PatentDe  


Dokumentenidentifikation EP0818020 02.10.2003
EP-Veröffentlichungsnummer 0818020
Titel BESTIMMUNG DER MODULATIONSÜBERTRAGUNGSFUNKTION
Anmelder Northrop Grumman Corp., Los Angeles, Calif., US
Erfinder NELSON, Richard, Neil, Anaheim, US;
ORLANDO, James, Harold, Costa Mesa, US;
LOPEZ, Antonio, Marco, Villa Park, US
Vertreter Beetz & Partner, 80538 München
DE-Aktenzeichen 69629672
Vertragsstaaten DE, ES, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 01.03.1996
EP-Aktenzeichen 969079136
WO-Anmeldetag 01.03.1996
PCT-Aktenzeichen PCT/US96/02775
WO-Veröffentlichungsnummer 0096027849
WO-Veröffentlichungsdatum 12.09.1996
EP-Offenlegungsdatum 14.01.1998
EP date of grant 27.08.2003
Veröffentlichungstag im Patentblatt 02.10.2003
IPC-Hauptklasse G06K 9/54
IPC-Nebenklasse G06K 9/60   

Beschreibung[en]
1. FIELD OF THE INVENTION

This invention relates to measurement systems and more particularly to the measurement of the system level modulation transfer function in the presence of fixed pattern noise from an imaging system electronics.

2. BACKGROUND OF THE INVENTION

Imagery is the representation of a subject by sensing quantitatively the patterns of electromagnetic radiation emitted by, reflected from, or transmitted through a subject of interest. Electronic imagery takes advantage of the sensitivity of various electronic detectors to different bands of the electromagnetic spectrum. The energy received is transduced by these sensors into an electronic or electrical effect from which effects an option of ways to process and display the information is available. The most common form of electronic imagery is found in television and charge-coupled-devices.

The modulation transfer function (MTF) is the measurement of the ability of an optical system to reproduce various levels of detail from the object to the image, as shown by the degree of contrast (modulation in the image). The MTF is a measure of the effectiveness with which a device, transmits the different frequencies applied to it, it is a phasor whose magnitude is the ratio of the magnitude of the output signal to that of a sine wave input, and whose phase is that of the output with respect to the input.

The resolving power of an imaging device such as a TV camera or infrared imaging device is usually quantified by the measurement of its Modulation Transfer Function (MTF) which is similar to the frequency response of an electronic circuit. The measurement is made by optically inputting a point-like light source while recording the camera output. The MTF is the magnitude of the Fourier transform of the camera output and corresponds to the resolution or the ability to image a detailed scene with the device. When the test is implemented, the camera introduces noise and jitter which show up in the output as an error term to the MTF. Noise occurring as random noise can be averaged out with time and occurs as wide-band and narrow-band (periodic) sources. The jitter causes a loss of MTF due to smearing when averaging successive frames of data over long test times. Effects of jitter can be avoided by averaging the resulting MTFs but results in a bias error due to averaging magnitudes. The foregoing may be compensated by finding the location of the image on each frame and compensating its position shift due to jitter. Wide band noise has a negligible effect on locating the image but narrow band noise introduced large errors in finding the image location. These errors result in an image shift which spread the image and result in an MTF measurement error.

The MTF is a measurement of the sensors ability to respond to an infinitesimal width line source. The measurement should be able to process data that has a high signal to noise ratio in the presence of fixed pattern noise. Unfortunately, prior art systems were unable to accomplish the above.

Reference may be made to the following patents for further information concerning the state of the prior art. In U.S. Patent No. 4,653,909, issued March 31, 1987 entitled "Sinusoidal Determination of Limiting Optical Resolution" to Kuperman there is disclosed the measurement of a system level MTF using a Heaviside edge function. The patent also describes the use of the AIM curve (Aerial Image Modulation), or modulation detectability curve, in combination with the MTF to predict the resolution of an optical system.

In Japanese Patent Application No. 59-46833 entitled "Peak Detector for MTF Measuring Machine" there is disclosed the measurement of a lens centration and MTF. The MTF is measured by measuring the spectrum of a slit image. The centration is measured by locating the peak of the slit image.

In Japanese Patent Application No. 58-118940 entitled "Measuring Method of Modulation Transfer Function Measuring Machine of Lens", there is disclosed a machine for rapidly measuring the MTF of a lens. The MTF is measured by measuring the spectrum of a slit image. A threshold is used to eliminate the noise from the CCD.

The following T.L. Williams articles: "Standard References Lenses for the Infrared Proceedings of The Society of Photo-Optical Instrumentation Engineers", Nov. 16-18, 1976, pp. 16-20; "An Instrument for Measuring the MTF of Lenses Used in Thermal Imaging and Other Infrared Systems", Image Assessment Specification Conference, Rochester, N.Y., May 20-22, 1978, pp. 305-311; and "A Workshop Instrument For Testing Binocular and Other Sights Using the MTF Criterion", Optics and Laser Technology, June 1972, pp. 115-120, disclose the measurement of MTF of an infrared optical system and an optical system in general. There is no reference to MTF testing of an infrared sensor which includes the optical system, detector geometry and processing electronics. There is also no reference to any methods of reducing noise in the measurement.

Richard Barakat article entitled "Determination of the Optical Transfer Function Directly from the Edge Spread Function" Journal of the Optical society of America, Volume 15, Number 10, discloses the inversion of a Fredholm integral equation of the first kind using sampling theory concepts.

US 5191621 discloses a method and a device for determining a modulation transfer function of a digital imaging system. The patent addresses aliasing problems and proposes to overcome them by selecting suitably chosen test objects. Further, it is desired to obtain information on the extend of asymmetry of the line spread function introduced by scanning the input screen of the television pick up tube. In order to accomplish this, the use of block elements with specifically determined dimensions is suggested in order to allow determination of said asymmetry. As one functional step, multiplication by rectangular function is suggested.

Document US 5 294 075 discloses a high accuracy optical position sensing system for sensing the position of a displaceable element. A transducing unit receives an rf signal at one input and has another input optically coupled for receiving a position sensing optical signal and a reference optical signal, which have, respectively, first and second time delays with respect to the rf signal. The transducing unit produces a multi-frequency electrical signal including first and second frequencies corresponding to the first and second time delays, respectively. A Tukey window is used in order to suppress any interfering tones and to reduce bias as a consequence of the i-th difference signal.

The paper "Forward looking infrared imaging systems characterization and algorithms" by Atashroo et al., PROCEEDINGS OF THE S.P.I.E., Vol. 2224, July 1994, pages 225-236 relates to measurement requirements and algorithms which characterize forward looking infrared imaging systems. The presented algorithms automate, amongst others, measurement requirements in view of fixed pattern noise and modulation transfer function. The modulation transfer function is measured by an indirect method where digitization, phasing, noise, jitters, background removal and normalization should be addressed. The line spread function is measured using slit or knife edge targets first.

SUMMARY OF THE INVENTION

This invention overcomes the disadvantages of the prior art by providing an apparatus and method that accurately measures the system level Modulation Transfer Function (MTF) in the presence of fixed pattern noise from an imaging system electronics. The apparatus of this invention utilizes an algorithm which locates the signal that has an edge feature by using a signal window, then the apparatus takes the derivative of the edge of the signal to obtain the line spread function, and the window of the data is then centered. The sequenced data is then processed using a Fourier transform to obtain the MTF. An advantage of this invention is that it allows the determination of edge response MTF in the presence of periodic noise.

An additional advantage of this invention is that it may be used for the automatic testing of infrared cameras where hand selecting test data is not practical.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a block diagram of the apparatus of this invention;
  • Fig. 2 is a flow chart which depicts the routines of the algorithm that is contained in the scratch pad of Fig. 1;
  • Fig. 3 is a graph of the edge response or the time vs. counts of the input data video signal;
  • Fig. 4 is a graph of the resulting edge response line spread function or the time vs. counts of the input data with a digital filter;
  • Fig. 5 is a graph of the time vs. response of the calculated window and the line spread function; and
  • Fig. 6 is a graph of the spatial frequency vs. the MTF and the line spread function corrupted with fixed pattern noise.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings in detail, and more particularly to Fig. 1, the reference character 11 represents an imaging system electronics that produces an analog video output signal. Electronics 11 may be a television, a charged coupled device, video sensor, etc. The aforementioned analog video output signal is coupled to one of the inputs of analog to digital converter 12. The other input to analog to digital converter 12 is the output of 63 MHz clock 13. The output of A/D converter 12 is a digital representation of an image appearing in one frame of the aforementioned analog video signal, which is coupled to one of the inputs of frame store 14. The other input to frame store 14 is the output of divide by 8 divider 15. The input to divider 15 is the output of clock 13. Frame store 14 stores the digital representation of the output of A/D converter 12 and microprocessor 16 reads the digital data stored in frame store 14. System clock 17 produces an 10MHz output pulse that is coupled,to one of the inputs of microprocessor 16, to one of the inputs of dynamic random access memory 18 and to one of the inputs of dynamic random access memory 19. Memory 18 is coupled to microprocessor 16, microprocessor 16 is coupled to memory 19.

The algorithm hereinafter described in the description of Fig. 2 is stored in memory 19. Microprocessor 16 uses memory 18 as a scratch pad memory to calculate the modulation transfer function according to the instructions contained in the aforementioned algorithm. The output of microprocessor 16, in the modulation transfer function, is connected to the input of printer 20.

Printer 20 prints a series of numbers that is the modulation transfer function. The aforementioned numbers are interpreted spelling to determine the quality of the images being produced by imaging system electronics 11.

Fig. 2 is a flow chart which depicts the routines or modes of the MTF algorithm which are effected in cooperation with the components shown in Fig. 1.

Step 1 digitizes the video signal input data which is expected to have edge features. This step is further illustrated in the description of Fig. 3.

Step 2 takes the derivative of the edge response line spread function. This step is further illustrated in the description of Fig. 4.

Step 3 calculates the window and uses the window to eliminate fixed pattern noise. This step is further illustrated in the description of Fig. 5.

Step 4 multiplies the line spread function by the window.

Step 5 Fourier transform the result output. This step is further illustrated in the description of Fig. 6.

The following is the MTF algorithm that was illustrated in the flow chart described in the description of Fig. 2.

(1) Average and align edge functions

Ndft = 1 + 2 * trunc(2.5 * Srate - 0.5) (Period = 1, Ndft is odd) Num_Deriv Coeff = 7 initialize average array to zero

select the line designated by the TPS, edge_data[k] take derivative of the line (use filter coefficients for edge alignment)

the edge is defined as the maximum derivative (reference to the edge array) edge_index = max (line derivative) + Num_Deriv_Coeff add line to edge_avg centered on edge_index

(2) Take derivative of average edge function (use filter coefficients for edge alignment)

Initialize the filter coefficients for edge alignment VI_DIFF_COEFF_AL[1] = 0.0144 VI_DIFF_COEFF_AL[2] = 0.0256 VI_DIFF_COEFF_AL[3] = 0.0311 VI_DIFF_COEFF_AL[4] = 0.0299 VI_DIFF_COEFF_AL[5] = 0.0230 VI_DIFF_COEFF_AL[6] = 0.0131 VI_DIFF_COEFF_AL[7] = 0.0040

(3) Determine Tukey window from width of lowpass line spread function

max_deriv = max(lowpass_lsf) find the index which corresponds to max_deriv max_index = index(lowpass_lsf, max_deriv) half_max_deriv = max_deriv / 2 pos_width = 1 while lowpass_lsft[max_index + pos_width] >= half_max_deriv pos_width = pos_width + 1 neg_width = 1 while lowpass_lsft[max_index - neg_width] >= half_max_deriv neg_width = neg_width + 1 N' = 1.5 * (pos_width + neg_width)/2 a = .4

Take derivative of average edge function (use filter coefficients for MTF, inscan or xscan).

(4) Multiply Tukey and line spread function

(5) Take DFT of product of Tukey window and line spread function

MTF_raw[j] = DFT(dft_data) j = 0..(Ndft-1)/2 Interpolate MTF to have frequencies of 0.2 cyc/mrad refer to PPS with Period = 1 Normalize to DC term

optimum window derivation

  • edge_points :=396
  • i :=0 ..edge_points - 1
  • edgefcn := READPRN(edge)

Derivative Filter

fsamp :=50 Sampling Frequency [MHz] fcutoff :=8.5 Cutoff Frequency [MHz] deriv_points :=7 Number of coefficients in derivative filter

  • T := 1
  • M := 1 ..deriv_points
Bm : = 2π&peseta;mfcutoff / (fsamp) Cm : = [1+cos[πm / (derivpoints)+1]]Bmcos[Bm] - sin[Bm] / (2π&peseta;m2&peseta;T) Cm -0.1108 -0.1351 -0.0767 0.0155 0.0081 0.0005
Scale=-1.0363 deriv_coeffm : = Cm / (Scale) deriv_coeffm 0.1069 0.1304 0.074 0.0088 -0.015 -0.0078 -0.0004
perform derivative on edge function

i :=deriv_points ..edge_points - 1 - deriv_points
  • LSF184 = 13.3216
  • LSF185 = 18.2057
  • LSF186 = 17.2158
  • LSF187 = 11.4919

Calculate LSF with a low-pass derivative

deriv_coeffm := 0.0145 0.0257 0.0311 0.0299 0.0230 0.0131 0.0039
Lowpass derivative filter

  • Fsamp = 50 MHz
  • Fcutoff = 0.5 MHz
  • LSF max :=max(filt_LSF)
  • LSF_max = 9.224
  • filt LSF185 = 9.1443
  • filt_LSF186 = 9.224
  • filt_LSF187 = 8.401
  • k := 175 ..250
  • find_max_indexk := until [[LSF-max = filt_LSFk] = .5, k]
  • k_max := last(find_max_index)
  • k_max = 186
now place the LSF into the vector fft_data symmetric about k_max
  • fft_points :=64
  • i :=0 ..fft_points - 1 half_fft_points := fft points / (2)
  • j := 0 ..half_fft_points -1
  • fft_datali := LSFk-max-half_fft_points*1
  • p := 30
  • fft_datalp = 13-3216 fft_datalp+1 = 18.2057 fft_datalp+2 = 17.2158

Window derivation Tukey Window Determination of a and N' for input to Tukey Window

0 <= a <= 1    a set to half of the FWHM of the filtered LSF LSF_half_max := LSF max / (2)

  • k := k_max ..300
  • pos_half_maxk := until [LSF_half_max ≤ filt_LSFk] - .5,k]
  • pos_half := last (pos_half_max) - k_max
  • pos_half = 4
  • k :=100 ..k_max
  • neg_half_maxk := until [LSF_half_max ≥ filt_LSFk] - .5,k]
  • neg_half := k max - last(neg_half_max)
  • neg_half = 3 N1 := pos half+neg half / (2)1.5
Full Width Half Maximum of filtered LSF
  • a := .4
  • N' = 5.25
  • a N' = 2.1

Calculate Tukey window for a and N'

  • n1 := i - half_fft_points Tukey1 := [|n1|<aN1]1&peseta;&peseta;&peseta;
comp_win_mtf := fft(Tukey)
  • fft_data21 := fft_data1j Tukeyj
  • fft_data1, fft_data2j, 20 Tukey
  • comp_mtf1 := fft(fft_data1)
  • mrad ≡ 1
  • samp_fov := 9.88 mrad
    freqj := j / (samp fov)
  • comp_mtf2 := fft (fft_data2)
  • WRITEPRN (edgelmtf) := mtf2
  • WRITEPRN (edgeamtf) := mtf1

Fig. 3 is a graph of the edge response or the time vs. counts of the input data video signal, i.e., digitized video from an infrared camera that was expected to have edge features. The digitized video of the edge response of the imaging device was averaged to reduce the temporal noise while leaving the fixed pattern noise.

Fig. 4 is a graph of the resulting edge response line spread function or the time vs. counts of the input data with a digital filter which performs a derivative and attenuates high frequency components beyond the frequency response of the sensor.

Fig. 5 is a graph of the time vs. counts of the calculated window and the line spread function. Parameters are calculated for the window to compensate for fixed pattern noise. The input data is processed with a digital filter which performs a derivative and attenuates high frequency components. The cutoff frequency is slightly lower than the digital filter described in the description of Fig. 3. The foregoing broadens the output pulse. From the width of the broadened output pulse the parameters of the window are calculated.

Fig. 6 is a graph of the spacial frequency vs. the MTF and the line spread function corrupted with fixed pattern noise, which is shown by the large peak in the graph. The product of the window and the line spread function is processed with the Fourier Transform. The magnitude of the Fourier Transform is the MTF.

The above has shown that the MTF can be accurately measured in the presence of fixed pattern noise. The aforementioned method and apparatus utilizes a window which is sized depending on the input data. This allows the signal (the pulse) to remain uncorrupted while the fixed pattern noise is attenuated. The foregoing produces an accurate MTF.

The above specification describes a new and improved apparatus and method that accurately measures the system level modulation Transfer Function in the presence of fixed pattern noise from an imaging system electronics. It is realized that the above description may indicate to those skilled in the art additional ways in which the principals of this invention may be used. It is, therefore, intended that this invention be limited only by the scope of the appended claims.


Anspruch[de]
  1. Verfahren zum Bestimmen einer Modulationsübertragungsfunktion in Anwesenheit von Rauschen mit festem Muster, das durch Abbildungssystemelektronik erzeugt wird, mit den Schritten:
    • a) Digitalisieren eines elektronischen Signals, das von der Abbildungssystemelektronik für ein Bild erzeugt wurde, wobei hin sichtlich des Bilds vermutet wird, dass es Sprungmerkmale hat, um Eingangsdaten zu liefern;
    • b) Bilden der Ableitung eines Sprungantwortbereichs der Eingangsdaten und Dämpfen der Hochfrequenzkomponenten, um eine Tiefpass-Linienstreufunktion zu erhalten;
    • c) Berechnen eines Fensters so, dass seine Breite größer ist als die Breite der Tiefpass-Linienstreufunktion;
    • d) Multiplizieren des Fensters und einer Sprungantwort-Linienstreufunktion, um ein Produkt zu erhalten; und
    • e) Bilden einer diskreten Fourier-Tranformation des Produkts, um die Modulationsübertragunsfunktion zu erhalten.
  2. Verfahren nach Anspruch 1, bei dem das Fenster ein Tukey-Fenster ist.
  3. Verfahren nach Anspruch 1, mit dem Schritt des Ortens eines Signals mit einem Sprungmerkmal und Zentrieren des Fensters auf die Signaldaten.
  4. System zum Bestimmen einer Modulationsübertragungsfunktion von Abbildungssystemelektronik mit:
    • einem Analog-Digital-Wandler, der ein analoges Videosignal, das von der Abbildungssystemelektronik erzeugt wird, in ein digitales Signal wandelt, das ein im analogen Videosignal erscheinendes Bild darstellt, um Eingangsdaten zu liefern;
    • einem mit dem Analog-Digital-Wandler verbundenen Speicher, der jeweils ein Bild oder Teilbild des Videosignals digital speichert, um ein digital gespeichertes Videosignal zu liefern;
    • einer mit dem Speicher verbundenen Einrichtung zum Berechnen der Modulationsübertragungsfunktion aus den Eingangsdaten, wobei die Berechnungseinrichtung eine Einrichtung aufweist zum Ermitteln der Ableitung eines Sprungantwortbereichs der Eingangsdaten und zum Dämpfen von Hochfrequenzkomponenten, um eine Tiefpass-Linien-Streufunktion eines Sprungs im Bild zu erhalten,
    • eine Einrichtung zum Berechnen eines Fensters so, dass dessen Breite größer ist als die Breite der Tiefpass-Linien-Streufunktion; und
    • eine Einrichtung zum Ermitteln der Moduluationsübertragungsfunktion durch Multiplizieren des Fensters und einer Sprungantwort-Linienstreufunktion, um ein Produkt zu erhalten, und Ermitteln einer diskreten Fourier-Transformation des Produkts, um die Modulationsübertragungsfunktion zu erhalten.
Anspruch[en]
  1. A method of determining a modulation transfer function in the presence of fixed pattern noise produced by imaging system electronics, said method comprising the steps of:
    • a) digitizing an electronic signal produced by the imaging system electronics for an image, which image is expected to have edge features, to provide input data;
    • b) taking the derivative of an edge response portion of the input data and attenuating high frequency components to obtain a low pass line spread function;
    • c) calculating a window such that its width is greater than the width of the low pass line spread function;
    • d) multiplying the window and an edge response line spread function to obtain a product; and
    • e) taking a discrete Fourier Transform of the product to obtain the modulation transfer function.
  2. The method of claim 1, wherein the window is a Tukey window.
  3. The method of claim 1, further comprising the steps of locating a signal that has an edge feature and centering the window on the signal data.
  4. A system for determining a modulation transfer function from imaging system electronics, said system comprising:
    • an analog to digital converter that converts an analog video signal produced by the imaging system electronics into a digital signal that represents an image appearing in the analog video signal for providing input data;
    • a memory coupled to said analog to digital converter, said memory digitally storing one frame at a time of the video signal to provide a digitally stored video signal;
    • means coupled to said memory for computing the modulation transfer function from the input data, wherein said computing means includes means for obtaining the derivative of an edge response portion of the input data and attenuating high frequency components to obtain a low pass line spread function of an edge of the image,
    • means for calculating a window such that its width is greater than the width of the low pass line spread function; and
    • means for obtaining the modulation transfer function by multiplying the window and an edge response line spread function to obtain a product, and taking a discrete Fourier Transform of the product to obtain the modulation transfer function.
Anspruch[fr]
  1. Procédé de détermination d'une fonction de transfert par modulation en présence d'interférences à spectre fixe engendrées par l'électronique des systèmes électroniques de prise d'images, ledit procédé comprenant les étapes consistant à :
    • (a) numériser un signal électronique généré par le système électronique de prise d'images pour une image, laquelle image qui devrait normalement avoir des caractéristiques de rive, pour fournir des données d'entrée ;
    • (b) définir la dérivée d'une portion de réponse de rive des données d'entrée et atténuer ses composantes haute fréquence de manière à obtenir une fonction multizone de ligne passe-bas ;
    • (c) calculer une fenêtre de manière à ce que sa largeur soit supérieure à la largeur de la fonction multizone de ligne passe-bas ;
    • (d) multiplier la fenêtre et une fonction multizone de ligne de réponse de rive pour obtenir un produit ; et
    • (e) effectuer une Transformation de Fourier non intégrée du produit de manière à obtenir la fonction de transfert par modulation.
  2. Procédé selon la revendication 1, dans lequel la fenêtre est une fenêtre de Tukey.
  3. Procédé selon la revendication 1, comprenant en outre les étapes consistant à localiser un signal présentant une caractéristique de rive et à centrer la fenêtre sur les données du signal.
  4. Système de détermination d'une fonction de transfert par modulation à partir de l'électronique de systèmes de prise d'images, ledit système comprenant :
    • un convertisseur analogique en numérique qui transforme un signal vidéo analogique généré par les systèmes électroniques de prise d'images en un signal numérique représentant une image apparaissant dans le signal vidéo analogique pour constituer des données d'entrée ;
    • une mémoire couplée audit convertisseur analogique en numérique, ladite mémoire stockant de manière numérique une unité d'information à la fois du signal vidéo pour élaborer un signal vidéo stocké de manière numérique ;
    • des moyens, couplés à ladite mémoire, pour calculer la fonction de transfert par modulation à partir des données d'entrée, lesdits moyens de calcul comprenant en l'occurrence un moyen d'obtention de la dérivée d'une portion de réponse de rive des données d'entrée et d'atténuation des composantes haute fréquence de manière à obtenir une fonction multizone de ligne passe-bas d'une rive de l'image ;
    • des moyens pour calculer une fenêtre de telle manière que sa largeur soit supérieure à la largeur de la fonction multizone de ligne passe-bas ; et
    • des moyens pour obtenir la fonction de transfert par modulation en multipliant la fenêtre et une fonction multizone de ligne de réponse de rive pour obtenir un produit et pour effectuer une Transformation de Fourier non intégrée du produit de manière à obtenir la fonction de transfert par modulation.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com