PatentDe  


Dokumentenidentifikation DE69432057T2 30.10.2003
EP-Veröffentlichungsnummer 0881732
Titel Vorrichtung zur Annäherung des Effektivwertes eines Stromes
Anmelder Square D Co., Palatine, Ill., US
Erfinder Phillips, Timothy Brian, Raleigh, North Carolina 27615, US;
Stentz, Antoine Didier, 92500 Rueil-Malmaison, FR
Vertreter Hansmann & Vogeser, 81369 München
DE-Aktenzeichen 69432057
Vertragsstaaten CH, DE, ES, FR, GB, IT, LI
Sprache des Dokument EN
EP-Anmeldetag 03.08.1994
EP-Aktenzeichen 981129596
EP-Offenlegungsdatum 02.12.1998
EP date of grant 22.01.2003
Veröffentlichungstag im Patentblatt 30.10.2003
IPC-Hauptklasse H02H 3/26
IPC-Nebenklasse G01R 19/02   H02H 3/093   

Beschreibung[de]
Anwendungsgebiet

Die Erfindung des Anmelders bezieht sich allgemein auf die Umwandlung und Messung des Stromes einer elektrischen Last und insbesondere auf eine Vorrichtung, die ein zum Effektivstrom der Last proportionales Signal erzeugt.

Technischer Hintergrund

Viele Verfahren wurden verwendet, um den zu einer Last fließenden Wechselstrom zu messen. Diese Verfahren werden als Bestandteil komplexerer Geräte wie Halbleiter-Unterbrecher oder Überlastungsrelais, Wechselstromleitung-Überwachungsgeräte oder geschlossene Regelkreise zur Strom-Rückkopplungs-Steuerung, wie sie für Motorantriebe und Stromversorgungen benötigt werden, verwendet. Üblicherweise wird die benötigte Messgenauigkeit durch die Anwendung vorgegeben. Im Allgemeinen wird der Effektivstrom als eine genaue Darstellung des in dem überwachten Stromkreis tatsächlich fließenden Stroms angesehen. Für einfache Systeme kann dies nicht notwendig sein und stattdessen wird der Durchschnittsstrom während einer vorbestimmten Zeitdauer, üblicherweise eine Periode, verwendet, um den tatsächlichen Strom darzustellen. Andere Systeme verwenden den Spitzenstrom während der gleichen Zeitdauer als Basis. Höher entwickelte Geräte auf Mikroprozessorbasis berechnen den Effektivstrom durch vielfaches Abtasten der Stromwellenformen während jeder Zeitdauer und Verwendung dieser Abtast-Messungen, um den Wert des Stroms während der Zeitdauer zu erzeugen.

Bei einer Verwendung eines Halbleiter-Überlastungsrelais als Beispiel einer derartigen Anwendung besteht ein gebräuchliches Verfahren zur Erzeugung eines den Leitungsstrom darstellendes Signals darin, einen Stromkreis zur Ermittlung des Spitzenwerts zu verwenden, wie im gemeinschaftlich übertragenen US Patent 4,345,288 offenbart ist. Obwohl diese Vorrichtung näherungsweise einer üblichen thermischen elektromechanischen Überlast-Einrichtung nahe kommt, gleicht die Vorrichtung keine nicht-sinusförmigen Ströme aus, die unter bestimmten Umständen auftreten können. Ebenso können harmonische Oberschwingungen und Einschwingvorgänge auf der Leitung zu fehlerhaften Resultaten führen. Ein n dem französischen Patent FR 2540303 ( = US 4513342) offenbartes alternatives Verfahren überwacht den quadratischen-Zeit-Wert (I²t) des Laststroms, um beim Überschreiten eines vorherbestimmten Wertes ein Anzeichen für eine Überlastung zu geben. Dieses französische Patent offenbart eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1. Ein anderes Verfahren mit Verwendung einer mikroprozessorbasierten Vorrichtung, die den Effektivstrom mittels digitaler Abtast-Techniken berechnet, wird in dem US Patent 5,220,478 beschrieben. Während dies ein genaueres, Verfahren darstellt, ist es aufgrund der erhöhten Anforderung hinsichtlich der Komponenten für die unterstützende Schaltung und der Zunahme der Größe der Vorrichtung für die Aufnahme der zusätzlichen Komponenten eine relativ teure Lösung. Für eine Low-Cost-Anwendung, bei der Größe auch eine Rolle spielt, wäre es wünschenswert, ein Halbleiter- Überlastungsrelais zu schaffen, welches ohne die Komplexität einer mikroprozessorbasierten Vorrichtung eine Näherung für den Effektivstrom berechnet.

Zusammenfassung der Erfindung

Es ist eine Aufgabe der Erfindung, eine verbesserte Überlastschutzvorrichtung zu schaffen.

Diese Erfindung stellt eine Vorrichtung entsprechend den beiliegenden Ansprüchen zur Verfügung.

In der bevorzugten Ausführungsform der Erfindung erfassen übliche Strommesswandler den Stromfluss in jeder Phase der Last. Die typische Last könnte ein Einphasen- oder ein Dreiphasen-Motor sein. Die Strommesswandler erzeugen einen Ausgangstrom. Dieses Ausgangs-Signal ist seiner Größe nach proportional zum erfassten Strom. Dieses Spannungs-Signal wird an zwei parallel geschaltete Stromkreise angelegt, von denen einer den Spitzenwert der Spannung während einer Periode der angelegten Wechselspannung misst. Die Ausgangssignale beider dieser Stromkreise werden über Widerstände verschiedener Größe an einem Summierknoten eines Trennverstärkers miteinander verbunden. Die verschiedenen Widerstandswerte am Eingang zum Summierpunkt dienen dazu, den beiden Signalen verschiedene Gewichtungen zuzuordnen, um ein zusammengesetztes Spannungssignal zu erzeugen. Dieses Signal besteht aus einem Gleichspannungsniveau, das für einen sinusförmigen Strom einem skalierten Effektivwert des ursprünglichen Eingangs- Laststroms sehr nahe kommt. Für die in den meisten Anwendungen auftretenden üblichen nicht-sinusförmigen Stromwellenformen behält dieser Stromkreis seine Genauigkeit innerhalb eines +/- 5%-Bereichs des tatsächlichen Effektivwerts.

Dieses Ausgangssignal kann zur Stromüberwachung leicht umgewandelt, auf eine digitale Darstellung des Laststroms skaliert und visuell dargestellt werden. Um eine Überlast- oder Stromkreisunterbrecher-Funktion zu erhalten, wird dieses Ausgangssignal zur Erzeugung verschiedener Auslöse-Kurven einem Integrator-Stromkreis zugeführt, dessen Ausgangssignal mit einem vorherbestimmten Auslösereferenzspannungssignal verglichen wird. Überschreitet das Ausgangssignal dieses Niveau, so löst die Überlastung oder der Unterbrecher unter Bereitstellung eines Ausgangskontakts oder -kontakten, die bei einem Auftreten dieser Bedingung ihren Zustand ändern, aus.

Verschiedene Energieumwandlungsgeräte wie ein PWM-Inverter benötigen zur Überwachung der Höchststromstärke als steuerndes Element ein Strom- Rückkopplungssignal, welches den Laststrom wiedergibt. Die Ausgangsspannung der vorliegenden Erfindung kann diese Funktion erfüllen, indem dieses Ausgangssignal, mit entsprechenden Skalierungsfaktoren versehen, in der Funktion des zum Effektivstrom der Last proportionalen Strom-Rückkopplungssignals als Eingangssignal des Inverters verwendet wird.

Weitere Eigenschaften und Vorteile der Erfindung, die als neu und nicht naheliegend erachtet werden, werden aus der folgenden Beschreibung in Verbindung mit den begleitenden Figuren ersichtlich, in der eine bevorzugte Ausführungsform der Erfindung dargestellt wird. Zur Interpretation des vollen Umfangs der Erfindung, der nicht notwendigerweise durch eine derartige Ausführungsform dargestellt wird, wird auf die Ansprüche verwiesen.

Kurzbeschreibung der Figuren

Es zeigen

Fig. 1 ein Diagramm eines typischen Halbleiter-Überlastungsrelais (SSOLR) nach dem Stand der Technik,

Fig. 2 ein schematisches Blockdiagramm eines SSOLR, das ein einer Ausführungsform der vorliegenden Erfindung entsprechendes System zur Umwandlung des Laststroms in eine Näherung des Effektivwerts des Stroms verwendet und

Fig. 3 ein detailliertes schematisches Blockdiagramm des in Fig. 2 dargestellten Näherungsstromkreises.

Detaillierte Beschreibung

Obwohl diese Erfindung Ausführungsformen vieler verschiedene Arten aufweisen kann, wird hier eine bevorzugte Ausführungsform detailliert beschrieben und dargestellt. Die vorliegende Offenbarung stellt die Grundsätze der Erfindung beispielhaft dar und ist nicht als Beschränkung der weitergehenden Aspekte der Erfindung auf die speziell beschriebene Ausführungsform aufzufassen.

Fig. 1 zeigt eine typische Halbleiter-Überlastungsrelais-Schutzvorrichtung nach dem Stand der Technik. Eine Funktionalität als Stromkreisunterbrecher würde ähnlich sein. Der Last 2 wird die dreiphasige Netzleistung L1-L3 zugeführt. Die Last könnte aus einer Beleuchtungsanlage, einer Heizanlage oder induktiven Lasten wie Motoren, Magneten, Bremsen oder Spulen bestehen. Die Stromsensoren 4 überwachen die Lastströme L1-L3, um jeweils Ströme 11-13 zu erzeugen, die ihrer Größe nach proportional zu den erfassten Strömen sind. Die Stromsensoren 4 sind im allgemeinen Strommesswandler. Ein Strom-Spannungs-Wandler 6 formt die drei Ströme i1-i3 in eine Ausgangsspannung um, die proportional zu einer zusammengesetzten Summe der drei Ströme ist. Die sich ergebende Spannung V0 ist größtenteils eine Gleichspannung mit einer ungefähr 10-prozentigen Welligkeit aufgrund symmetrischer sinusförmiger Ströme. Ein üblicher Weise aus einer Diode und einem Kondensator bestehender Stromkreis 8 zur Erfassung des Spitzenwerts erfasst die Spitzenwerte der welligen Gleichspannung V0, um eine Spannung V1 zu erzeugen, die eine zur Höchststromstärke der Last 2 proportionale Gleichspannung darstellt. Die Funktion als Überlastungs-Relais ist zeitabhängig und erfolgt nicht unmittelbar. Je größer die Überlastung ist, desto schneller muss das Überlastungs-Relais auslösen. Deshalb integriert der Integrator-Verstärker 10 die Spannung V1 auf, um eine Spannung V2 zu erzeugen, die zur Größe der erfassten Ströme 11-13 eine inverse zeitliche Beziehung aufweist. Die Spannung V2 reagiert exponential auf die Eingangsspannung V1. Tritt eine Überlastbedingung auf, beginnt V2 über ein Niveau hinaus hochzulaufen, das 100% der Strombelastbarkeit des Überlastungs-Relais darstellt. Zur Erzeugung der Überlastungs-Auslösekurve wird eine durch den Stromkreis 14 zum Einstellen des Auslöseniveaus eingestellte Spannung 12 derart berechnet, dass das Ausgangssignal des Integrator-Verstärkers 10 dieses Spannungsniveau 12 bei Vorliegen einer Überlast-Bedingung über einen vorbestimmten Zeitraum hinweg erreicht. Liegt die Überlast-Bedingung beispielsweise bei 600% der Nennlast, so kann diese Zeit auf 10 Sekunden gesetzt werden, und auf 200 Sekunden, falls die Überlastung 200% der Last beträgt. Der Auslöseniveau-Komparator 16 vergleicht die Spannung V2 mit dieser vorbestimmten Spannung 4 und gibt, sobald die Spannung V2 die festgelegte Niveauspannung 4 überschreitet, ein Signal 18 ab, das das Steuerungs- Relais 22 über den Ausgangs-Verstärker 20 erregt. Der Komparator 16 funktioniert in dieser Hinsicht als Schmidt-Trigger, da, falls dieser Vergleich überschritten wurde, das Ausgangssignal 18 im ausgelösten Zustand verbleibt, bis das Ausgangssignal V2 unter ein zweites vorbestimmtes Rücksetzniveau 24 fällt und der Rücksetzung 26 entweder manuell oder automatisch betätigt wird. Die Kontakte 28 des Relais 22 werden verwendet, um die Versorgung L1-L3 auf bekannte Weise von der Last zu trennen, wenn das Überlastungs-Relais ausgelöst hat.

Unter Bezugnahme auf Fig. 2 wird ein verbessertes Halbleiter-Überlastungs-Relais 30 genauer beschrieben, das ein System zur erfindungsgemäßen Umwandlung der Lastströme L1-L3 in eine Näherung des Effektivwerts des Stroms verwendet. Obwohl ein Dreiphasen-System offenbart wird, ist offensichtlich, dass ein Einphasen- oder Mehrphasen-System auf eine ähnliche Weise funktionieren würde. Wie oben beschrieben, wird der Last 2 die dreiphasige Netzleistung L1-L3 zugeführt. Stromsensoren 4 überwachen die Lastströme I1-I3, um jeweils die proportionalen Ströme i1-i3 zu erzeugen. Jeder der Ströme i1-i3 wird jeweils unabhängig voneinander durch einen erfindungsgemäßen Effektivstrom-Näherungsstromkreis 32-34 weiterbehandelt. Der Strom i1 wird durch einen Strom-Spannungs-Wandler 36 in eine Spannung V3 umgewandelt. V3, die proportional zum Laststrom 11 ist, wird auf zwei Strompfade aufgeteilt, von denen der eine zu einem Stromkreis 38 zur Erfassung des Spitzen¬ werts und der andere zu einem Stromkreis 40 zur Messung des Mittelwerts führt. Der Stromkreis 38 zur Erfassung des Spitzenwerts erfasst die Spitzenwerte der welligen Gleichspannung V3 und erzeugt ein Spannungsniveau V4. Der Stromkreis 40 zur Messung des Mittelwerts erzeugt eine Spannung V5, die eine dem Mittelwert des Stroms der Last 2 proportionale Gleichspannung darstellt. V4 und V5 werden dem Skalierungs- und Summierungs-Verstärker 42 zugeführt, der eine Spannung V6 erzeugt, die eine proportionale Effektiv-Näherung des erfassten Leitungsstroms H darstellt.

Empirisch wurde festgestellt, dass eine genaue Näherung des Leitungsstroms auf Basis der Gleichung

Irms = (0,22·Ipk) + (0,766·Iave)

erhalten werden kann, wobei Irms der Effektivstrom, Ipk der Spitzenwert des Stroms und Iave der Mittelwert des Stroms sind.

Der Skalierungs- und Summierungs-Verstärker 42 löst diese Gleichung, um die Gleichspannungs-Ausgangsspannung V6 zu erzeugen, die proportional zum Effektivwert der Leitungsströme L1-L3 ist. Für die meisten nicht-sinusförmigen Ströme kann eine Genauigkeit von +/- 5% für diese Näherung erreicht werden. Dies steht im Vergleich zu einer Genauigkeit von 30%, wie es für die bekannten, auf Spitzenwert- Erfassung basierenden Verfahren üblich ist.

Die Effektivstrom-Näherungsstromkreise 33 und 34, die zum Stromkreis 32 identisch sind, erzeugen auf gleiche Weise Ausgangsspannungen V7 und V8. Die Ausgangsspannungen V6-V8 werden einem Mittelungsstromkreis 43 zugeführt, der diese kombiniert, um eine zusammengesetzte Gleichspannung V9 zu erzeugen, die proportional zum Mittelwert der drei Effektiv-Phasenströme 11, 12 und 13 ist. V9 wird einem Integrator-Stromkreis 44 zugeführt, der zusammen mit dem Auslöseniveau- Komparator 46 und dem Ausgangssignal-Trennverstärker 48 die zeitliche Regulierungsfunktion darstellt, Ausgangssignal-Relaiskontakte, wie zuvor beschrieben, für die Funktion als Überlastungs-Relais bereitstellt und zu dem oben offenbarten System identisch ist. Für ein Einphasen-System wird nur der Effektivstrom- Näherungsstromkreis 32 benötigt und die Ausgangsspannung V6 wird direkt dem Integrator-Stromkreis 44 zugeführt.

In Fig. 3 wird der in Fig. 2 dargestellte Näherungsstromkreis 32, der den Strom- Spannungs-Wandler 36, den Stromkreis 38 zur Erfassung des Spitzenwerts, den Stromkreis 40 zur Messung des Mittelwerts und den Skalierungs- und Summierungs- Verstärker 42 umfasst, für die bevorzugte Ausführungsform der vorliegenden Erfindung detailliert dargestellt. Wie bereits erwähnt, sind die Näherungsstromkreise 33- 34 zum Stromkreis 32 identisch. Die Lastströme L1-L3 werden durch Strommesswandler in jeder der Leitungen der drei Phasen erfasst. Die Sekundärwicklungen der Strommesswandler erzeugen die Ströme i1, i2 und i3. Die Stromstärken der Ströme i1-i3 werden entsprechend der Wicklungsverhältnisse der Strommesswandler verringert. Der Strom jeder Phase wird separat durch den Strom-Spannungs-Wandler- Stromkreis 36 in dem jeweiligen Näherungsstromkreis 32-34 gemessen. Der Brückengleichrichter BR1 wandelt i1 in einen doppelt gleichgerichteten Strom um, um über den Belastungswiderstand R1 eine doppelt gleichgerichtete Spannung V3 zu erzeugen. Die Spannung V3 wird auf zwei Strompfade aufgeteilt, von denen der eine über dem Widerstand R2 zum Stromkreis 38 zur Erfassung des Spitzenwerts und der andere über den Widerstand R3 zum Stromkreis 4D zur Messung des Mittelwerts führt.

Der Stromkreis 38 zur Erfassung des Spitzenwerts besteht aus einem ersten Operationsverstärker IC1A, der zusammen mit der Diode D1 eine ideale Dioden- Kombination bildet, und dem Kondensator C2. Die ideale Dioden-Kombinationen eliminiert den normalerweise mit einer Standarddiode verbundenen Spannungsabfall, der Fehler in der Ausgangsspannung V4 hervorrufen würde. Der parallel zu C2 geschaltete Widerstand R4 bildet einen Entladepfad mit einer langen Zeitkonstante, so dass der Stromkreis nicht zu einem reinen Abtast-und-Halte-Stromkreis verkommt. C2 hat in seinem Ladepfad einen geringen und in seinem Entladepfad einen hohen Widerstand, so dass die Spannung über C2 im wesentlichen proportional gleich zum Spitzenwert der Eingangspannung V3 ist. Der Operationsverstärker IC1B stellt einen Speicher für die Ausgangsspannung V4 zur Verfügung, um eine Fehlererzeugung in der C2-Spannung aufgrund von Eingangsimpedanzen der nächsten Stufe zu verhindern. Die Ausgangsspannung V4 des Trennverstärkers IC1B gibt demnach diese Spitzenspannung wieder.

Eine in Serie geschaltete Kombination aus dem Widerstand R3 und dem Kondensator C1 bildet den Stromkreis 40 zur Messung des Mittelwerts. Die Spannung über C1 ist proportional zum Mittelwert der Spannung V3. R1 und C3 sind entsprechend angepasst, um diese Funktionalität über den Frequenzbereich von 48 Hz bis wenigstens 780 Hz zu erreichen. Der Operationsverstärker IC1C stellt einen Speicher für die Ausgangsspannung V5 zur Verfügung, um eine Fehlererzeugung in der C1- Spannung aufgrund von Eingangsimpedanzen der nächsten Stufe zu verhindern. Die Ausgangsspannung V5 des Trennverstärkers IC1C gibt demnach den Mittelwert der Spannung V3 wieder.

Der Skalierungs- und Summierungs-Verstärkungsstromkreis 42 erhält an einem Summierknoten des Operationsverstärkers IC1D über den Widerstand R6 bzw. R5 die Spannungen V4 und V5. Die Werte dieser Widerstände zusammen mit dem des Koppelwiderstands R7 sind so berechnet, dass die Ausgangsspannung V6 des Additionsverstärkers IC1D proportional zu einem entsprechenden Anteil der jeweiligen Eingangspannung V4 und V5 ist, so dass die Gleichung IRMS = 0.22·Ipk + 0,766·Iave gelöst wird. Die Ausgangsspannung V6 besteht aus einer Gleichspannung, die empirischen Ergebnissen zufolge für sinusförmige Ströme proportional zum Effektivwert der Leitungsströme L1-L3 ist und für die meisten nicht-sinusförmigen Ströme eine Genauigkeit aufweist, die innerhalb von 5% vom tatsächlichen Effektivwert liegt. Für ein Einphasen-System kann die Spannung V6, wie in Fig. 2 dargestellt, direkt mit dem Integrator-Stromkreis 44 verbunden werden, um das zuvor beschriebene verbesserte Halbleiter-Überlastungsrelais darzustellen. Für ein Dreiphasen-System wird die Spannung V6 mit dem Mittelungsstromkreis 43 verbunden, wo sie mit den entsprechenden Spannungen V7 und V8, die durch die anderen beiden Phasen erzeugt wurden, kombiniert wird, um die Ausgangsspannung V9 zu erzeugen, die proportional zum Mittelwert der Effektivströme 11-13 der drei Phasen ist. Die Operationsverstärker-Stromkreise IC1A-D werden durch eine nicht gezeigte, aber übliche +/- 12 V- Versorgung mit doppelten Schienen versorgt.

Während spezielle Ausführungsformen dargestellt und beschrieben wurden, sind zahlreiche Abänderungen möglich, ohne vom Umfang der Erfindung abzuweichen. Obwohl die vorangehenden Ausführungsformen auf Ein- und Dreiphasen-Systeme angewendet wurden, ist offensichtlich, dass die Erfindung auch auf Mehrphasen- Systeme anwendbar ist, wobei ein Hinzufügen oder Entfernen eines separaten Effektivwert-Näherungsstromkreises für jede Phase der Spannungsversorgung, Einstellungen der Zeitkonstanten der Widerstand-Kondensator-Kombinationen der Stromkreise zur Erfassung des Spitzenwerts und der Stromkreise zur Messung des Mittelwerts sowie Änderungen in dem Mittelungsstromkreis, der die Ausgangssignale der Effektivwert-Näherungsstromkreise kombiniert, erforderlich sind.


Anspruch[de]

1. Halbleiter-Überlastschutzvorrichtung für eine Wechselstromlast (2), die von einer Wechselstromquelle (L1-L3) mit Strom versorgt wird, umfassend

a) Mittel (4) zur Erfassung des tatsächlichen, der Last (2) von der Wechselstromquelle (L1-L3) zugeführten Stroms;

b) Mittel (36) zur Umwandlung des tatsächlichen Stroms in eine dem tatsächlichen Strom proportionale erste Spannung (V3);

c) Mittel (32) zur Erzeugung einer zweiten Spannung aus der ersten Spannung (V3), wobei die zweite Spannung proportional zu einem Näherungswert ist, der gleich dem Effektivstrom der Last (2) ist;

d) Mittel (44) zum Integrieren der zweiten Spannung, um ein Auslösesignal (V10) zu erzeugen, das charakteristisch für eine vorbestimmte Volllastkapazität der Wechselstromlast (2) ist;

e) Mittel (46) zum Vergleichen des Auslösesignals (V10) mit einem vorbestimmten Auslösereferenzspannungsniveau (12), wobei die Vergleichsmittel (46) ein Ansteuerungs-Ausgangssignal erzeugen, wenn das Auslösesignal (V10) kleiner als das Auslösereferenzspannungsniveau (12) ist und wobei die Vergleichsmittel (46) ein Abschalt-Ansteuerungs-Ausgangssignal erzeugen, wenn das Auslösesignal (V10) größer als das eine Überlastbedingung anzeigende Referenzauslösespannungsniveau (12) ist; und

f) Mittel (22), um die Wechselstromquelle als Reaktion auf das Ansteuerungs- Ausgangssignal bei Vorliegen der Überlastbedingung von der Last zu trennen;

dadurch gekennzeichnet, dass

die Mittel (32) zur Erzeugung der zweiten Spannung einen Näherungsstromkreis umfassen, wobei der Näherungsstromkreis erste Mittel (40) zur Erzeugung einer Spannung (V5) aus der ersten Spannung (V3), proportional entsprechend einem Mittelwert des tatsächlichen Stromes, zweite Mittel (38) zur Erzeugung einer Spannung aus der ersten Spannung (V3), proportional entsprechend einem Spitzenwert des tatsächlichen Stromes, und dritte Mittel (42) zur Summierung eines Anteils der Spannung des ersten Mittel (40) und eines Anteils der Spannung des zweiten Mittel (38), um die dem Effektivstrom der Last proportionale zweite Spannung (V6) zur erzeugen, aufweist.

2. Halbleiter-Überlastschutzvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Näherungsstromkreis eine Näherungsgleichung löst, um das zum Effektivstrom der Last (2) proportionale Ausgangssignal zu erzeugen.

3. Halbleiter-Überlastschutzvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Näherungsgleichung zur Erzeugung des dem Effektivstrom der Last (2) proportionalen Ausgangsignals der Gleichung

Irms = (0.22·Ipk) + (0.766·Iave)

entspricht, wobei Irms der Effektivstrom der Last (2), Ipk der Spitzenstrom der Last (2) und Iave der Mittelwert des Stroms der Last (2) sind.

4. Halbleiter-Überlastschutzvorrichtung nach einem er vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Wechselstromquelle eine Einphasenquelle ist.

5. Halbleiter-Überlastschutzvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Wechselstromquelle eine Mehrphasenquelle ist.







IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com