Warning: fopen(111data/log202008051404.log): failed to open stream: No space left on device in /home/pde321/public_html/header.php on line 107

Warning: flock() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 108

Warning: fclose() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 113
AUFHÄNGUNGSSYSTEM MIT LAMINATLENKER - Dokument EP0897339
 
PatentDe  


Dokumentenidentifikation EP0897339 08.04.2004
EP-Veröffentlichungsnummer 0000897339
Titel AUFHÄNGUNGSSYSTEM MIT LAMINATLENKER
Anmelder Suspensions Inc., Canal Fulton, Ohio, US
Erfinder VANDENBERG, K., Ervin, Massillon, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69727925
Vertragsstaaten DE, ES, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 08.05.1997
EP-Aktenzeichen 979264348
WO-Anmeldetag 08.05.1997
PCT-Aktenzeichen PCT/US97/07875
WO-Veröffentlichungsnummer 0009742046
WO-Veröffentlichungsdatum 13.11.1997
EP-Offenlegungsdatum 24.02.1999
EP date of grant 03.03.2004
Veröffentlichungstag im Patentblatt 08.04.2004
IPC-Hauptklasse B60G 11/26

Beschreibung[en]
BACKGROUND OF THE INVENTION Technical Field

The invention relates generally to an improved vehicle suspension system. More particularly, the invention relates to a beam type suspension system which provides a pair of beams which are both lightweight and simple to manufacture. Specifically, the invention relates to a suspension system having a laminate beam extending around the axle, and intermediate the axle and the hanger bracket.

Background Information

The trucking industry has witnessed a dramatic increase in the cost associated with transporting goods. Additionally, weight restrictions on over-the-road trucks have become increasingly stringent. These changes in the trucking industry pointed to a need for suspension systems that are lightweight and which safely support increasingly larger loads.

Suspension systems may take a variety of forms, including parallelogram suspensions, and leading and trailing beam type suspensions. Generally, leading and trailing beam type suspensions include a pair of longitudinally extending beams which may either be flexible or rigid, one of which is located adjacent each of two longitudinally extending frame rails located beneath the body of the truck or trailer. These beams are pivotally connected at one end to a hanger bracket extending downwardly from the frame, with an axle extending between the beams adjacent the other end. Additionally, an air or coil spring is generally positioned intermediate each frame rail and a corresponding beam. The beam may extend forwardly or rearwardly of the pivot, thus defining a leading or trailing beam respectively. Beam type suspension systems are used on a significant number of trucks and trailers, and must have sufficient strength to resist lateral and axial deflection while remaining stable. Lateral forces act on a suspension system in a variety of ways with the most common being that lateral forces act on a suspension as a vehicle negotiates a turn. As the vehicle turns, sheer stress acts between the tire and the road surface causing lateral force to be transferred through the tire wheel assembly to the axle. The axle, being rigidly attached to the suspension, transfers the lateral force into the beam causing it to deflect laterally. This lateral deflection can be extreme, and under certain loading conditions, can cause the tires to contact the vehicle frame rails.

Alternatively, parallelogram suspensions have been developed to solve a number of the problems associated with trailing beam type suspensions. However, parallelogram suspensions are not inherently roll rigid, and do not inherently provide lateral stiffness. Nonetheless, they continue to gain in popularity as parallelogram stabilized suspensions permit the air spring's full capacity to be utilized as the top and bottom air spring plate remain substantially parallel throughout axial lift operations. Specifically, when the air spring is mounted on a moving link of the parallelogram, it allows the utilization of the air spring's full lift capacity, compared to the typical trailing arm design where the air spring travels in an arc or "fans" open, stretching the rearmost internal reinforcing fibers of the spring, while not fully utilizing the forward part of the air spring.

Roll stability refers to the counteracting forces operating on the end of an axle causing one end of the axle to raise relative to the frame a distance greater than the other end of the axle. Roll instability is encountered when the vehicle frame tilts or rolls excessively relative to the axle; for example, when the vehicle negotiates a turn such that the centrifugal and acceleration forces reduce the downward forces acting on the inside wheel of the turn, and increase the downward force acting on the outside wheel of the turn to the point of loss of vehicle control or tip over. Some roll flexibility is needed to allow the axle to move relative to the frame; for example, during diagonal axle walk.

Diagonal axle walk occurs when the wheels at the opposite ends of the axle encounter unlike irregularities in a road or off-the-road surface, such as when one wheel rides over a curb. As the wheel rides over the curb, an upward force acts on that wheel, and a counteracting downward force acts on the wheel not riding over the curb. If the suspension is unable to provide flexibility between the axle and the frame as the tire-wheel assembly travels over the curb or ground irregularity, or alternatively to provide flexibility between the axle and the frame as the vehicle negotiates a turn, the suspension will be roll rigid, and may over-stress vehicle components.

Roll rigid suspensions are used to stabilize high center of gravity vehicles such as highway trailers. In these application, only enough roll compliance is permitted to allow the axle suspension to negotiate uneven terrain without unduly stressing the vehicle frame or axle. Typically, the roll angles of the axle frame are limited to 2 to 3 degrees in roll rigid suspensions. That is, if all the load were transferred to the tire or tires on one side of the vehicle and the tire or tires on the other side of the vehicle are completely off the ground, the angle of the axle relative to the frame reaches only about 2 to 3 degrees for a typical roll rigid suspension.

Conversely, roll flexible suspensions are used on low height vehicles and multi-axle vehicles which are stabilized with other suspensions. In these situations, the flexible suspensions operate to merely increase the load carrying capacity of the truck. In these application, tractive effort is paramount as a flexible suspension allows the tires to remain in contact with the ground. The tires must remain in contact to assure that the increased carrying capacity of the vehicle is evenly transmitted through the frame to the ground without inducing undue stress to the vehicle frame structure. Regardless of whether a roll rigid or roll flexible suspension is utilized, the suspension must be roll stable and provide the proper roll and lateral control needed to assure that the total vehicle is stable.

Traditionally, truck and trailer suspensions employ a resilient axle to beam connection, or alternatively the suspension includes a flexible, or spring beam in order to successfully take up vertical forces experienced during the vehicle operation. Alternatively, U.S. Patent No. 4,166,640 provides a tri-functional resilient pivotal connection between the beam and the hanger bracket to provide a greater degree of deflection in response to centrifugal and acceleration forces and a lesser degree of radial deflection in response to forces acting along the axial length of the beam. The '640 reference thus provides a rigid beam in connection with a rigid axle to beam connection with the resilient bushing attaching the beam to the frame responding to vertical forces acting on the axle to create a roll stable suspension.

As bushings, and consequently mounting plates and mounting pins are not required for rigid axle to beam connections, suspension systems with rigid axle to beam connections may be manufactured substantially lighter than suspension systems requiring resilient axle to beam connections. Additionally, rigid beams are less expensive to manufacture than spring beams and thus rigid beam suspensions are less expensive than spring beam suspensions. A suspension that incorporates both of these characteristics is thus both lightweight and inexpensive.

U.S. Patent No. 5,037,126 employs the basic concept of a tri-functional bushing shown in the '640 patent, and provides a rigid axle to beam connection.

Patent No. 5,366,237 discloses a rigid axle to beam connection in combination with a rigid beam and tri-functional bushing. The '237 reference was developed in order to prevent the axle from stressing to an out-of-round cross-sectional configuration as a result of vertical forces imparted to the axle through centrifugal and acceleration forces as well as through diagonal axle walk. While the '237 reference is presumably adequate for the purpose for which it was intended in that it provides a rigid axle to beam connection, the weight of the suspension may still be reduced, and the axle to beam connection disclosed therein is somewhat difficult to assemble. Specifically, the axle must be slid into the orifice formed in each of the beams, substantially increasing production time, and consequently production costs.

While the use of a tri-functional bushing is presumably adequate for the purpose for which it is intended in that it eliminates the need to use expensive spring steel associated with spring beam suspensions, as well as reduces the weight associated with resilient axle to beam connections, tri-functional bushings are relatively expensive to manufacture, and subject to cyclic failure.

FR-A-2 587 649 which shows the features of the preamble of claim 1, discloses a beam for use in a vehicle suspension system comprising laminated reinforcing material extending between opposite ends of the beam. However the reinforcing material does not circumferentially surround each of the beam ends.

WO-A-87/06540 discloses a vehicle suspension unit having reinforcing material extending between opposite ends of the unit and defining top and bottom walls of the latter. However the reinforcing material does not comprise laminated layers and does not circumferentially surround the unit ends.

An additional problem associated with suspension systems having rigid axle to beam connections is that the axle warranty is void if a weld is positioned within 3.8 cm (1.5 inches) of the vertical axis on either the top or the bottom of the axle. Welding in this area is forbidden by the axle manufacturer as these areas receive the largest compression and tension forces.

The need thus exists for a roll stable suspension system which eliminates the use of expensive spring steel as used in spring beam suspensions, provides a rigid axle to beam connection, and eliminates the use of tri-functional bushings. Additionally, the need exists for a suspension system which is lightweight, easy to assemble, simple to manufacture, and which permits the axle to move to an out-of round condition while simultaneously providing a rigid axle to beam connection. By providing a material having a low modulus of elasticity adjacent the rigid axle to beam connection such that as the axle flexes, the beam material adjacent the axle flexes, without fracture, to permit the axle to move in response to forces input thereto.

SUMMARY OF THE INVENTION

An aim of the invention is to provide a beam for use with a suspension system which is of simple construction, which is effective and inexpensive and which solves problems and satisfies needs existing in the art. It is also an aim of the invention to provide vehicle suspension systems with such beams.

According to one aspect of the present invention there is provided a beam for a suspension system and as claimed in the ensuing claim 1.

According to another aspect of the present invention there is provided a suspension system as claimed in the ensuing claim 8.

Suitably the vehicle suspension system has a rigid axle to beam connection and is roll stable, and resistant to lateral and longitudinal forces.

Convenienty the reinforcing material of the beams is manufactured of laminated material having a modulus of elasticity significantly lower than that of the axle of the suspension system, whereby the axle deforms in response to input forces with the beam material adjacent the axle deforming without fracture and remaining rigidly attached to the axle.

Suitably each beam of the vehicle suspension system is manufactured to remain resistant to lateral forces, while remaining sufficiently flexible to assure that the suspension remains roll stable. The flexibility of the laminate beams may be manufactured to fit the needs associated with a particular suspension system.

Conveniently each beam is adhesively attached to the axle.

Suitably an air spring piston is integrally formed with each laminated beam.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiments of the invention, illustrative of the best modes in which applicant has contemplated applying the principles, are set forth in the following description and are shown in the drawings and are particularly and distinctly pointed out and set forth in the appended claims.

  • FIG. 1 is a side elevational view of a pair of vehicle suspension systems with the tires and brake assemblies shown in dot-dash lines, and shown attached to a vehicle;
  • FIG. 2 is an enlarged side elevational view of one of the vehicle suspension systems shown in FIG. 1 with portions cut away;
  • FIG. 3 is a top plan view taken along line 3-3, FIG. 2, with portions cut away;
  • FIG. 4 is a side elevational view of a second embodiment of the present invention, with portions cut away;
  • FIG. 5 is a side elevational view of a third embodiment of the present invention with portions cut away;
  • FIG. 6 is an enlarged top view taken along line 6-6, FIG. 5 with portion cut away;
  • FIG. 7 is a sectional view taken along line 7-7, FIG. 6;
  • FIG. 8 is a sectional view similar to FIG. 7, with an alternative air spring piston;
  • FIG. 9 is a side elevational view of a fourth embodiment of the present invention, with the tires and brake assembly shown in dot-dash lines, and shown attached to a vehicle;
  • FIG. 10 is a perspective view of the beams and stabilizer bar of the suspension system shown in FIG. 9;
  • FIG. 11 is a perspective view of an alternative pair of beams and stabilizer bar similar to FIG. 10; and
  • FIG. 12 is a perspective view similar to FIG. 11, with a pair of laminate air spring pistons formed on the stabilizer bar.

Similar numerals refer to similar parts throughout the drawings.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The improved vehicle suspension system of the present invention is indicated generally at 1, and is particularly shown in FIG. 1 mounted on a vehicle 2, such as a truck or trailer. Vehicle 2 includes a cargo box 3 supported by a pair of frame rails 4 extending longitudinally beneath cargo box 3 and along the length of vehicle 2. Suspension system 1 includes a pair of hanger brackets 5 welded to a slider frame 6, which includes a pair of parallel and spaced-apart slide channels 7. Slide channels 7 are spaced apart a distance equal to the distance between frame rails 4 and are mounted to frame rails 4 with a plurality of locking pins 8. Referring to FIG. 1, a pair of identical suspension systems 1 are shown installed on vehicle 2, with only one being described in detail herein below.

Suspension system 1 includes a pair of spaced-apart trailing beams 15 (FIGS. 2-3). Inasmuch as trailing beams 15 are identical, only one will be described in detail. The first end 16 of each trailing beam 15 is mounted to a respective hanger bracket 5 at a pivot 17, and a second end 18 of each trailing beam 15 supports an axle 19. A tire-wheel assembly 21 is mounted to each end of axle 19. A mounting bracket 20 is mounted to second end 18 of trailing beam 15 with each mounting bracket 20 including a pair of lower flanges 22 and an air spring mounting plate 23. An air spring 24 is interposed between air spring mounting plate 23 and slider frame 6 for supporting vehicle 2 and vertical loads associated therewith.

Pivot 17 includes a bushing sleeve 30 (FIGS. 2 and 3). A bushing 31 is interference fitted within bushing sleeve 30 and an inner sleeve 32 is mounted within bushing 31. A pivot pin 14 passes through hanger bracket 5 and inner sleeve 32 to mount trailing beam 15 to hanger bracket 5.

In accordance with one of the main features of the present invention, trailing beams 15 are formed with a plurality of layers of laminate material 33. More specifically, a first layer of material is wrapped around bushing 30 and axle 19, with a predetermined distance extending between bushing 30 and axle 19. Successive layers of mounting material are then laid on the first layer of laminate material to retain bushing 30 and axle 19 against movement relative to laminate material 33. In the preferred embodiment, a plurality of layers of laminate material extend circumferentially around bushing sleeve 30 and axle 19. The first layer of laminate material 33 is adhesively secured to bushing sleeve 30 and axle 19 to retain the axle against movement.

The plurality of layers of laminate material 33 not only extend around both axle 19 and bushing sleeve 30, laminate material 33 also forms top wall 34 and bottom wall 35 of each trailing beam 15. Additionally, a number of layers of laminate material 33 extend intermediate top wall 34 and bottom wall 35 to form side walls 36.

The adhesive material used to secure laminate material 33 to axle 19 and bushing sleeve 30 should be an adhesive material having a modulus of elasticity in the range of from 2.76 GPa to 3.45 GPa (0.4 x 106 to 0.5 x 106 pounds-force per square inch). Similarly, the plurality of layers of laminate material 33 should be manufactured of a material having a modulus of elasticity in the range of from 20.68 GPa to 103.42 GPa (3.0 x 106 to 15 x 106 pounds-force per square inch), such as fiberglass mesh material. However, the plurality of layers of laminate material 33 may also take a variety of other configurations without departing from the spirit of the present invention.

While trailing beams 15 may take a variety of sizes and configurations, in the preferred embodiment, they are tapered outwardly from first end 16 toward second end 18 to limit the lateral deflection of suspension system 1, and to increase deflection resistance as a result of torque forces imparted to axle 19. Additionally, inasmuch as the adhesive and laminate material 33 have a modulus of elasticity in the range of from 2.76 GPa to 103.42 GPa (0.4 x 106 to 15 x 106 pounds-force per square inch), and the axle has a modulus of elasticity in the range of from 193.05 GPa to 206.84 GPa (28 x 106 to 30 x 106 pounds force per square inch), the axle will be permitted to move to an out-of-round condition, and deflect relative to trailing beams 15 without causing the beam to fracture as the material will permit the beam to remain firmly attached to the axle as the axle responds to forces received from tire-wheel assemblies 21. As should also be appreciated from a review of FIGS. 1-3, the thickness of trailing beam 15 adjacent axle 19 may be increased to increase the beam's resistance to lateral deflection. Additionally, inasmuch as laminate 33 is adhesively attached to axle 19 over a large surface area, the force felt by the adhesive layer per unit surface area is relatively small when compared to the overall force received by the axle from tire-wheel assemblies 21. More particularly, forces received by axle 19 from tire-wheel assemblies 21 are in the range of from 206.8 - 482.6 MPa (30,000-70,000 pounds-force per square inch). However, inasmuch as trailing beams 15 are adhesively secured to axle 19 over a large surface area, the force per square inch felt by the adhesive is in the range of only from 10.3 - 13.8 MPa (1,500-2,000 pounds-force per square inch). The strength of the axle-to-beam connection may be further increased by merely increasing the surface area over which beams 15 are attached to axle 19.

In operation, beams 15 flex similar to conventional spring beam suspension systems to assure that suspension system 1 is roll stable, permitting sufficient flexure along the length of laminate beams 15 to compensate for centrifugal and acceleration forces experienced during turn negotiation, and vertical forces experienced during diagonal axle walk. Additionally, inasmuch as fiberglass material is extremely resistant to longitudinal forces, laminate beams 15 are extremely resistant to longitudinal forces experienced along the length of trailing beams 15. Additionally, suspension system 1 is lightweight as a result of the rigid axle-to-beam connection, whereby axle 19 is adhesively secured within laminate beams 15, and, additionally, as a result of the use of lightweight fiberglass material to manufacture beams 15. Suspension system 1 is also easy to assemble as trailing beams 15 are assembled around axle 19 and do not require the manufacturer to subsequently attach the axle to each trailing beam 15. As is also apparent from a review of FIGS. 1-3, the thickness and configuration of top wall 34, bottom wall 35 and side walls 36 may be varied to tailor the resulting spring rate to the requirements of a particular vehicle 2. More particularly, if additional layers of laminate material 3 are added to top wall 34, bottom wall 35 and side walls 36, the flex rate of beams 15 will substantially increase, thereby creating a roll rigid suspension. Alternatively, if top wall 34, bottom wall 35 and side walls 36 are manufactured with fewer layers of laminate 33, suspension system 1 will remain more flexible, and, thus, will be less roll rigid.

In accordance with a second embodiment of the present invention, a suspension system is indicated generally at 40, and is shown particularly in FIG. 4. Suspension system 40 is identical to suspension system 1 in every respect, except that it includes a plurality of laminate layers 41 which cross diagonally between bushing sleeve 30 and axle 19. More specifically, one layer of material 42 extends from adjacent the top of bushing sleeve 30 to the bottom of axle 19, while a number of other layers 43 extend adjacent from the bottom of bushing sleeve 30 to adjacent the top of axle 19. Layers 42 and 43 may also be increased and decreased in thickness to create a more roll rigid or less roll rigid suspension system and to meet the requirements of a particular vehicle 2.

A third embodiment of the present invention is indicated generally at 45, and is shown particularly in FIGS. 5-8. Suspension system 45 is similar to suspension systems 1 and 40 in that it includes a pair of trailing beams 47 adhesively attached to a bushing sleeve 30 and an axle 19 and is formed with a top wall 34 and a bottom wall 35. However, each trailing beam 47 is provided with a cardboard or plastic insert 46 (FIG. 7) positioned intermediate axle 19, bushing sleeve 30, top wall 34 and bottom wall 35. Insert 46 may take a variety of sizes and configuration, but is preferably complimentary-sized to the space defined longitudinally between axle 19 and bushing sleeve 30, and vertically between top wall 34 and bottom wall 35. Insert 46 operates merely to offer rigidity to trailing beams 47 when they are manufactured.

Top wall 34 of trailing beam 47 is integrally formed with an air spring piston 48. Specifically, an insert 49 is positioned on top wall 34 and multiple layers of laminate material 33 are positioned around insert 49 and trailing beam 47 to provide a trailing beam 47 with an integrally formed air spring piston 48. Air spring 50 may then be secured directly to air spring piston 48, substantially reducing the weight and cost associated with air spring utilization and construction. Alternatively, and referring specifically to FIG. 8, air spring 48 may be formed from a plurality of parallel layers of laminate material 52, which layers are then enveloped by a plurality of layers of laminate material 33.

The fourth embodiment of the present invention is indicated generally at 60, and is shown particularly in FIGS. 9-10 mounted on a vehicle 2, similar to vehicle suspension system 1. A pair of hanger brackets 61 extend downwardly from slide channel 7 of slide frame 6. Suspension system 60 includes a pair of parallel and spaced-apart control arms 62 pivotally mounted to respective hanger brackets 61 at a corresponding pivot 63, as well a pair of torque arms 64 with one end of each torque arm 64 mounted to a hanger bracket 61 at a pivot 65. The other end of each torque arm 64 is mounted to an axle leg 66. Hanger bracket 61, control arm 62, torque arm 64 and axle leg 66 thus combine to form a parallelogram suspension system.

In accordance with one of the main features of the fourth embodiment of the present invention, and referring specifically to FIG. 10, control arms 62 are each formed with a pivot assembly 67 on either end thereof and are formed around a stabilizer bar 68. Control arms 62 are formed substantially identical to the formation of trailing beams 15 of suspension system 1. A plurality of layers of laminate material 33 are positioned circumferentially around each pivot assembly 67 and stabilizer bar 68. Additional layers of laminate material 33 are then positioned around stabilizer bar 68, and pivot assembly 67, such that pivot assembly 67 and stabilizer bar 68 are positioned apart a predetermined distance. Again, inasmuch as the adhesive layer used to secure laminate material 33 to stabilizer bar 68 has a relatively high modulus of elasticity, the adhesive will flex in response to movement of stabilizer bar 68 without fracturing, thereby assuring that stabilizer bar 68 remains securely and adhesively attached to each control arm 62. Additionally, as is also apparent from a review of FIGS. 9 and 10, the number of layers of laminate material 33 positioned around stabilizer bar 68 may be varied to increase the flexibility of control arm 62 relative to stabilizer bar 68.

A fifth embodiment of the present invention is indicated generally at 70, and is shown particularly in FIG. 11. The fifth embodiment of the present invention is similar to the fourth embodiment of the present invention and includes a pair of control arms 71, and a stabilizer bar 72. However, in the fifth embodiment of the present invention, control arm 71 and stabilizer bar 72 are integrally formed from layers of laminate material 33 such that the joint area 73 between each control arm 71 and stabilizer bar 72 is formed with a circumferentially extending radius 74 to assure that the transition of force from control arm 71 to stabilizer bar 72 is smooth, and not subject to point load failure.

Referring to FIG. 12, suspension system 70 is shown with a plurality of air spring pistons 75 integrally formed with stabilizer bar 72. Air spring pistons 75 operate substantially identical to air spring pistons 48 of the third embodiment of the present invention, further reducing the weight and cost associated with the utilization and manufacture of air springs in suspension systems.

Additionally with respect to suspension systems 1, 40, 45, 60 and 70, the trailing beams manufactured of laminate material may be manufactured to provide a longitudinal rate of deflection, a vertical rate of deflection and a lateral rate of deflection. In the majority of circumstances, each beam will be manufactured in such a manner that the longitudinal rate of defection and the vertical rate of deflection are significantly smaller than the vertical rate of deflection in order to assure that suspension system 1 is roll stable and that the associated cross member remains substantially perpendicular to the direction of travel of vehicle 2.

In summary, suspension systems 1, 40, 45, 60 and 70 provide a rigid axle-beam connection which is easy to assemble and which is lightweight by providing a rigid connection between the axle or cross-member and the beams, and by providing a flexible beam manufactured of a plurality of layers of laminate material 33. Additionally, a beam may be manufactured to increase its resistance to lateral deflection by increasing the width of the beam adjacent the axle. Additionally, by increasing beam width adjacent the axle or cross member, a large surface area is utilized to adhesively attach the beam to the cross-member. Such large surface area assures that the force-per-unit area on the adhesive is relatively small when compared to the force experienced by the axle or cross-member and beam. Still further, inasmuch as the beam is manufactured of laminate material, it is extremely lightweight, and will include a flex rate tailored to meet the specifications of a particular vehicle. The weight of the suspension system of a number of the embodiments of the present invention are further reduced by providing air spring pistons integrally formed with the beams and cross members.

Accordingly, the improved suspension system is simplified, provides an effective, safe, inexpensive, and efficient device which achieves all the enumerated objectives, provides for eliminating difficulties encountered with prior devices, and solves problems and obtains new results in the art.

In the foregoing description, certain terms have been used for brevity, clearness and understanding; but no unnecessary limitations are to be implied therefrom beyond the requirement of the prior art, because such terms are used for descriptive purposes and are intended to be broadly construed.

Moreover, the description and illustration of the invention is by way of example, and the scope of the invention is not limited to the exact details shown or described.

Having now described the features, discoveries and principles of the invention, the manner in which the improved suspension system is constructed and used, the characteristics of the construction, and the advantageous, new and useful results obtained; the new and useful structures, devices, elements, arrangements, parts and combinations, are set forth in the appended claims.


Anspruch[de]
  1. Lenker (15) zur Verwendung in einem Aufhängungssystem mit einem Rahmen (6), bei dem der Lenker folgendes umfaßt:
    • ein erstes Ende (16) und ein zweites Ende (18); und
    • eine obere Wand (34) und eine untere Wand (35), die sich zwischen dem ersten und dem zweiten Ende (16 und 18) erstrecken und jeweils aus Verstärkungsmaterial (33) bestehen, wobei sich das Verstärkungsmaterial um das erste und das zweite Ende herum erstreckt und mehrere Schichten umfaßt;
       dadurch gekennzeichnet, daß sich mindestens eine der Verstärkungsschichten vollständig am Umfang um das erste Ende (16) und das zweite Ende (18) herum erstreckt.
  2. Lenker nach Anspruch 1, bei dem die obere Wand (34) und die untere Wand (35) von einer an das erste Ende (16) angrenzenden Stelle aus zu einer an das zweite Ende (18) angrenzenden Stelle hin nach außen konisch so zulaufen, daß der Lenker an der an sein erstes Ende angrenzenden Stelle enger als an der an sein zweites Ende angrenzenden Stelle verläuft.
  3. Lenker nach Anspruch 1 oder 2, bei dem der Lenker eine Längsauslenkungsrate und eine Vertikalauslenkungs-rate aufweist, wobei sich die Längsauslenkungsrate von der Vertikalauslenkungsrate unterscheidet.
  4. Lenker nach Anspruch 3, bei dem der Lenker eine Seitenauslenkungsrate aufweist, wobei die Seitenauslenkungsrate von der Vertikalauslenkungsrate abweicht.
  5. Lenker nach Anspruch 4, bei dem die Längsauslenkungsrate und die Seitenauslenkungsrate höher als die Vertikalauslenkungsrate sind.
  6. Lenker nach einem der vorstehend aufgeführten Ansprüche, dadurch gekennzeichnet, daß der Lenker ein hohles Zentrum besitzt und das Verstärkungsmaterial mehrere Laminatschichten (42, 43) umfaßt, die sich von der oberen Wand (34) zur unteren Wand (35) hin diagonal über das hohle Zentrum des Lenkers erstrecken.
  7. Lenker nach einem der vorstehend aufgeführten Ansprüche, bei dem ein Luftfederkolben (48) integral in der oberen Wand (34) des Lenkers ausgebildet ist.
  8. Aufhängungssystem zur Verwendung in einem Fahrzeug mit einem Rahmen, bei dem das Aufhängungssystem folgendes umfaßt:
    • ein Paar beabstandete Lenker (15), wie jeweils in einem der Ansprüche 1 bis 6 beansprucht;
    • einen Querträger (19), der sich zwischen den beabstandeten Lenkern (15) erstreckt;
    • ein am ersten Ende (16) eines jeden Lenkers (15) befestigtes Schwenkmittel (17), um jeden Lenker schwenkbar am Rahmen (6) zu montieren; und
    • ein sich zwischen dem Querträger (19) und dem Rahmen (6) oder den Lenkern (15) und dem Rahmen (6) erstreckendes Federmittel (24), um in die Aufhängung einwirkende vertikale Belastungen abzustützen.
  9. Aufhängungssystem nach Anspruch 8, bei dem sich das Verstärkungsmaterial eines jeden Lenkers am Umfang um den Querträger (19) herum erstreckt, und bei dem ein Haftmittel jeden Lenker am Querträger befestigt, um den Querträger (19) gegenüber einer Bewegung im Verhältnis zum Lenker (15) zurückzuhalten.
  10. Aufhängungssystem nach Anspruch 8 oder 9, bei dem der Querträger (19) angrenzend an die zweiten Enden (18) der Lenker (15) positioniert ist.
  11. Aufhängungssystem nach einem der Ansprüche 8 bis 10, bei dem der Querträger eine Achse (19) ist.
  12. Aufhängungssystem nach einem der Ansprüche 8 bis 11, bei dem der Querträger (19) zwischen dem ersten Ende und dem zweiten Ende (16 und 18) der Lenker positioniert ist.
  13. Aufhängungssystem nach einem der Ansprüche 8 bis 12, bei dem sich das Verstärkungsmaterial am Umfang um das Schwenkmittel (17) herum jeweils angrenzend an das erste Ende (16) erstreckt und haftend daran befestigt ist.
  14. Aufhängungssystem nach einem der Ansprüche 8 bis 13, bei dem das Schwenkmittel (17) eine äußere Buchse (30), eine innere Buchse (32), eine zwischen der inneren und der äußeren Buchse (32, 30) positionierte elastomere Hülse (31), einen sich durch die innere Buchse erstreckenden Schwenkstift (14), der so ausgeführt ist, daß er sich durch den Rahmen erstreckt, sowie ein Haftmittel umfaßt, um das Verstärkungsmaterial an der äußeren Buchse (30) zu sichern, um dadurch eine Bewegung der äußeren Buchse im Verhältnis zum Verstärkungsmaterial zu verhindern.
  15. Aufhängungssystem nach Anspruch 9 oder einem der Ansprüche 10 bis 14, soweit vom Anspruch 9 abhängig, bei dem der Elastizitätsmodul des Materials der Laminatschichten größer als der Elastizitätsmodul des Querträgers (19) ist, wodurch sichergestellt wird, daß der Querträger eine Auslenkung vornehmen kann und gleichzeitig eine starke Haftverbindung zwischen den Lenkern und dem Querträger aufrechterhalten wird.
  16. Aufhängungssystem nach einem der Ansprüche 8 bis 15, bei dem ein Hohlblock (46) zwischen dem Schwenkmittel (17) und dem Querträger (19) positioniert ist, um die obere Wand (34) und die untere Wand (35) abzustützen.
  17. Aufhängungssystem nach einem der Ansprüche 8 bis 16, bei dem jeder Lenker (15) wie in Anspruch 4 beansprucht beschaffen ist, und bei dem für jeden Lenker die Längsauslenkungsrate und die Seitenauslenkungsrate kleiner als die Vertikalauslenkungsrate sind.
  18. Aufhängungssystem nach einem der Ansprüche 8 bis 17, bei dem das Federmittel eine Luftfeder (50) ist, wobei jeder der Lenker oder der Querträger integral mit mindestens einem Luftfederkolben (48) ausgebildet ist.
  19. Aufhängungssystem nach Anspruch 18, bei dem der Luftfederkolben (48) aus mehreren Laminatschichten gebildet ist.
  20. Aufhängungssystem nach Anspruch 18 oder 19, bei dem ein Hohlblock (49) an der oberen Wand (34) eines jeden Lenkers positioniert ist, und bei dem sich die mehreren Laminatschichten, die den Luftfederkolben (48) bilden, über dem Hohlblock (49) erstrecken.
  21. Aufhängungssystem nach einem der Ansprüche 8 bis 20, bei dem das Verstärkungsmaterial Glasfaserepoxid umfaßt.
Anspruch[en]
  1. A beam (15) for use with a suspension system having a frame (6); said beam comprising:
    • a first end (16) and a second end (18); and
    • a top wall (34) and a bottom wall (35) extending between the first and second ends (16 and 18) and each being made of reinforcing material (33), the reinforcing material extending around the first and second ends and comprising a plurality of layers;
    characterised in that at least one of said reinforcing layers extends completely circumferentially around the first end (16) and the second end (18).
  2. A beam according to claim 1, in which the top wall (34) and the bottom wall (35) are tapered outwardly from adjacent the first end (16) to adjacent the second end (18) so that the beam is narrower adjacent its first end than adjacent its second end.
  3. A beam according to claim 1 or 2, having a longitudinal rate of deflection and a vertical rate of deflection, the longitudinal rate of deflection differing from the vertical rate of deflection.
  4. A beam according to claim 3, in which the beam has a lateral rate of deflection, and in which the lateral rate of deflection varies from the vertical rate of deflection.
  5. A beam according to claim 4, in which the longitudinal rate of deflection and the lateral rate of deflection are higher than the vertical rate of deflection.
  6. A beam according to any one of the preceding claims, characterised in that the beam has a hollow center and said reinforcing material comprises a plurality of laminated layers (42,43) extending diagonally across the hollow center of the beam from the top wall (34) to the bottom wall (35).
  7. A beam according to any one of the preceding claims, in which an air spring piston (48) is integrally formed in the top wall (34) of the beam.
  8. A suspension system for use with a vehicle having a frame, the suspension system comprising:
    • a pair of spaced apart beams (15) each as claimed in any one of claims 1 to 6;
    • a cross-member (19) extending intermediate the spaced apart beams (15);
    • pivot means (17) attached to the first end (16) of each beam (15) for pivotally mounting each beam to the frame (6); and
    • spring means (24) extending intermediate the cross-member (19) and the frame (6) or the beams (15) and the frame (6) for supporting vertical loads into the suspension.
  9. A suspension system according to claim 8, in which the reinforcing material of each beam extends circumferentially around the cross-member (19); and in which adhesive means attaches each beam to the cross-member for retaining the cross-member (19) against movement relative to the beam (15).
  10. A suspension system according to claim 8 or 9, in which the cross-member (19) is positioned adjacent the second ends (18) of the beams (15).
  11. A suspension system according to any one of claims 8 to 10, in which the cross-member is an axle (19).
  12. A suspension system according to any one of claims 8 to 11, in which the cross member (19) is positioned intermediate the first end and second ends (16 and 18) of the beams.
  13. A suspension system according to any one of claims 8 to 12, in which the reinforcing material extends circumferentially around the pivot means (17) adjacent each first end (16) and is adhesively attached thereto.
  14. A suspension system according to any one of claims 8 to 13, in which the pivot means (17) comprises an outer sleeve (30); an inner sleeve (32); an elastomeric bushing (31) positioned intermediate the inner and outer sleeves (32,30); a pivot pin (14) extending through the inner sleeve and adapted to extend through, the frame; and adhesive means for securing the reinforcing material to the outer sleeve (30) thereby preventing movement of the outer sleeve relative to the reinforcing material.
  15. A suspension system according to claim 9, or any one of claims 10 to 14 when dependent on claim 9, in which the modulus of elasticity of the material of the laminated layers is greater than the modulus of elasticity of the cross-member (19) thereby assuring that the cross-member can deflect while maintaining a strong adhesive bond between the beams and cross-member.
  16. A suspension system according to any one of claims 8 to 15, in which a hollow block (46) is positioned between the pivot means (17) and the cross-member (19) for supporting the top wall (34) and the bottom wall (35).
  17. A suspension system according to any one of claims 8 to 16, in which each beam (15) is as claimed in claim 4, and in which, for each beam, the longitudinal rate of deflection and the lateral rate of deflection are smaller then the vertical rate of deflection.
  18. A suspension system according to any one of claims 8 to 17, in which the spring means is an air spring (50) in which each one of the beams or the cross-member is integrally formed with at least one air spring piston (48).
  19. A suspension system according to claim 18, in which the air spring piston (48) is formed from a plurality of laminated layers.
  20. A suspension system according to claim 18 or 19, in which a hollow block (49) is positioned on the top wall (34) of each beam, and in which the plurality of laminated layers forming the air spring piston (48) extend over the hollow block (49).
  21. A suspension system according to any one of claims 8 to 20, in which the reinforcing material comprises fiberglass epoxy.
Anspruch[fr]
  1. Poutre (15) destinée à l'utilisation avec un système de suspension comportant une caisse (6) ; ladite poutre comprenant :
    • une première extrémité (16) et une deuxième extrémité (18) ; et
    • une paroi supérieure (34) et une paroi inférieure (35) s'étendant entre la première et la deuxième extrémités (16 et 18) et étant chacune fabriquée en matériau renforcé (33), le matériau renforcé s'étendant autour de la première et de la deuxième extrémités et comprenant une pluralité de couches ;
    caractérisée en ce qu'au moins une desdites couches renforcée s'étend complètement sur toute la circonférence autour de la première extrémité (16) et de la deuxième extrémité (18).
  2. Poutre selon la revendication 1, dans laquelle la paroi supérieure (34) et la paroi inférieure (35) vont en se réduisant vers l'extérieur, d'un point adjacent à la première extrémité (16) jusqu'à un point adjacent à la deuxième extrémité (18), de telle manière que la poutre est plus étroite au point adjacent à sa première extrémité qu'au point adjacent à sa deuxième extrémité.
  3. Poutre selon la revendication 1 ou 2, ayant un taux de flexion longitudinal et un taux de flexion vertical, le taux de flexion longitudinal étant différent du taux de flexion vertical.
  4. Poutre selon la revendication 3, dans laquelle la poutre a un taux de flexion latéral, et dans laquelle le taux de flexion latéral varie par rapport au taux de flexion vertical.
  5. Poutre selon la revendication 4, dans laquelle le taux de flexion longitudinal et le taux de flexion latéral sont supérieurs au taux de flexion vertical.
  6. Poutre selon l'une quelconque des revendications précédentes, caractérisée en ce que la poutre a un centre creux et ledit matériau renforcé comprend une pluralité de couches stratifiées (42, 43) s'étendant diagonalement à travers le centre creux de la poutre, de la paroi supérieure (34) à la paroi inférieure (35).
  7. Poutre selon l'une quelconque des revendications précédentes, dans laquelle un ressort pneumatique à piston (48) est formé intégralement dans la paroi supérieure (34) de la poutre.
  8. Système de suspension destiné à être utilisé avec un véhicule comportant une caisse, le système de suspension comprenant :
    • une paire de poutres séparées l'une de l'autre (15) chaque poutre étant selon l'une quelconque des revendications 1 à 6 ;
    • un élément transversal (19) s'étendant en position intermédiaire entre les poutres séparées (15) ;
    • un moyen de pivot (17) fixé à la première extrémité de chaque poutre (15) pour permettre le montage pivotant de chaque poutre sur la caisse (6) ; et
    • un moyen de ressort (24) s'étendant en position intermédiaire entre l'élément transversal (19) et la caisse (6) ou entre les poutres (15) et la caisse (6) pour supporter les charges verticales dans la suspension.
  9. Système de suspension selon la revendication 8, dans lequel le matériau renforcé de chaque poutre s'étend sur la circonférence autour de l'élément transversal (19) ; et dans lequel un moyen adhésif fixe chaque poutre à l'élément transversal pour retenir l'élément transversal (19) contre le mouvement par rapport à la poutre (15).
  10. Système de suspension selon la revendication 8 ou 9, dans lequel l'élément transversal (19) est agencé en position adjacente aux deuxièmes extrémités (18) des poutres (15).
  11. Système de suspension selon l'une quelconque des revendications 8 à 10, dans lequel l'élément transversal en question est un essieu (19).
  12. Système de suspension selon l'une quelconque des revendications 8 à 11, dans lequel l'élément transversal (19) est agencé en position intermédiaire entre la première extrémité et les deuxièmes extrémités (16 et 18) des poutres.
  13. Système de suspension selon l'une quelconque des revendications 8 à 12, dans lequel le matériau renforcé s'étend sur la circonférence autour du moyen de pivot (17) adjacent à chaque première extrémité (16) et est fixé de façon adhésive à celle-ci.
  14. Système de suspension selon l'une quelconque des revendications 8 à 13, dans lequel le moyen de pivot (17) comprend une douille extérieure (30) ; une douille intérieure (32) ; une bague élastomère (31) en position intermédiaire entre les douilles intérieure et extérieure (32, 30) ; un axe de pivot (14) s'étendant à travers la douille intérieure et adapté pour s'étendre à travers la caisse ; et un moyen adhésif pour fixer le matériau renforcé à la douille extérieure (30) empêchant de la sorte le mouvement de la douille extérieure par rapport au matériau renforcé.
  15. Système de suspension selon la revendication 9 ou selon l'une quelconque des revendications 10 à 14 quand elle est dépendante de la revendication 9, dans lequel le module d'élasticité du matériau des couches stratifiées est supérieur au module d'élasticité de l'élément transversal (19), assurant de la sorte que l'élément transversal peut fléchir tout en maintenant un lien adhésif puissant entre les poutres et l'élément transversal.
  16. Système de suspension selon l'une quelconque des revendications 8 à 15, dans lequel un bloc creux (46) est positionné entre le moyen de pivot (17) et l'élément transversal (19) pour supporter la paroi supérieure (34) et la paroi inférieure (35).
  17. Système de suspension selon l'une quelconque des revendications 8 à 16, dans lequel chaque poutre (15) est selon la revendication 4 et dans lequel, pour chaque poutre, le taux de flexion longitudinal et le taux de flexion latéral sont inférieurs au taux de flexion vertical.
  18. Système de suspension selon l'une quelconque des revendications 8 à 17, dans lequel le moyen de ressort est un ressort pneumatique (50), dans lequel chacun(e) des poutres ou de l'élément transversal est aménagé intégralement avec au moins un ressort pneumatique à piston (48).
  19. Système de suspension selon la revendication 18, dans lequel le ressort pneumatique à piston (48) est constitué d'une pluralité de couches stratifiées.
  20. Système de suspension selon la revendication 18 ou 19, dans lequel un bloc creux (49) est positionné sur la paroi supérieure (34) de chaque poutre, et dans lequel la pluralité de couches stratifiées formant le ressort pneumatique à piston (48) s'étend par-dessus le bloc creux (49).
  21. Système de suspension selon l'une quelconque des revendications 8 à 20, dans lequel le matériau renforcé est composé de résine époxyde et de fibre de verre.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com