PatentDe  


Dokumentenidentifikation EP0779835 18.12.2003
EP-Veröffentlichungsnummer 0779835
Titel REINIGUNG VON HOHLFASERMEMBRANEN
Anmelder U.S. Filter Wastewater Group, Inc., Warrendale, Pa., US
Erfinder BECK, William, Thomas, South Windsor, AU;
DRUMMOND, John, Humphrey, South Windsor, AU;
LEE, Brian, Matthew, Pyalong Road, Lancefield, VIC 3435, AU;
KOPP, Virgil, Clint, Castle Hill, AU;
JOHNSON, Thomas, Warren, Bligh Park, AU
Vertreter Fechner, J., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 53773 Hennef
DE-Aktenzeichen 69532129
Vertragsstaaten AT, BE, CH, DE, ES, FR, GB, IT, LI, NL
Sprache des Dokument EN
EP-Anmeldetag 08.09.1995
EP-Aktenzeichen 959310889
WO-Anmeldetag 08.09.1995
PCT-Aktenzeichen PCT/AU95/00587
WO-Veröffentlichungsnummer 0096007470
WO-Veröffentlichungsdatum 14.03.1996
EP-Offenlegungsdatum 25.06.1997
EP date of grant 12.11.2003
Veröffentlichungstag im Patentblatt 18.12.2003
IPC-Hauptklasse B01D 65/02
IPC-Nebenklasse B01D 61/20   B01D 61/22   B01D 63/02   B01D 65/08   B01D 61/18   B01D 65/00   

Beschreibung[en]
TECHNICAL FIELD

The present invention relates to concentration of solids in a suspension using a hollow fibre membrane and, in particular forms, to methods and apparatus for periodically cleaning by backwashing the hollow fibre membranes.

BACKGROUND ART

Prior art methods of concentrating solids in a liquid suspension are described in WO-A-86/05116 and WO-A-88/00494.

In that prior art, concentration is effected by a filter element that comprises a bundle of hollow, porous, polymeric fibres in a closed cartridge or shell. Polyurethane potting compound is used to hold the respective ends of the fibres in place within the cartridge without blocking the fibre lumens and to close off each end of the cartridge. The use of gaseous backwashing to cause explosive decompression through the walls of the fibres is disclosed in WO-A-93/02779.

The transmembrane pressure differential necessary to effect concentration of the solids in the prior art is achieved by pressurising the feedstock which necessitates the use of pumps, other ancillary equipment and, of course, a closed filter cartridge.

Backwashing of such prior art concentrators involves increasing the pressure on both sides of the hollow fibres within the closed shell to a relatively high value before suddenly releasing that pressure on the shell side of the fibre walls to effect a sudden pressure differential across the walls which causes a backwash action.

DISCLOSURE OF INVENTION

It is an object of this invention to provide an improved method of using a reverse-flow mode to dislodge solids retained by filter elements to ensure rapid removal of those retained solids and in which the separation and dislodgement modes may be repeated for prolonged periods of time.

The present invention, in at least some embodiments, provides a method of backwashing a hollow fibre filter which retains some of the features of the prior art, but optimizes a number of these features to provide improved performance.

Accordingly, in one broad form of the invention, there is provided a method of backwashing a plurality of hollow fibres having microporous walls which have been subjected to a filtration operation wherein a liquid feed containing contaminant matter is applied to the exterior surface of said hollow fibres and filtrate is withdrawn from the ends of the lumens of the fibres, the fibres being contained within a shell or housing, said method comprising:.

  • (a) terminating the filtration operation by ceasing supply of feed to said exterior surface of said fibres,
  • (b) sealing the shell or housing and substantially removing filtrate from said lumens;
  • (c) applying a source of fluid under pressure to said lumens so as to produce a negative transmembrane pressure before or at the same time as opening the shell or housing to atmosphere, and to cause explosive decompression through the walls of the fibres whereby said fluid under pressure passes through said walls, the time lapse between the start of an increase in negative transmembrane pressure (TMP) and such negative transmembrane pressure (TMP) reaching a maximum value corresponding to the explosive decompression, is in the range of from about 0.05 seconds to about 5 seconds;
  • (d) maintaining the pressure level in said lumens at a predetermined value for a sufficient time following said decompression to cause substantial portions of contaminant matter lodged within and/or on said fibre walls to be dislodged; and
  • (e) recommencing the filtration operation by introducing said supply of feed to said exterior surface of said fibres on the shell side of the filter while fluid pressure is still being applied to said lumens, the flow of feed serving to wash dislodged contaminant matter away by the flow of liquid over said external surface of said fibre walls and to rewet said fibres, the period during which feed is supplied to said exterior of said fibres while fluid pressure is still being applied to said lumens being between about 1 to about 30 seconds.

In the method of the invention feed liquid is pumped into the shell side of the filter while fluid pressure is still being applied to said lumens. This results in liquid/fluid turbulence or frothing around the membrane pores causing further improved dislodgement of retained solids. The fluid pressure during this phase preferably should exceed the shell side pressure by about 10kPa to about 800 kPa.

Preferably, the steps of the method are carried out as a continuous process utilizing repetitive cycles of solids retention and backwash.

As an alternative preferred from, step (b) is effected by allowing said remaining filtrate to drain out of said lumens.

When fluid pressure is applied to remove the filtrate from the lumens, this pressure is typically in the range of about 10 to about 600 kPa. The fluid pressure applied to the lumens prior to the decompression is typically in the range of about 100 to about 1200 kPa.

The penetration of gas into the pores of a membrane is resisted by the surface tension forces of the contained wall-wetting liquid according to well known theory. Indeed, surface tension is conveniently measured by the breakthrough pressure needed to force a bubble out of a submerged orifice. For common systems (such as oil in hydrophobic pores or water in hydrophilic pores) the breakthrough pressures are much higher than the usual operating pressures of the filter.

Prior art hollow-fibre type ultrafilters are usually fed from the inside of the fibres for many well known reasons. However, according to the present invention, feed stock is applied to the outside of the fibres and gas is introduced into the lumen of the fibre as the back-wash medium. In some cases, the lumen pressure swells a suitably designed fibre so that the pores are enlarged whereby the particles are freed and swept away in the expansion of the back-wash gas.

In some cases, especially where very fine-pored interstitial material is deposited in relatively coarse-pored base fibre, it is advantageous to back-wash first with a small amount of permeate already in the membrane lumen and follow with the high pressure gas back-wash. In this way, the small amount of permeate adequately washes out fine blocking material from within the interstices, and the overall cleaning is completed by the higher pressure gas swelling the base pores and erupting around elastic openings. The pores must close again rapidly to reseal the holes and the base material must not crack by work hardening and must remain within its modified elastic limit.

Preferably, the fibres are made from thermoplastic polymers such as:

  • poly(propylene), poly(4-methylylpent-1-ene), co-polymers of polypropylene, poly(vinylidenedifluoride), poly(sulphones), poly(phenylene sulphides), poly(phenylene oxides), phenoxy resins, polyethylene, poly(tetrafluoroethylene) and poly(chlorotrifluoroethylene).

The use of gas as a back-wash medium enables the removal of fouling species by explosive decompression of the gas through the membrane structure for the minor part and at the outer membrane surface for the major part. Thus, the gaseous back-wash step is carried out at a pressure which is sufficient to overcome the effect of the surface tension of the continuous phase of the feedstock within the pores of the membrane.

Hitherto, it was felt the gas backwashing phase should be limited to below 5 seconds to avoid drying out of the fibres and thus difficulty in recommencing filtration due to gas bubble retention in the fibre pores. The introduction of improved rewetting techniques has overcome this problem and it has been discovered that extending the gas backwash phase beyond 5 seconds has significant advantages. Time periods of up to 60 seconds have been found to be effective. A longer backwash provides improved removal of trapped solids. Because liquid is reintroduced to the shell prior to completion of the gas backwash, it enables the overlap where gas and liquid are both present to be extended. An overlap time of about 1 to about 30 seconds is used. This is desirable in large arrays where it may take considerable time, with normal pump pressures, to refill the shells with liquid. The extended time period enables normal pumps to be used to achieve the above overlap while it also avoids maldistribution of pressure within large filter arrays by allowing relatively slow refilling of the filter shells.

In another form of the invention, the high pressure fluid application to the lumens may be pulsed to provide a number of explosive decompressions within the backwashing phase. These individual pulses are preferably between about 0.1 seconds and about 5 seconds in duration. This provides an advantage of reducing gas consumption in the backwash phase. The pulsing may be achieved by sealing and opening the shell at appropriate time intervals sufficient to allow pressure within the lumens to build up to a required level. Alternatively, the pressure supply may be pulsed to achieve the same effect. In a further embodiment, the pressure may be varied between a high and low level without actual total shut off of pressure.

BRIEF DESCRTPTION OF DRAWINGS

Preferred embodiments of the present invention will now be described, by way of example only, with reference to the following examples and accompanying drawings, in which:

  • Figure 1 shows a schematic representation of a hollow fibre cross-flow concentrator to which the present invention is applicable in an operating mode;
  • Figure 2 shows the concentrator of Figure 1 in backwash mode;
  • Figure 3 shows a graph of transmembrane pressure (TMP) versus time for a standard backwash;
  • Figure 4 shows a similar graph to Figure 3 using a backwash using a higher than usual air consumption ;
  • Figure 5 shows a normalized flow/TMP versus time graph for a standard backwash;
  • Figure 6 shows a normalized flow/TMP versus time graph for the same type of machine as Figure 5 but using the backwash according to Figure 4;
  • Figure 7 shows a graph of TMP versus time for a backwash where feed liquid is pumped into the filter while the gas backwash is still applied;
  • Figure 8 shows a normalized flow/TMP versus time graph for a standard backwash;
  • Figure 9 shows a normalized flow/TMP versus time graph for the same type of machine as Figure 8 but introducing feed liquid during the backwash cycle;
  • Figure 10 shows a normalized flow/TMP versus time graph for a standard backwash at a further installation; and
  • Figure 11 shows a normalized flow/TMP versus time graph for the same type of machine as Figure 10 but introducing feed liquid during the backwash cycle.

MODES FOR CARRYING OUT THE INVENTION

The hollow fibre cross-flow concentrator 10 shown in Figs. 1 and 2 includes a cartridge shell 11 within which is positioned a bundle of hollow, porous, polymeric fibres 12. In this instance, each fibre is made of polypropylene, has an average pore size of 0.2µm, an internal lumen diameter in the range 250µm to 310µm and a fibre diameter in the range 500µm to 650µm. There may be between 2,800 to 30,000 hollow fibres in the bundle 12 but this number as well as the individual fibre dimensions may be varied according to operational requirements.

Polyurethane potting compound 13,14 holds the ends of the fibres 12 in place without blocking their lumens and closes off each end of the shell 11. The liquid feed suspension to be concentrated is pumped into the shell 11 through feed suspension inlet 15 and passes over the external walls of the hollow fibres 12. Some of the feed suspension passes through the walls of the fibres 12 into the lumens of the fibres to be drawn off through the lumen outlet port 16 as clarified liquid.

The remaining feed suspension and some of the rejected species flows between the fibres 12 and leaves the shell 11 through outlet 17. The remainder of the rejected species is held onto or within the fibres or is otherwise retained within the shell. Lumen inlet port 18 remains closed during the operating mode of the concentrator shown in Fig. 1.

In order to remove the retained species, lumen outlet port 16 is closed so that the flow of clarified liquid is stopped. The clarified liquid is then removed from the lumens by natural drainage or by introducing a pressurized gas through lumen inlet port 18 to force the liquid from the lumens. Upon completion of the removal of the filtrate liquid, high pressure compressed gas is introduced through inlet 18 and the lumens of the fibres 12. The liquid-filled shell is sealed and gas cannot penetrate the porous walls even though the gas pressure is now raised well above the normal bubble point of the fibre walls because the liquid within the shell is relatively incompressible. A reservoir of high pressure gas is thus accumulated in the fibre lumens.

The shell outlet 17 is then opened which allows gas to penetrate the pores along the whole length of each fibre. This results in an explosive decompression of the pressurized gas through the walls of the fibres resulting in the retained solids in the fibre walls being dislodged from the fibres into the feed side of the filter. The initial breakthrough of gas through the fibre wall results in a tendency for pressure to drop in the lumens. It is desirable if this pressure can be maintained for a short period following decompression to cause increased flow through the fibre wall and greater removal of retained solids. This is preferably achieved by providing a large diameter pressure feed to the lumens and/or a higher pressure to compensate for pressure drop. In some cases, it is desirable to admit gas through both lumen ports 16 and 18 after carrying out the above described pressurised, trapped gas operation.

In alternate embodiments, the shell is opened just before or at the same time as the pressurized gas is applied to the lumens.

Referring to the accompanying graphs, a number of examples will now be described to illustrate the improved performances provided by embodiments of the invention.

EXAMPLE 1

An M10C (250µm lumen) filter unit was run using a larger airline to provide an increased and prolonged pressure to the lumens following the explosive decompression phase. A 2.5cm airline was used instead of a standard 10mm airline. There was no pressurize stage used during this improved backwash and the negative transmembrane pressure (TMP) obtained on the filter unit was 620kPa compared with 380kPa for a standard backwash. The air consumption was higher than that for a standard backwash. The pressure profiles of the two different backwashes are shown in Figures 3 and 4.

During the standard backwash shown in Figure 3, it can be seen that a time of 0.65 seconds elapses between the start of the explosive decompression phase and the point at which maximum TMP is obtained. Analysis of the similar section of the improved backwash shows the time to reach maximum negative TMP was only 0.15 seconds. The reaching of maximum TMP corresponds with the air breaking through the walls of the fibre and expelling the fluid within the wall pores. The period between the opening of the shell and the breakthrough is a liquid backwash phase as the liquid within the pores is being moved outwardly from the lumen toward the shell side. When the air breaks through the fibre wall the liquid backwash phase is completed. Preferably this period is within the range 0.05 seconds to 5 seconds.

The results of consecutive runs on the test filter unit comparing the standard and the improved backwash (termed a "mega" backwash herein) procedures are shown in attached TABLE 1.

As can be seen from TABLE 1 and the performance graphs (Figures 5 and 6), the TMP rise is significantly reduced when the 'mega' backwash is used. The TMP rise per day for the 'mega' backwash was approximately one quarter of the TMP rise seen with the standard backwash. This result means that machines could be run for longer between cleaning cycles, or the machines could give a higher throughput for the same cleaning interval.

EXAMPLE 2

This example relates to the procedure where feed liquid is reintroduced to shell while the gas backwash is still proceeding. A trial was carried out on surface water to compare a standard backwash with a backwash stage using pressurized gas plus feed liquid. This stage is typically referred to as an "air on pump on" stage (AOPO stage).

Two identical 1M10C filter units were set up to run side by side on river water. One machine used a standard pressurize backwash cycle, whilst the other incorporated an extra stage. The extra stage consisted of switching on the feed pump whilst still applying high pressure air through the hollow fibre walls. The resultant two phase flow across the fibre bundle appeared to be very effective in removing fouling from the membrane module.

The two filter units were running at a constant flow of 200h/hr/m2 [200 L/hr/em], using a pump with a variable speed drive to keep the set flow. The area unit em is related to the surface area of an original Memtec filter module. Figures 8 and 10 illustrate the results of two consecutive runs of a filter unit and show that the TMP, when the standard backwash was used, rose to 400kPa within 4 days of operation. At this point the unit could no longer maintain the set flow of 200 L/hr/em. Figures 9 and 11 show that when the AOPO stage was used the TMP remained below 150kPa for 7 days. The result of this is that the filter units could maintain a higher flow rate for a longer period of time when the AOPO stage is used in the backwash. This is important to filter unit efficiency as the units require chemical cleaning when the TMP reaches a predetermined value.

Typically during the backwash the decompression stage consists of the lumens being pressurized to 600kPa, then the shell side valves being released whilst still supplying air to the lumens (for typically 1 to 3 seconds on most applications). The AOPO stage would extend the amount of time air is resupplied to the fibre lumens by typically an extra I to 30 seconds on M10 units.

It will be appreciated that further embodiments and exemplifications of the invention are possible without departing from the spirit or scope of the invention described. M10C (250 µm lumens) comparison of 'mega' and standard backwashes BACKWASH TYPE STANDARD MEGA Module Type PP M10C (20,000 fibres) PP M10C (20,000 fibres) Feed Type River water River water Feed Turbidity (NTU) 8 7 Feed Temperature (°C) 9.3 9.3 TMP (kPa) 103 92 TMP Range (kPa) 82 to 108 86 to 91 Instantaneous Flow* (L/hr/module) 2084 2223 Instantaneous Flow* (L/hr/module) at 20°C 2855 3045
*Instantaneous flow is the average of instantaneous flowrates measured.


Anspruch[de]
  1. Verfahren zum Rückwaschen einer Mehrzahl von Hohlfasern mit mikroporösen Wandungen, die einem Filtrationsbetrieb ausgesetzt worden sind, bei dem eine Verunreinigungsmaterie enthaltende flüssige Beschickung auf die Außenfläche der Hohlfasern aufgebracht und Filtrat von den Enden der Hohlräume der Fasern abgezogen wird und die Fasern in einer Hülle oder einem Gehäuse enthalten sind, bei dem man
    • (a) den Filtrationsbetrieb durch Einstellung der Zuführung der Beschickung zu der Außenseite der Fasern beendet,
    • (b) die Hülle oder das Gehäuse dicht verschließt und Filtrat aus den Hohlräumen im wesentlichen entfernt,
    • (c) eine Druckmittelquelle an die Hohlräume anschließt, um vor oder gleichzeitig mit der Öffnung der Hülle oder des Gehäuses zur Atmosphäre einen negativen Transmembrandruck zu erzeugen und eine Sprengentspannung durch die Wandungen der Fasern zu veranlassen, wodurch das genannte Druckmittel die Wandungen passiert, wobei der Zeitablauf zwischen dem Beginn eines Anstiegs des negativen Transmembrandrucks (TMP) und dem Erreichen eines der Sprengentspannung entsprechenden Maximalwerts dieses negativen Transmembrandrucks (TMP) in dem Bereich von etwa 0,05 Sekunden bis etwa 5 Sekunden liegt,
    • (d) die Druckhöhe in den Hohlräumen im Anschluß an die genannte Entspannung eine ausreichende Zeit auf einem vorbestimmten Wert hält, um die Entfernung wesentlicher Teile der in und/oder auf den Faserwandungen befindlichen Verunreinigungsmaterie zu veranlassen, und
    • (e) den Filtrationsbetrieb durch Zuführung der Beschickung zu der genannten Außenfläche der Fasern auf der Hüllenseite des Filters wieder beginnt, während der Strömungsmitteldruck noch an den genannten Hohlräumen anliegt, wobei der Beschickungsstrom dazu dient, abgetrennte Verunreinigungsmaterie durch den Flüssigkeitsstrom über die Außenfläche der genannten Faserwandungen wegzuwaschen und die Fasern wieder zu benetzen, wobei der Zeitraum, in dem die Beschickung der Außenseite der Fasern zugeführt wird, während der Strömungsmitteldruck noch an den Hohlräumen anliegt, zwischen etwa 1 und etwa 30 Sekunden beträgt.
  2. Verfahren nach Anspruch 1, bei dem der Strömungsmitteldruck der Stufe (c) den Druck auf der Hüllenseite um etwa 10 kPa bis etwa 800 kPa übersteigt.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem der an die Hohlräume angelegte Druck vor der genannten Sprengentspannung zwischen etwa 100 kPa und etwa 1200 kPa liegt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man das Filtrat während der Stufe (b) aus den genannten Hohlräumen ablaufen läßt.
  5. Verfahren nach einem der Ansprüche 1 bis 3, bei dem an die genannten Hohlräume zur Entfernung von zurückbleibendem Filtrat ein Strömungsmitteldruck angelegt wird, der in dem Bereich von etwa 10 kPa bis etwa 600 kPa liegt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Stufen des Verfahrens unter Benutzung wiederholter Zyklen der Feststoffzurückhaltung und -rückwäsche als kontinuierliches Verfahren durchgeführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Stufe (c) des Anschließens einer Druckmittelquelle an die Hohlräume vor oder zugleich mit der Öffnung der Hülle zur Atmosphäre ein Pulsieren des Strömungsmitteldrucks umfaßt.
  8. Verfahren nach Anspruch 7, bei dem die Druckimpulse eine Dauer zwischen etwa 0,1 Sekunden und 5 Sekunden haben.
  9. Verfahren nach Anspruch 7 oder Anspruch 8, bei dem die Pulsierung der Druckanlage dadurch erfolgt, daß man die Hülle in vorbestimmten Intervallen öffnet und schließt, um einen Druckaufbau in den Hohlräumen zu ermöglichen.
Anspruch[en]
  1. A method of backwashing a plurality of hollow fibres having microporous walls which have been subjected to a filtration operation wherein a liquid feed containing contaminant matter is applied to the exterior surface of said hollow fibres and filtrate is withdrawn from the ends of the lumens of the fibres, the fibres being contained within a shell or housing, said method comprising:
    • (a) terminating the filtration operation by ceasing supply of feed to the exterior surface of said fibres;
    • (b) sealing the shell or housing and substantially removing filtrate from said lumens;
    • (c) applying a source of fluid under pressure to said lumens so as to produce a negative transmembrane pressure before or at the same time as opening the shell or housing to atmosphere, and to cause explosive decompression through the walls of the fibres whereby said fluid under pressure passes through said walls, the time lapse between the start of an increase in negative transmembrane pressure (TMP) and such negative transmembrane pressure (TMP) reaching a maximum value corresponding to the explosive decompression, is in the range of from about 0.05 seconds to about 5 seconds;
    • (d) maintaining the pressure level in said lumens at a predetermined value for a sufficient time following said decompression to cause substantial portions of contaminant matter lodged within and/or on said fibre walls to be dislodged; and
    • (e) recommencing the filtration operation by introducing said supply of feed to said exterior surface of said fibres on the shell side of the filter while fluid pressure is still being applied to said lumens, the flow of feed serving to wash dislodged contaminant matter away by the flow of liquid over said external surface of said fibre walls and to rewet said fibres, the period during which feed is supplied to said exterior of said fibres while fluid pressure is still being applied to said lumens being between about 1 to about 30 seconds.
  2. A method according to claim 1, wherein said fluid pressure of step (c) exceeds shell side pressure by about 10 kPa to about 800 kPa.
  3. A method according to claim 1 or claim 2, wherein the pressure applied to the lumens prior to said explosive decompression is between about 100 kPa to about 1200 kPa.
  4. A method according to any one of the preceding claims, wherein during step (b) the filtrate is allowed to drain out of said lumens.
  5. A method according to any one of claims 1 to 3, wherein fluid pressure is applied to said lumens to remove remaining filtrate, said fluid pressure being in the range from about 10 kPa to about 600 kPa.
  6. A method according to any one of the preceding claims, wherein the steps of the method are carried out as a continuous process utilising repetitive cycles of solids retention and backwash.
  7. A method according to any one of the preceding claims, wherein the step (c) of applying a source of fluid pressure to said lumens before or at the same time as opening the shell to atmosphere includes pulsing the fluid pressure.
  8. A method according to claim 7, wherein the pulses of pressure are between about 0.1 seconds and about 5 seconds in duration.
  9. A method according to claim 7 or claim 8, wherein pulsing the application of pressure is effected by opening and sealing the shell at predetermined intervals to allow pressure to build up within said lumens.
Anspruch[fr]
  1. Procédé de lavage à contre-courant d'une pluralité de fibres creuses ayant des parois microporeuses qui ont été soumises à une opération de filtration dans laquelle un liquide de départ contenant une matière contaminante est appliqué sur la surface extérieure desdites fibres creuses et le filtrat est retiré des extrémités des lumières des fibres, les fibres étant contenues à l'intérieur d'une coque ou d'un logement, ledit procédé comprenant les étapes consistant à :
    • (a) terminer l'opération de filtration en arrêtant l'alimentation de produit de départ au niveau de la surface extérieure desdites fibres ;
    • (b) fermer la coque ou le logement et supprimer sensiblement le filtrat desdites lumières ;
    • (c) appliquer une source de fluide sous pression au niveau desdites lumières de manière à produire une pression transmembranaire négative avant ou au moment de l'ouverture de la coque ou du logement à l'air libre, et à entraîner une décompression explosive à travers les parois des fibres, moyennant quoi ledit fluide sous pression passe à travers lesdites parois, le laps de temps entre le début d'une augmentation de la pression transmembranaire négative (PTM) et le moment où une telle pression transmembranaire négative (PTM) atteint une valeur maximale correspondant à la décompression explosive, est compris dans la plage allant d'environ 0,05 seconde à environ 5 secondes ;
    • (d) maintenir le niveau de pression dans lesdites lumières à une valeur prédéterminée pendant une durée suffisante suivant ladite décompression pour permettre à une partie importante de matière contaminante logée à l'intérieur et/ou sur lesdites parois des fibres d'être délogée ; et
    • (e) recommencer l'opération de filtration en introduisant ladite alimentation de produit de départ au niveau de ladite surface extérieure desdites fibres sur le côté de la coque du filtre tandis que la pression du fluide est toujours appliquée au niveau desdites lumières, l'écoulement du produit de départ servant à laver la matière contaminante délogée au moyen de l'écoulement du liquide sur ladite surface extérieure desdites parois des fibres et à mouiller de nouveau lesdites fibres, la durée pendant laquelle le produit de départ est fourni au niveau de ladite surface extérieure desdites fibres alors que la pression du fluide est toujours appliquée au niveau desdites lumières étant comprise entre environ 1 et environ 30 secondes.
  2. Procédé selon la revendication 1, dans lequel ladite pression du fluide de l'étape (c) est supérieure à la pression du côté de la coque d'environ 10 pKa à environ 800 pKa.
  3. Procédé selon la revendication 1 ou la revendication 2, dans lequel la pression appliquée au niveau des lumières avant ladite décompression explosive est comprise entre environ 100 kPa et environ 1200 kPa.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel au cours de l'étape (b) le filtrat peut s'écouler desdites lumières.
  5. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la pression du fluide est appliquée au niveau desdites lumières pour supprimer le filtrat restant, ladite pression du fluide étant comprise dans la plage allant d'environ 10 kPa à environ 600 pKa.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel les étapes du procédé sont réalisées en tant que processus continu utilisant des cycles répétitifs de rétention et de lavage à contre-courant des matières solides.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape (c) consistant à appliquer une source de pression du fluide au niveau desdites lumières avant ou au moment de l'ouverture de la coque à l'air libre comprend la mise en place d'impulsions au niveau de la pression du fluide.
  8. Procédé selon la revendication 7, dans lequel les impulsions de la pression sont comprises entre environ 0,1 seconde et environ 5 secondes dans le temps.
  9. Procédé selon la revendication 7 ou la revendication 8, dans lequel la mise en place d'impulsions au niveau de l'application de la pression est effectuée en ouvrant et en fermant la coque à intervalles prédéterminés pour permettre la création de pression à l'intérieur desdites lumières.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com