartesian frame showing the directions of the respective X, Y and Z axes to which reference is made in the following description.

Disposed on a second side 18 of the bale 11 opposite the first side 14 thereof, there are disposed first and second microwave antennas 19 and 20 for receiving mutually orthogonal components of the exit beam 17. Throughout the measuring process, the bale 11 moves longitudinally along the X-axis so that each successive measurement actually relates to a slice 21 along the length of the bale 11. In order to prevent separation of the individual layers 12 within the bale 11, the bale 11 is bound at opposite ends thereof with metal straps or bars depicted as 22 which completely encircle the bale 11 and thus keep the layers 12 thereof intact.

The source beam 16 is circularly polarized such that its respective components Xi and Yi are equal in magnitude as shown in Fig. 2. With further reference to Fig 1, it will be noted that the vertical component Yi of the source beam 16 passes through the bale 11 in a direction normal to the layers 12 whilst the horizontal component Xi passes through the bale 11 in a direction parallel to the layers 12. As a result, the component Xi of the source beam 16 encounters many more water molecules during its transition from the source 15 to the microwave antenna 19 than does the vertical component Yi of the source beam 16 during its corresponding transition. As a result, the horizontal component Xi is attenuated to a much greater extent than the vertical component Yi and, as shown in Fig. 3, the resulting polar representation of the output beam is elliptical having its major axis in the vertical plane and its minor axis in the horizontal plane.

This is true for so long as the layers 12 of the bale are substantially parallel to the direction of the horizontal component Xi of the source beam 16 such that its vertical component Yi is normal to the layer structure.

Fig. 4 shows the situation when this is no longer the case and the layer structure is inclined at an angle β to the horizontal component Xi of the source beam 16. The resulting exit beam is still elliptically polarized but the major axis of the ellipse is tilted so as to be normal to the layer structure of the bale and the resulting maximal amplitude can be determined either by using a pair of microwave antennas as shown or, alternatively, by employing a single circularly polarized antenna.

Fig.5 shows the principal functional components of a moisture determination means 25 responsive to the respective signals received by the antennas 19 and 20. In fact, separate channels are connected to the antennas 19 and 20 so that their respective signals are processed separately. However, for the sake of simplicity, the components have not been duplicated in Fig. 5 but are represented as single blocks having dual inputs and outputs.

The first and second attenuation determination means are neither represented on Fig. 5.

Thus connected to each of the antennas 19 and 20 are respective bale alignment means 26 for producing an alignment signal when the bale 11 is correctly aligned between the radiation source 15 and the antennas 19 and 20. The effect of the tie bars 22 is removed from the resulting signal by means of a bar suppression means 27 and the resulting analog signal is digitized by means of an analog-to-digital (A/D) converter 28. The resulting digital signal is normalized by a normalization unit 29 so as to compensate for the temperature, mass, length and material content of the bale 11. Specifically, denoting:

Wxi =
the ith moisture measurement in the X-channel,
Wyi =
the ith moisture measurement in the Y-channel,
Wo =
the nominal mass of the bale ≈ 250 Kg,
Wc =
the actual measured mass of the bale,
Lo =
the nominal length of the layers taken along the width of the bale,
Lc =
the actual length of the layers taken along the width of the bale,
To =
the base temperature of the cotton fibers (35°C) and
Te =
the temperature of the cotton fibers in the current slice,
it may be shown that: Wxli= To - Tc / (10) Wyli= To - Tc / (10)

By means of corresponding normalization in both the X and Y channels, corresponding look-up tables may be computerized so as to permit the normalized values simply to be read off from the signals fed by the A/D converter 28 to the normalization unit 29 so as to produce corresponding corrected values Wix and Wiy representing moisture content in the respective X and Y directions of a slice 21 of the bale 11. In the particular case that the layers 12 of the bale 11 are located substantially parallel to the X axis, the resulting bale is said to be "normal" and the total moisture concentration may be completely characterized by the moisture measurements provided by the X-channel, i.e. in that direction wherein the source beam 16 passes parallel to the layers 12 of the bale 11 and is thus subjected to the greater attenuation. However, if as shown schematically in Fig. 4, the layers 12 are not parallel to the X-axis, then the moisture measurements provided by the X-channel will not themselves characterize the true moisture concentration along the layers of the bale and a suitable correction factor must be provided so as to allow for the relative inclination of the bale's layers 12.

Such correction is provided by a ratio determination unit 33 which calculates the ratio Wix: Wiy being the normalized signals in the respective X and Y channels. It may be shown, empirically, that if the ratio is substantially equal to a predetermined coefficient K which, for cotton bales, may be 80, then the total moisture concentration of the current slice 21 in the bale 11 may be considered, to all intents and purposes, to be equal to the concentration Mix along the X direction. However, any deviation of the calculated ratio from the predetermined coefficient K, is indicative of the layers 11 being non-parallel to the X direction such that the vector components of the source beam must be resolved in directions parallel and normal to the layers 11, as follows: Wix(meas) = Wix cos β + Wiy sin β Wiy(meas) = Wix sin β + Wiy cos β K = Wix / (Wiy) where:

Wix(meas) =
measured moisture content in the X direction for the ith slice,
Wiy(meas) =
measured moisture content in the Y direction for the ith slice,
Wix =
maximum moisture content of the ith slice in the X-direction,
Wiy =
maximum moisture content of the ith slice in the Y-direction,
β =
the angle of inclination of the layers to the X-direction,
K =
the ratio of the maximum moisture values in the X and Y directions, and
αi =
the measured ratio Wix(meas) : Wiy(meas).

Thus, the ratio derived by the ratio determination unit 33 is fed to one input 34 of a comparator 35 having a second input to which the appropriate coefficient K is fed from a Read Only Memory (ROM) 37. Depending on the output of the comparator 35 being substantially equal to or greater than one, the moisture concentration of the bale is determined directly by a mean moisture unit 38 or by means of the correction function 39 in accordance with the equations described above.

Fig. 6 is a flow diagram which summarizes the above-described determination of the bale's moisture content. Thus, at the outset of the process, respective signals are received by the antennas in each of the X and Y channels. If the bale is aligned between the source and receiving antennas, then the edge transition signal of the bales is removed from the resulting signal so that only the steady-state is considered in the subsequent processing. When the bale is well clear of the source and receiving antennas, the system determines the moisture content of the ambient air and, as will be explained below, this is then filtered out from the corresponding signals produced when a bale is aligned between the source and receiving antennas so as to correct for the moisture content of air surrounding the bale.

As explained above, successive measurements are taken for respective slices along the length of the bale as it is conveyed past the source and receiving antennas. The resulting successive signals are processed so as to eliminate therefrom the effects of the tie bars 22 shown in Fig. 1 which, being non-absorbent, have a very much lower attenuation than the absorbent cotton fibers. The resulting signals are normalized and the ratio of the normalized signals is then calculated. If the resulting normalized ratio equals the predetermined coefficient K, then the results of the Y-channel alone are sufficient for determining the average moisture content of the bale. Otherwise, the mean moisture content Wi associated with the ith slice must be corrected using the normalized X-channel signal, according to the empirical function fi, Wix, Wiy) where:

The attenuation in dB may be determined by the function:

where Pexit and Psource are the powers of the exit and source beams, respectively.

Having thus determined the attenuation of the X and Y components of the source beam, the resulting moisture content of the bale may be determined empirically from a graphical relationship of the kind shown in Fig. 7 where two approximated curves 40 and 41 are represented for the directions Y and X, respectively. In fact, as shown in dotted outline in Fig. 7, the two curves may be shown to be parabolic functions, although their exact derivation is not itself a feature of the present invention. A more complete description of these curves and their derivation for a single direction may be found in "Theoretical and Experimental Investigation of Microwave Moisture Measurement of Materials" by A. Greenwald, "FAN", Uzbekistan, 1982.

As explained above, it is important to take the measurements only during that period of time when the bale 11 is correctly aligned between the source and receiving antennas. In fact, regardless of whether a bale is aligned between the antennas or not, a signal is always received by the receiving antennas for so long as the source antenna radiates the source beam.

Fig. 8 shows schematically a representation of the signal 43 received by the receiving antennas corresponding to a generally low background level 44 which climbs to an initial higher level at a time T0 when a bale enters the region between the source antenna and the receiving antennas. Thereafter, the signal climbs producing a transient peak 45 owing to edge transition effects and settles down after a time interval τ1 to a generally stable level representative of the moisture content of the bale. Throughout the time interval τ2 the signal remains substantially constant subject to minor fluctuations owing to local inequalities in the bale's moisture content until, at the end of the second time interval τ2, the trailing edge of the bale starts to emerge past the source and receiving antennas thereby giving a second local peak 46 whereafter, after a third time interval τ3, the bale has completely cleared the gap between the source and receiving antennas such that the resulting signal is representative of the ambient moisture concentration.

Although the invention has been described with particular reference to the use of a circularly polarized beam employing two receiving antennas for receiving mutually orthogonal components of the exit beam, a single circularly polarized detector can be employed instead which permits the maximum amplitude of the exit beam to be determined regardless of the inclination of the major axis of the elliptical output beam.

In the preferred embodiment, the source beam is circularly polarized and is directed in a direction substantially parallel to the layers of the bale. However, if desired the source beam may be linearly polarized and directed in a direction substantially normal to the layers of the bale. Likewise, the microwave antenna means may be either a circularly polarized antenna or may include two linearly polarized antennas having mutually orthogonal directions of polarization.

It will further be appreciated that, although in the preferred embodiment the bale alignment means is responsive to the exit beam for determining when the bale is correctly aligned between the radiation source and the antennas, other alignment means may be employed without derogating from the principles of the invention. For example, optical means may be employed to located the position of the bale relative to the radiation source and antennas so as to produce the required alignment signal.


Anspruch[de]
  1. Ein System (10) zur Messung des Feuchtigkeitsgehalts eines mehrlagigen Ballens aus Material (11), wobei das System folgendes umfasst:
    • eine Quelle von Mikrowellenstrahlung (15), die an einer ersten Seite (14) des Ballens (11) angeordnet ist, zur Lenkung eines zirkular polarisierten Quellenstrahls (16) durch den Ballen (11) in eine Richtung, die im wesentlichen parallel zu den Lagen (12) davon liegt, um aus dem Ballen (11) als ein Ausgangsstrahl (17) auszutreten,
    • Fördermittel zur Förderung des Ballens (11) an der Quelle von Mikrowellenstrahlung (15) vorbei,
    • erste und zweite Mirkowellenantennen (19, 20) zum Empfang von zueinander senkrechten Komponenten des Ausgangsstrahls (17),
    • Ballenausrichtungsmittel (26) zur Bestimmung, wenn der Ballen (11) zwischen der Strahlungsquelle (15) und den Antennen (19, 20) korrekt ausgerichtet ist, und zur Erzeugung eines Ausrichtungssignal als Reaktion auf den Ausgangsstrahl (17), der gänzlich von dem Ballen (11) herrührt,
    • erste und zweite Amplitudenbestimmungsmittel, die jeweils mit den ersten und zweiten Mikrowellenantennenmitteln (19, 20) verbunden sind, und mit den Ballenausrichtungsmitteln (26) verbunden sind, und die auf das Ausrichtungssignal reagieren, um jeweilige maximale Amplituden des Ausgangsstrahls (17) zu bestimmen, die einer Amplitude des Ausgangstrahls (17) in jeweiligen ersten und zweiten Richtungen (Y, X) entsprechen, die normal und parallel zu den Lagen (12) des Ballens (11) sind,
    • erste und zweite Dämpfungsbestimmungsmittel, die mit den Amplitudenbestimmungsmitteln verbunden sind, zur Bestimmung von jeweiligen ersten und zweiten Dämpfungen des Quellenstrahls in der normalen Richtung (Y) und der Parallelrichtung (X) zu den Lagen (12) des Ballens (11), und
    • Feuchtigkeitsbestimmungsmittel (25), die mit den ersten und zweiten Bestimmungsmitteln verbunden sind und die auf die erste und zweite Dämpfung zur Bestimmung des Feuchtigkeitsgehalts des Ballens (11) reagieren.
  2. Das System gemäß Anspruch 1, dadurch gekennzeichnet, dass die Ballenausrichtungsmittel (26) mit den ersten und zweiten Mikrowellenantennen (19, 20) verbunden sind und auf dem Ausgangsstrahl (17) reagieren, um zu bestimmen, wenn der Ballen korrekt zwischen der Strahlungsquelle und den Antennen ausgerichtet ist.
  3. Das System gemäß Anspruch 1, dadurch gekennzeichnet, dass die Ballenausrichtungsmittel folgendes einschließen:
    • Vorderflanken-Übergangsmittel, um zu Bestimmen, wenn eine Vorderflanke des Ballens die Quelle von Mikrowellenstrahlung passiert und zur Erzeugung eines Vorderflanken-Übergangssignals (45) nach einer ersten Zeitspanne τ1,
    • Intervall-Taktungsmittel, die mit den Vorderflanken-Übergangsmitteln verbunden sind und die auf das Vorderflanken-Übergangssignal (45) reagieren, um das Ausrichtungssignal für eine Zeitspanne τ2 zu erzeugen, deren Amplitude eine Funktion einer Länge und Geschwindigkeit des Ballens (11) ist, und
    • Hinterflanken-Übergangsmittel, um zu erfassen, wenn eine Hinterflanke des Ballens die Quelle von Mikrowellenstrahlung (15) passiert und zur Erzeugung eines Hinterflanken-Übergangssignal (46) nach einer Zeitspanne τ3.
  4. Das System gemäß Anspruch 3, dadurch gekennzeichnet, dass die Feuchtigkeitsbestimmungsmittel auf das Hinterflanken-Übergangssignal (46) reagieren, um in Bezug auf Umgebungsfeuchtigkeitsgehalt zu korrigieren, wobei weiterhin folgendes bereitgestellt wird:
    • erste und zweite Filtermittel, die jeweils mit den ersten und zweiten Dämpfungsmitteln verbunden sind, und mit den Ballenausrichtungsmitteln, und die auf das Hinterflanken-Übergangssignal (46) reagieren, um von den ersten und zweiten Komponenten des Aussgangsstrahls (17) jeweilige Umgebungsfeuchtigkeitskomponenten zu filtern, die den Umgebungsfeuchtigkeitsgehalt darstellen, um entsprechende erste und zweite korrigierte Dämpfungssignale zu erzeugen,
    • erste und zweite digitale Abtastmittel, die mit den Filtermitteln verbunden sind, um die ersten und zweiten korrigierten Dämpfungssignale abzutasten, wenn der Ballen (11) an den ersten und zweiten Mikrowellenantennen (19, 20) vorbei geführt wird, um jeweilige abgetastete Dämpfungssignale zu erzeugen, und
    • Komponentenfeuchtigkeitsberechnungsmittel, die mit den ersten und zweiten digitalen Abtastmitteln verbunden sind, zur Berechnung von jeweiligen Feuchtigkeitsabtastwerten Wix und Wiy.
  5. Das System gemäß Anspruch 4, dadurch gekennzeichnet, dass die Feuchtigkeitsbestimmungsmittel folgendes einschließen:
    • Verhältnisbestimmungsmittel, die mit den Komponentenfeuchtigkeitsberechnungsmitteln verbunden sind, zur Bestimmung eines jeweiligen Verhältnisses eines jeden Paars von Feuchtigkeitsabtastwerten, um jeweilige Verhältnisse αi zu erzeugen,
    • Komparatormittel, die mit den Verhältnisbestimmungsmitteln verbunden sind, zum Vergleich der jeweiligen Verhältnisse αi mit einer vorherbestimmten Konstante K, die für die parallelen Lagen im Ballen charakteristisch ist,
    • Parallellagen-Feuchtigkeitsbestimmungsmittel, die mit den Komparatormitteln verbunden sind, und die auf die Verhältnisse αi reagieren, wenn diese gleich mit K sind, zur Bestimmung des Feuchtigkeitsgehalts als ein Mittelwert der korrigierten digitalisierten abgetasteten Komponentenfeuchtigkeitsgehalte, die mit einer der Mikrowellenantennen verknüpft sind, und
    • Nicht-Parallellagen-Feuchtigkeitsbestimmungsmittel, die mit den Komparatormitteln verbunden sind, und die auf die Verhältnisse αi reagieren, wenn diese ungleich K sind, zur Bestimmung des Feuchtigkeitsgehalts als ein Mittelwert für alle Scheiben der korrigierten digitalisierten abgetasteten Komponentenfeuchtigkeitsgehalte, die mit einer der Mikrowellenantennen verknüpft sind, wobei der Mittelwert durch die empirische Funktion fi, Wix, Wiy) korrigiert wird.
  6. Das System gemäß Anspruch 5, dadurch gekennzeichnet, dass die empirische Funktion wie folgt ist: Wi = Wiy + 3.2 x 10-2i/K - 1).
Anspruch[en]
  1. A system (10) for measuring the moisture content of a multi-layer bale of material (11), the system comprising:
    • a source of microwave radiation (15) disposed on a first side (14) of the bale (11) for directing a circularly polarized source beam (16) through the bale (11) in a direction substantially parallel to the layers (12) thereof so as to exit from the bale (11) as an exit beam (17),
    • conveyor means for conveying the bale (11) past the source of microwave radiation (15),
    • first and second microwave antennas (19, 20) for receiving mutually orthogonal components of the exit beam (17),
    • bale alignment means (26) for determining when the bale (11) is correctly aligned between the radiation source (15) and the antennas (19, 20), and producing an alignment signal in response to the exit beam (17) emanating entirely from the bale (11),
    • first and second amplitude determination means coupled to the first and second microwave antenna means (19, 20), respectively, and to the bale alignment means (26) and being responsive to said alignment signal for determining respective maximum amplitudes of the exit beam (17) corresponding to an amplitude of the exit beam (17) in respective first and second directions (Y, X) normal and parallel to the layers (12) of the bale (11),
    • first and second attenuation determination means coupled to the amplitude determination means for determining respective first and second attenuations of the source beam in the direction normal (Y) and parallel (X) to the layers (12) of the bale (11), and
    • moisture determination means (25) coupled to the first and second attenuation determination means and being responsive to said first and second attenuations for determining the moisture content of the bale (11).
  2. The system according to Claim 1, characterized in that the bale alignment means (26) is coupled to the first and second microwave antennas (19,20) and is responsive to the exit beam (17) for determining when the bale is correctly aligned between the radiation source and the antennas.
  3. The system according to Claim 1, characterized in that the bale alignment means includes:
    • leading edge transition means for detecting when a leading edge of the bale passes the source of microwave radiation and producing a leading edge transition signal (45) after a time period τ1,
    • interval timing means coupled to the leading edge transition means and being responsive to the leading edge transition signal (45) for producing the alignment signal for a time period τ2 whose magnitude is a function of a length and velocity of the bale (11), and
    • trailing edge transition means for detecting when a trailing edge of the bale passes the source of microwave radiation (15) and producing a trailing edge transition signal (46) after a time period τ3.
  4. The system according to Claim 3, characterized in that the moisture determination means is responsive to the trailing edge transition signal (46) for correcting for ambient moisture content, and there are further provided:
    • first and second filtering means respectively coupled to the first and second attenuation means and to the bale alignment means and being responsive to the trailing edge transition signal (46) for filtering from the first and second components of the exit beam (17) respective ambient moisture components representative of said ambient moisture content so as to produce corresponding first and second corrected attenuation signals,
    • first and second digital sampling means coupled to the filtering means for sampling the first and second corrected attenuation signals as the bale (11) is conveyed past the first and second microwave antennas (19, 20) so as to produce respective sampled attenuation signals, and
    • component moisture computing means coupled to the first and second digital sampling means for computing respective moisture samples Wix and Wiy.
  5. The system according to Claim 4, characterized in that the moisture determination means includes:
    • ratio determining means coupled to the component moisture computing means for determining a respective ratio of each pair of moisture samples so as to produce respective ratios αi,
    • comparator means coupled to the ratio determining means for comparing the respective ratios αi with a predetermined constant K characteristic of the layers in said bale being parallel,
    • parallel layer moisture determination means coupled to the comparator means and responsive to said ratios αi being equal to K for determining said moisture content as an average value of the corrected digitized sampled component moisture contents associated with one of the microwave antennas, and
    • non-parallel layer moisture determination means coupled to the comparator means and responsive to said ratios αi being unequal to K for determining said moisture content as an average value for all slices of the corrected digitized sampled component moisture contents associated with one of the microwave antennas, said average value being corrected by an empirical function f(αi, Wix, Wiy ).
  6. The system according to Claim 5, characterized in that the empirical function is: Wi = Wiy + 3.2 x 10-2i/K - 1).
Anspruch[fr]
  1. Système (10) pour mesurer la teneur en humidité d'une balle de matériau multicouche (11), le système comprenant :
    • une source de rayonnement hyperfréquence (15) disposée sur un premier côté (14) de la balle (11) pour diriger un faisceau source polarisé circulairement (16) à travers la balle (11) dans un sens sensiblement parallèle aux couches (12) de celle-ci de manière à sortir de la balle (11) en tant que faisceau de sortie (17),
    • des moyens de transport pour transporter la balle (11) devant la source de rayonnement hyperfréquence (15),
    • des première et seconde antennes à hyperfréquences (19, 20) pour recevoir des composants mutuellement orthogonaux du faisceau de sortie (17),
    • des moyens d'alignement de la balle (26) pour déterminer lorsque la balle (11) est correctement alignée entre la source de rayonnement (15) et les antennes (19, 20), et produire un signal d'alignement en réponse au faisceau de sortie (17) émanant entièrement de la balle (11),
    • des premier et second moyens de détermination d'amplitude couplés aux premier et second moyens d'antenne à hyperfréquences (19, 20), respectivement, et aux moyens d'alignement de la balle (26) et étant réceptifs audit signal d'alignement pour déterminer les amplitudes maximales respectives du faisceau de sortie (17) correspondant à une amplitude du faisceau de sortie (17) dans les premier et second sens respectifs (Y, X) normaux et parallèles aux couches (12) de la balle (11),
    • des premier et second moyens de détermination d'atténuation couplés aux moyens de détermination d'amplitude pour déterminer les première et seconde atténuations respectives du faisceau source dans le sens normal (Y) et parallèle (X) aux couches (12) de la balle (11), et
    • des moyens de détermination de l'humidité (25) couplés aux premier et second moyens de détermination d'atténuation et étant réceptifs auxdites première et seconde atténuations pour déterminer la teneur en humidité de la balle (11).
  2. Système selon la revendication 1, caractérisé en ce que les moyens d'alignement de la balle (26) sont couplés aux première et seconde antennes à hyperfréquences (19, 20) et sont réceptifs au faisceau de sortie (17) pour déterminer lorsque la balle est correctement alignée entre la source de rayonnement et les antennes, source de rayonnement et
  3. Système selon la revendication 1, caractérisé en ce que les moyens d'alignement de la balle comprennent :
    • des moyens de transition de bord d'attaque pour détecter lorsqu'un bord d'attaque de la balle pour devant la source de rayonnement hyperfréquence et produire un signal de transition de bord d'attaque (45) après un temps τ1,
    • des moyens de synchronisation d'intervalles couplés aux moyens de transition de bord d'attaque et étant réceptifs au signal de transition de bord d'attaque (45) pour produire le signal d'alignement pour un temps τ2 dont l'amplitude est une fonction d'une longueur et d'une vitesse de la balle (11), et
    • des moyens de transition de bord de fuite pour détecter lorsqu'un bord de fuite de la balle passe devant la source de rayonnement hyperfréquence (15) et produire un signal de transition de bord de fuite (46) après un temps τ3.
  4. Système selon la revendication 3, caractérisé en ce que les moyens de détermination de l'humidité sont réceptifs au signal de transition de bord de fuite (46) pour corriger la teneur en humidité ambiante, et sont en outre fournis :
    • des premier et second moyens de filtrage respectivement couplés aux premier et second moyens d'atténuation et aux moyens d'alignement de la balle et étant réceptifs au signal de transition de bord de fuite (46) pour filtrer à partir des premier et second composants du faisceau de sortie (17) les composants de l'humidité ambiante respectifs représentatifs de ladite teneur en humidité ambiante de manière à produire des premier et second signaux d'atténuation corrigés correspondants,
    • des premier et second moyens d'échantillonnage numérique couplés aux moyens de filtrage pour échantillonner les premier et second signaux d'atténuation corrigés lorsque la balle. (11) est transportée devant les première et seconde antennes à hyperfréquences (19, 20) de manière à produire des signaux d'atténuation échantillonnés respectifs, et
    • des moyens de calcul de l'humidité du composant couplés aux premier et second moyens d'échantillonnage numérique pour calculer les échantillons d'humidité respectifs Wix et Wiy.
  5. Système selon la revendication 4, caractérisé en ce que, les moyens de détermination de l'humidité comprennent :
    • des moyens de détermination de rapport couplés aux moyens de calcul de l'humidité du composant pour déterminer un rapport respectif de chaque paire d'échantillons d'humidité de manière à produire des rapports respectifs αi,
    • des moyens de comparaison couplés aux moyens de détermination de rapport pour comparer les rapports respectifs αi avec une constante prédéterminée K caractéristique des couches dans ladite balle parallèle,
    • des moyens de détermination de l'humidité de la couche parallèle couplés aux moyens de comparaison et réceptifs auxdits rapports αi étant égaux à K pour déterminer ladite teneur en humidité en tant que valeur moyenne des teneurs en humidité du composant d'échantillonnage numérique corrigées associée à une des antennes à hyperfréquences, et
    • des moyens de détermination de l'humidité de la couche non parallèle couplés aux moyens de comparaison et réceptifs auxdits rapports αi n'étant pas égaux à K pour déterminer ladite teneur en humidité en tant que valeur moyenne pour toutes les tranches des teneurs en humidité du composant d'échantillonnage numérique corrigées associée à une des antennes à hyperfréquences, ladite valeur moyenne étant corrigée par une fonction empirique fi,Wix,Wiy).
  6. Système selon la revendication 5, caractérisé en ce que la fonction empirique est la suivante : Wi = Wiy + 3,2 x 10-2i /K - 1)






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com