PatentDe  


Dokumentenidentifikation EP0917747 02.10.2003
EP-Veröffentlichungsnummer 0917747
Titel OPTISCH GEPUMPTER KOMPAKTER LASERRESONATOR
Anmelder Raytheon Co., El Segundo, Calif., US
Erfinder PATEL, B., Ashok, Cerritos, US;
PALOMBO, P., Mario, Manhattan Beach, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69817504
Vertragsstaaten BE, DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 08.06.1998
EP-Aktenzeichen 989289301
WO-Anmeldetag 08.06.1998
PCT-Aktenzeichen PCT/US98/11815
WO-Veröffentlichungsnummer 0098057400
WO-Veröffentlichungsdatum 17.12.1998
EP-Offenlegungsdatum 26.05.1999
EP date of grant 27.08.2003
Veröffentlichungstag im Patentblatt 02.10.2003
IPC-Hauptklasse H01S 3/02
IPC-Nebenklasse H01S 3/042   H01S 3/0941   H01S 3/081   

Beschreibung[en]
FIELD OF THE INVENTION

The present invention relates generally to the field of pumped laser resonator assemblies and more particularly to their mechanical packaging.

BRIEF DESCRIPTION OF THE PRIOR ART

A laser pumphead assembly conventionally consists of a laser resonator cavity, mounted on one heatsink, and a pumping energy source mounted on another, relatively large heatsink. Optical elements are mounted on additional optical mounts and are combined with the laser pumphead assembly to create the pumped laser resonator assembly. Therefore, conventional diode array pumped laser resonator assemblies are made of several separate subsystems, each mounted on its own mount, which creates many thermal barriers and requires additional cooling systems, thus making presently known systems large, heavy, complex, inflexible and expensive.

One such system is for example disclosed in US 5,506,854. A further laser pumphead assembly is disclosed in US 5,561,684. Both systems have optical paths which extend along a straight line. Further, GB 2 087 136 A and EP 0 610 935 A1 each discloses a laser apparatus including a casing block. The casing block is made of the same material as the optical elements and from plastic material respectively. Further, from EP 0 272 912 A2 a diode pumped solid state laser having a miniaturized Q-switch is known.

SUMMARY OF THE INVENTION

The present invention relates to compact pumped laser resonator assembly and to a method of designing and mechanical packaging of the laser resonator elements of said compact pumped laser resonator assembly, having multiple elements integrated on a monolithic block mount, which functions as a laser diode heatsink, laser resonator cavity mount, and an optical bench.

An overall object of the present invention is to simplify the design of a pumped laser resonator assembly while at the same time providing good heat dissipation, laser output efficiency, and laser diode array life.

In accordance with one specific aspect, the present invention facilitates a miniaturized pumped laser resonator assembly utilizing only one mounting block for all its elements, which is easy to assemble, very convenient to operate, and adaptable to different needs and uses, without requiring extraneous mount blocks, cooling systems, mounting brackets and the like, as are used in conventional systems.

Another aspect of the present invention relates to a method of packaging of a pumped laser resonator assembly as defined in claim 5. In particular, a method of mechanical packaging, as defined in claim 6, to minimize the size of the pumped laser resonator elements to thereby provide a relatively compact pumped laser resonator assembly which may be manufactured by machining a monolithic block mount using a computer-controlled machine to generate a plurality of component mounts with a substantially identical setup and tolerances, in order to keep the laser resonator self-aligned.

Yet another aspect of the present invention is to provide a pumped laser resonator assembly in which all the elements are placed on the top of a monolithic block mount, which substitutes for and functions as a laser diode heatsink, a laser resonator cavity mount, and an optical bench. The laser optical cavity preferably is provided with a plurality of bends, in order to decrease the size of the assembly, and the laser resonator optical elements preferably includes fold prisms or comer cubes, a reflector, a retroreflector and an intracavity optical Q-switch.

Still another aspect of the present invention is a miniaturized diode array pumped laser resonator assembly, using a miniature monolithic block mount and having a volume of less than about 15 cm3 (one cubic inch) and dimensions preferably not more than about 30mm x 25mm x 13mm in metric units, and weighing less than 56,7 g (two ounces), while providing a laser power of more than 1 mJ, thereby creating a miniaturized, highly efficient diode array pumped laser resonator assembly that can provide very high laser energy output in a very small physical volume.

The foregoing and additional features and advantages of this invention will become further apparent from the detailed description and accompanying drawing figures that follow. In the figures and written description, numerals indicate the various features of the invention, like numerals referring to like features, throughout for the drawing figures and the written description.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a perspective view showing a diode array pumped laser resonator assembly, in accordance with one embodiment of the present invention.
  • Fig. 2 is a top view of the diode array pumped laser resonator assembly presented in Fig. 1.
  • Fig. 3 is a perspective view of a laser rod, laser diode array, and optical elements used in the assembly presented in Fig. 1.
  • Fig. 4 is an exploded perspective view of the diode array pumped laser resonator assembly presented in Fig. 1, showing the relative placement of all optical elements mounted on the pumped laser resonator assembly monolithic block mount.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to the design and mechanical packaging of a laser medium, laser pumping energy source, laser resonator optical elements and their mounts to provide a compact, often miniature, system suitable for many commercial and military laser applications. Laser resonator components are well known in the art and do not need to be described here or be shown in detail.

Fig. 1 is a perspective view showing a pumped laser resonator assembly 5, in accordance with one aspect of the present invention. The pumped laser resonator assembly 5 can be pumped by a laser diode array 8 and is created using another aspect of the present invention, which is a method of designing and mechanical packaging of the pumped laser resonator assembly 5. In accordance with the method aspects of the present invention, a laser pumphead 6 , a source of pumping energy such as laser diode array 8, and the laser resonator optical elements are combined on a same monolithic block 10 mount to create a pumped laser resonator assembly 5. Instead of using the laser diode array 8, a laser rod 12 could be pumped with a flashlamp or another energy source.

In accordance with another aspect of the present invention, the pumped laser resonator components, including a laser optical cavity (represented as a laser path 11), and the monolithic block mount 10 are miniaturized, separate mounts. For this aspect of the present invention relating to the miniature pumped laser resonator assemblies, the laser pumping energy source should be the laser diode array 8, due to its small size.

As is illustrated in Fig. 1, the monolithic block mount 10 is a simple mount which combines all functions of otherwise separate elements, such as heatsink, optical mounts and laser resonator cavity mount, in one pumped laser resonator monolithic block, Monolithic block mount 10. can be made of any metallic material, such as copper, aluminum, magnesium or titanium, which permits good heat dissipation. The laser diode array 8 is directly mounted on a smooth top surface of the pumped laser resonator monolithic block mount 10 to permit heat flow from laser diode junction to the base of the pumped laser resonator monolithic block mount 10. This arrangement lowers the laser diode junction temperature, thus increasing the laser diode operating life very significantly.

The present invention allows placement of more than one laser diode array 8 on the pumped laser resonator monolithic block mount 10, in various configuration modes, to provide higher laser energy. For example, the laser diode array 8 bars can, possibly, be stacked on top of each other, and their energy can be focused on the laser rod 12 by using a focusing lens, not shown. The laser diode array 8 bars can also be staggered in one line, but then the laser bar 12 has to be made longer, which will increase the size of the pumped laser resonator assembly 5.

Fig. 1 also illustrates one way of providing the required voltage to the laser diode array 8, using a diode anode 14 and a diode cathode 16, placed directly on the monolithic block mount 10 and adjacent to the laser diode array 8. The laser rod 12 is placed adjacent to the laser diode array 8, close to the middle to the top surface of the monolithic block mount 10, and is held in its place on by a laser rod clamp 18. In addition, two optical elements are shown in Fig. 1, a first fold prism 22 and a second fold prism 24, to thereby provide a folded laser optical path 11. Prisms 22, 24 are placed on the side of the monolithic block mount 10 opposite from the laser diode array 8 side, at the opposite ends of the laser optical path 11: Instead of the first and second fold prisms 22, 24, several mirrors can be used, but with additional alignment problems and increased cost. As shown, the first fold prism 22 is in the form of a corner cube element, and the second fold prism 24 is in the form of a double fold prism. The second fold prism 24 can be eliminated, in which case the shape of the assembly 5 becomes narrower and longer with only two bends 40.

Fig. 2 is a top view of the diode array pumped laser resonator assembly 5 presented in Fig. 1, showing a first fold prism mounting means (clamp) 26 and a second fold prism mounting means (clamp) 28, for the attachment of the first and second fold prisms 22, 24. In addition, Fig. 2 illustrates the positions of a Q-switch 30, a retroreflector 32 and a retroreflector mounting means (clamp) 34. All three optical element mounting means, the first fold prism mounting means 26, the second fold prism mounting means 28 and the retroreflector mounting means 34, are attached to the monolithic block mount 10 and are made of spring material, such as steel, beryllium, copper, phosphorus or bronze, to hold the optical elements, including the first and second fold prisms 22, 24, the Q-switch 30, and the retroreflector 32, clamped at the same location and prevent their movement, in order to keep the laser rod 12 self-aligned. Moreover, the mounting means 26, 28 and 34 are preferably made using paralleled machining technique to facilitate the laser rod 12 alignment. The Q-switch 30 and a reflector 38 are attached at an input end of the laser optical path 11 and the retroreflector 32 is attached at an output end of the laser optical path 11.

Fig. 3 is a perspective view of a pumped laser optical assembly 36, showing the laser rod 12, the laser diode array 8, and the arrangement of the optical elements of the present invention, including the first and second fold prisms 22, 24, the Q-switch 30, and the retroreflector 32, used to form the pumped laser resonator assembly 5 presented in Figs. 1 and 2. In addition, Fig. 3 shows the reflector 38 and the unique shape of the laser optical path 11, which in one aspect of the present invention has two parallel levels, is bent six times and has seven optical bends 40, in order to minimize the physical length of the pumped laser resonator assembly 5 and still provide required optical length of the laser optical path 11. In addition, it is conceivable that additional optical elements can be mounted on the same monolithic block mount 10, like a plano-convex lens, not shown, which can be added after the retroreflector 32 in order to produce a collimated laser beam, if required.

Fig. 4 is an exploded perspective view of the diode array pumped laser resonator assembly 5 presented in Figs. 1 and 2, showing the relative placement of all its optical elements mounted on the pumped laser resonator assembly monolithic block mount 10. In the present invention, the laser rod 12 has two smooth flat parallel surfaces and two concave surfaces, along the laser optical path 11, and is attached close to the input end of the laser optical path 11, which ends with the Q-switch 30 and a reflector 38. The concave surfaces of the laser rod 12 are coated with the appropriate material to allow for internal reflection and transmission of laser energy. However, another type of laser rod without the concave surfaces could be used instead, which would require placement of two additional concave reflectors, for example, a concave reflector and a retroreflector, placed outside the laser rod 12.

The flat surfaces of the laser rod 12 of the present invention are sandwiched between the smooth flat top surface of the pumped laser resonator monolithic block mount 10 and the bottom surface of the laser rod clamp 18 covered with a thin indium foil 42. This design allows direct heat transfer from the laser rod 12 to the pumped laser resonator monolithic block mount 10 and the laser rod clamp 18. In addition, the monolithic block mount 10 keeps the laser rod 12 self-aligned.

The thin indium foil 42 is about 0,127 mm (0.005 inches) thick, soft and changes its thickness when compressed between the laser rod 12 and the laser rod clamp 18, which helps in keeping the laser rod 12 and the laser diode array 8 in self-aligned position and within required tolerances. The thin indium foil 42 also reduces thermal resistance between the laser rod 12 and the laser rod clamp 18 and, therefore, the heat transfer of the laser rod 12 is very efficient. An additional thin indium foil could be placed on the other side of the laser rod 12 in order to protect the laser rod 12 from overheating and abrasion. Moreover, the laser rod clamp 18 could be replaced with a spring load, not shown.

In the present invention, the laser diode array 8 is cooled passively and very efficiently by the monolithic block mount 10 itself, used as a heatsink, which means that no additional cooling systems are needed. The method of mounting the laser diode array 8 directly onto the monolithic block mount 10 acting as a heatsink greatly reduces the thermal resistance of the pumped laser resonator assembly 5, thus improving cooling of the laser diode array 8 and increasing the laser diode array 8 efficiency and life. In the present invention, heat dissipated by laser diode array 8 is transferred through a very short heat path through the monolithic block mount 10, acting as a heatsink, to an outside mounting surface of the monolithic block mount 10.

Because passive cooling is utilized, the pumped laser resonator assembly 5 has a uniform pumping profile with a very short thermal resistance path, and maintains minimum diode junction temperature. In addition, the monolithic block mount 10 provides direct mount of the laser rod 12 to a smooth co-planar surface of the monolithic block mount 10, thus keeping the temperature of the laser rod 12 low and uniform. Further, the monolithic block mount 10 provides self-alignment of the laser rod 12, due to the fact that the whole monolithic block mount 10 can be machined using the same setup and using a computer-controlled numerical control machining process, which is a preferred method of the present invention. Therefore, all required tolerances of parallelism, perpendicularity and surface profiles, needed to keep the laser rod 12, Q-switch 30, reflector 38, retroreflector 32, and fold prisms 22, 24 in place, are made to be the same, and the laser rod 12 is self-aligned without any additional extraneous systems.

The diode array pumped laser resonator 5 preferably has a weight of less than 56,7 g (2 ounces), a volume smaller than 15 cm3 (1 cubic inch), and dimensions not more than about 30mm x 25mm x 13mm, and provides with more than 1 mJ of laser output. Combining all the separate mounts into one, miniature block mount 10, reduces the number of laser parts, thus creating a light weight, small volume diode array pumped laser resonator assembly 5, most desirable in hand-held systems.

The miniaturized diode array pumped laser resonator assembly 5 can be applied to various laser systems, in commercial and military applications. Potential commercial applications include automobiles range finders, detection and collision avoidance systems, and rifle aiming devices and the like, used for detecting target range for police work and for some sports, like hunting.

While this invention has been described with reference to its presently preferred embodiment(s), its scope is only limited insofar as defined by the following set of claims.


Anspruch[de]
  1. Pumplaser-Resonatoranordnung (5) mit:
    • einer Halterung (10), einem Lichtweg (11), der innerhalb der Halterung (10) gebildet ist;
    • einem Laser-Pumpkopf (6), der an der Halterung (10) befestigt ist, wobei der Pumpkopf (6) einen Laserstab (12) aufweist; und
    • einer Vielzahl von optischen Laserresonanz-Elementen (22, 24, 30, 32, 38), die an der Halterung (10) befestigt sind, wobei die Vielzahl von optischen Laserresonanz-Elementen aufweist: Umlenk-Prismen (22, 24), einen Reflektor (38), einen Rück-Reflektor (32) und einen optischen Hohlraum-Q-Switch (30), wobei die Halterung (10) als optische Bank funktioniert, wobei der Laser-Lichtweg (11) eine Vielzahl von Biegungen (40) hat und wobei zumindest einige der Biegungen durch die Umlenk-Prismen gebildet werden;
    dadurch gekennzeichnet, dass

    der Laser-Pumpkopf (6) eine Laserdiodenanordnung (8) aufweist;

    die Halterung (10) ein monolithischer Block ist, der einen Laserresonator bildet; und die monolithische Block-Halterung (10) als eine Wärmesenke für Wärmeverbrauch und Energieeffizienz in einer relativ kompakten Anordnung ohne die Notwendigkeit eines zusätzlichen Kühlsystems funktioniert, und ausgebildet ist, um die optischen Elemente (22, 24, 30, 32, 38) und den Laser-Pumpkopf (6) relativ zu einem Laser-Lichtweg (11) selbstjustiert zu halten.
  2. Anordnung wie in Anspruch 1 beansprucht, dadurch gekennzeichnet, dass die Diodenanordnung für die Pumplaser-Anordnung (5), die die monolithische Block-Halterung (10) aufweist, eine kombinierte äußere Abmessung von nicht mehr als etwa 30 mm x 25 mm x 30 mm aufweist, ein kombiniertes Gewicht von weniger als 56 g aufweist und eine Laserenergie von mehr als 1 mJ bereitstellt.
  3. Anordnung wie in Anspruch 1 beansprucht, dadurch gekennzeichnet, dass der Laserstab (12) durch eine dünne Indiumfolie (42) gegen Abrasion und übermäßige Hitze geschützt ist.
  4. Anordnung wie in Anspruch 1 beansprucht, dadurch gekennzeichnet, dass die Anordnung ferner aufweist:
    • eine Laserstab-Klemme (18), und eine Vielzahl von Haltemitteln für die optischen Laserresonanz-Elemente (26, 28, 34), wobei die Laserstab-Klemme (18) und die Haltemittel (26, 28, 34) der optischen Laserresonanz-Elemente individuelle Komponenten sind, die an der monolithischen Block-Halterung (10) angebracht sind, und der Laserstab (12) zwischen der Laserstab-Klemme (18) und der monolithischen Block-Halterung (10) untergebracht ist.
  5. Verfahren zur Unterbringung einer Pumplaser-Resonanzanordnung nach einem der vorhergehenden Ansprüche, mit den folgenden Schritten:
    • Ausbilden der monolithischen Block-Halterung (10);
    • Befestigen der Vielzahl von optischen Laserresonanz-Elementen auf der monolithischen Block-Halterung (10) entlang eines vorbestimmten Laserwegs, wobei die Vielzahl von Laserelementen einen Laserstab (12), eine Laserdiodenanordnung (8) und eine Vielzahl von optischen Laserresonanz-Elementen aufweist, wobei die Vielzahl von optischen Laserresonanz-Elementen ein UmlenkPrisma (22, 24), einen Reflektor (38), einen Rück-Reflektor (32) und einen optischen Hohlraum-Q-Switch (30) aufweist, wobei der Laserstab und die optischen Laserresonanz-Elemente entlang eines Laserwegs (11) angeordnet sind, der eine Vielzahl von Biegungen (40) besitzt, und wobei zumindest einige der Biegungen in den Umlenk-Prismen (22, 24) liegen; wobei
    • die monolithische Block-Halterung (10) als Wärmesenke für den Wärmeverbrauch funktioniert ohne die Notwendigkeit eines zusätzlichen Kühlsystems, und
    • die monolithische Block-Halterung (10) als eine optische Bank zur Beibehaltung der Selbstjustierung der Laserelemente funktioniert.
  6. Verfahren zum Unterbringen einer Pumplaser-Resonanzanordnung gemäß Anspruch 5, dadurch gekennzeichnet, dass der Schritt der Ausbildung die Bearbeitung der monolithischen Block-Halterung (10) unter Verwendung einer computergesteuerten Maschine aufweist, um jede der einzelnen Komponentenhalterungen mit im Wesentlichen identischen Aufbau und Toleranzen zu erzeugen, und der Schritt der Befestigung das feste Anbringen jedes der Laserresonanz-Elemente an einer jeweiligen der einzelnen Komponentenhalterungen aufweist.
Anspruch[en]
  1. A pumped laser resonator assembly (5), comprising:
    • a mount (10), an optical path (11) being defined within said mount (10);
    • a laser pumphead (6) secured to the mount (10), the laser pumphead (6) comprising a laser rod (12); and
    • a plurality of laser resonator optical elements (22, 24, 30, 32, 38) secured to the mount (10), said plurality of laser resonator optical elements comprising fold prism (22, 24), a reflector (38), a retroreflector (32) and an intracavity optical Q-switch (30), wherein the mount (10) functions as an optical bench, wherein the laser optical path (11) has a plurality of bends (40) and at least some of said bends being defined by the fold prism;
    characterized in that

    the laser pumphead (6) comprises a laser diode array (8);

    the mount (10) is a monolithic block defining a laser resonator; and the monolithic block mount (10) functions as a heatsink for heat dissipation and power efficiency in a relatively compact assembly without the need of an additional cooling system, and is adapted to keep the optical elements (22, 24, 30, 32, 38) and the laser pumphead (6) self-aligned relative to a laser optical path (11).
  2. The assembly as claimed in claim 1, characterized in that said diode array pumped laser assembly (5) including said monolithic block mount (10) has a combined external dimension of not more than about 30 mm x 25 mm x 13 mm, has a combined weight of less than 56 g, and provide a laser power of more than 1 mJ.
  3. The assembly as claimed in claim 1, characterized in that the laser rod (12) is protected with a thin indium foil (42) from abrasion and excessive heat.
  4. The assembly as claimed in claim 1, characterized in that the assembly further comprises a laser rod clamp (18), and a plurality of laser resonator optical element mounting means (26, 28, 34), said laser rod clamp (18) and said laser resonator optical element mounting means (26, 28, 34) being individual components attached to said monolithic block mount (10), and

    the laser rod (12) is sandwiched between the laser rod clamp (18) and the monolithic block mount (10).
  5. A method of packaging of a pumped laser resonator assembly of any of the preceding claims, comprising the following steps:
    • forming the monolithic block mount (10);
    • mounting the plurality of laser resonator optical elements on the monolithic block mount (10) along a predetermined laser path, the plurality of laser elements comprising a laser rod (12), a laser diode array (8), and a plurality of laser resonator optical elements, the plurality of laser resonator optical elements comprising a fold prism (22, 24), a reflector (38), a retroreflector (32) and an intracavity optical Q-switch (30), the laser rod and the laser resonator optical elements being arranged along a laser path (11) having a plurality of bends (40), and at least some of said bends being located in the fold prisms (22, 24); wherein
    • the monolithic block mount (10) functions as a heatsink for dissipating heat without the need of an additional cooling system, and
    • the monolithic block mount (10) functions as an optical bench for keeping the laser elements self-aligned.
  6. A method of packaging of a pumped laser resonator assembly in accordance with claim 5, characterized in that

    the forming step comprises machining the monolithic block mount (10) using a computer-controlled machine to generate each of the individual component mounts with a substantially identical setup and tolerances, and the mounting step comprises fixedly mounting each of the laser resonator elements onto a respective said individual component mount.
Anspruch[fr]
  1. Ensemble (5) de résonateur de laser pompé, comprenant :
    • un bâti (10), un trajet optique (11) étant défini à l'intérieur dudit bâti (10) ;
    • une tête de pompage (6) de laser fixée au bâti (10), la tête de pompage (6) de laser comprenant une tige (12) de laser ; et
    • une pluralité d'éléments optiques (22, 24, 30, 32, 38) de résonateur de laser fixés au bâti (10), lesdits plusieurs éléments optiques de résonateur de laser comprenant un prisme à arêtes (22, 24), un réflecteur (38), un rétroréflecteur (32) et un commutateur optique Q interne à la cavité (30), dans lequel le bâti (10) sert de banc optique, dans lequel le trajet optique (11) de laser présente une pluralité de coudes (40) et au moins certains desdits coudes étant définis par le prisme à arêtes ;
       caractérisé en ce que

       la tête de pompage (6) de laser comprend un groupement (8) de diodes lasers ;

       le bâti (10) est un bloc monolithique définissant un résonateur de laser ; et le bâti (10) formant bloc monolithique sert de dissipateur de chaleur pour dissipation de chaleur et pour rendement de puissance dans un ensemble relativement compact, sans nécessiter de système de refroidissement supplémentaire, et est conçu pour maintenir les éléments optiques (22, 24, 30, 32, 38) et la tête de pompage (6) de laser auto-alignés par rapport à un trajet optique (11) de laser.
  2. Ensemble selon la revendication 1, caractérisé en ce que ledit ensemble (5) de laser pompé à groupement de diodes incluant ledit bâti (10) formant bloc monolithique a une dimension extérieure combinée qui n'est pas supérieure à environ 30 mm x 25 mm x 13 mm, a une masse combinée qui est inférieure à 56 g, et donne une puissance de laser de plus de 1 mJ.
  3. Ensemble selon la revendication 1, caractérisé en ce que la tige (12) de laser est protégée par une feuille mince (42) d'indium contre une abrasion et une chaleur excessive.
  4. Ensemble selon la revendication 1, caractérisé en ce que l'ensemble comprend en outre une bride (18) de tige de laser et plusieurs moyens (26, 28, 34) de montage d'éléments optiques de résonateur de laser, ladite bride (18) de tige de laser et lesdits moyens (26, 28, 34) de montage d'éléments optiques de résonateur de laser étant des composants individuels fixés audit bâti (10) formant bloc monolithique, et

       la tige (12) de laser est prise en sandwich entre la bride (18) de tige de laser et le bâti (10) formant bloc monolithique.
  5. Procédé de mise sous boîtier d'un ensemble de résonateur de laser pompé selon l'une quelconque des revendications précédentes, comprenant les étapes consistant à :
    • former le bâti (10) formant bloc monolithique ;
    • monter les plusieurs éléments optiques de résonateur de laser sur le bâti (10) formant bloc monolithique le long d'un trajet de laser prédéterminé, les plusieurs éléments de laser comprenant une tige (12) de laser, un groupement (8) de diodes lasers, et plusieurs éléments optiques de résonateur de laser, les plusieurs éléments optiques de résonateur de laser comprenant un prisme à arêtes (22, 24), un réflecteur (38), un rétroréflecteur (32) et un commutateur optique Q interne à la cavité (30), la tige de laser et les éléments optiques de résonateur de laser étant agencés le long d'un trajet (11) de laser comportant plusieurs coudes (40), et au moins certains desdits coudes étant situés dans les prismes à arêtes (22, 24) ;
    dans lequel

       le bâti (10) formant bloc monolithique sert de dissipateur de chaleur pour dissipation de chaleur sans nécessiter de système de refroidissement supplémentaire ; et

       le bâti (10) formant bloc monolithique sert de banc optique pour maintenir auto-alignés les éléments de laser.
  6. Procédé de mise sous boîtier d'un ensemble de résonateur de laser pompé selon la revendication 5, caractérisé en ce que

       l'étape de formage comprend l'usinage du bâti (10) formant bloc monolithique en utilisant une machine commandée par ordinateur pour produire chacun des bâtis de composants individuels avec un réglage et des tolérances sensiblement identiques, et en ce que l'étape de montage comprend le montage fixe de chacun des éléments de résonateur de laser sur l'un, respectif, desdits bâtis de composants individuels.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com