PatentDe  


Dokumentenidentifikation EP0871582 03.06.2004
EP-Veröffentlichungsnummer 0000871582
Titel VORRICHTUNG UND VERFAHREN ZUM STEUERN DER BEWEGUNG EINES FLUIDEN MEDIUMS
Anmelder Ramot at Tel Aviv University Ltd., Tel Aviv, IL
Erfinder SEIFERT, Avi, 69499 Tel Aviv, IL;
WYGNANSKI, Israel, 69379 Tel Aviv, IL
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69632339
Vertragsstaaten CH, DE, ES, FR, GB, IT, LI, SE
Sprache des Dokument EN
EP-Anmeldetag 29.12.1996
EP-Aktenzeichen 969418029
WO-Anmeldetag 29.12.1996
PCT-Aktenzeichen PCT/IL96/00194
WO-Veröffentlichungsnummer 0097025623
WO-Veröffentlichungsdatum 17.07.1997
EP-Offenlegungsdatum 21.10.1998
EP date of grant 28.04.2004
Veröffentlichungstag im Patentblatt 03.06.2004
IPC-Hauptklasse B64B 1/36
IPC-Nebenklasse B64C 15/02   B63H 11/10   

Beschreibung[en]

The present invention relates to apparatus and also to a method for controlling the motion of a fluid medium. As will be described more particularly below, the apparatus and method of the invention may be used to generate forces and moments on the moving medium in order to alter trajectory. The invention may also be used to effect thrust control, e.g., to augment thrust, of a self-propelled solid body.

US Patent 4,257,224, a joint inventor in which is also a joint inventor in the present application discloses a method and apparatus for enhancing the mixing of two fluids by providing flow perturbations near the origin of the mixing region about an axis substantially normal to the prevailing flow direction. Examples of possible uses of the technique described in that patent include promoting combustion in jet engines, suppressing audible jet noise, and increasing output of ejector pumps.

US Patent 5,209,433, the inventor in which is a joint inventor in the present application discloses a method and apparatus for exploiting the technique of Patent 4,257,224 to delay the separation of a boundary layer of a fluid flowing over a solid surface Disclosed applications of the technique described in Patent 5,209,438 include increasing the lift of a wing, while decreasing its drag, and also increasing the divergence angle of a diffuser.

The present application is directed to still other methods and apparatus for exploiting the mixing technique described in Patent 4,257,224, particularly for controlling the motion of a solid body or of a fluid stream.

According to one aspect of the present invention, there is provided, an apparatus for controlling the motion of a fluid medium, comprising: a plurality of perturbation-producing elements arrayed of selected locations around a axis of a fluid jet exit nozzle according to claim 1.

The invention also provides a method for controlling the motion of a fluid medium, in accordance with the foregoing apparatus.

Further features and advantages of the invention will be apparent from the description below.

The invention is herein described, somewhat diagrammatically and by way of example only, with reference to the accompanying drawings, wherein:

  • Fig. 1 is a block diagram schematically illustrating a self-propelled body constructed in accordance with the present invention;
  • Fig. 2 is an end view of the body of Fig. 1;
  • Fig. 3a is an enlarged fragmentary view of a portion of the body of Fig. 1 but with a circular array of perturbation-producing elements as shown in Fig. 7;
  • Figs. 3b, 3c and 3d illustrate three examples of jet flow control achieved experimentally that may be applied to the perturbation-producing elements shown in Fig. 3a.
  • Fig. 4 is a fragmentary view illustrating another form of perturbation-producing element that may be used for controlling the direction of the body;
  • Fig. 5 illustrates another type of perturbation- producing element that may be used;
  • Fig. 6 is an enlarged fragmentary view more particularly illustrating the structure and movement of the perturbation-producing elements of Fig. 5;
  • Figs. 7 and 8 are end views similar to that of Fig. 2 but illustrating circular and rectangular arrays, respectively, of perturbation-producing elements instead of the oval array in Fig. 2;
  • Fig. 9 is an end view schematically illustrating a winged system constructed in accordance with the present invention and containing more than a single propulsor;
  • Fig. 10 is a diagram illustrating another form of winged system constructed in accordance with the present invention; and
  • Fig. 11 schematically illustrates the invention as embodied in a system for controlling the flow of a fluid, e.g., for combustion or cooling purposes, into a sub-system, for example, an engine.

With reference first to Figs. 1-3, there is illustrated a self-propelled body (e.g., a submarine, a missile, etc.), generally designated 2, which is propelled by a jet exiting from a pressurized chamber 3 via a discharge nozzle 4. Directional control of the body is effected by deflecting or rotating the jet exiting from discharge nozzle 4 and causing full or partial flow reattachment to the nozzle wall to generate the required forces and moments.

In order to obtain directional control, a plurality of perturbation-producing elements 5, such as described in the above-cited US Patents 4,257,224 and 5,209,438, are located around the entrance to the discharge nozzle 4 and are selectively activated by a drive, generally designated 6, to control the direction of discharge of the jet from nozzle 4, and thereby the direction of movement of the body. As shown particularly in Fig. 3a, the walls of the discharge nozzle 4 diverge in the direction of streaming, as shown at 4a. The plurality of perturbation-producing elements 5 are located in one or more circumferential arrays, as shown in Fig. 2. In most cases, only one circumferential array located at the entrance to the diverging nozzle would be needed.

Each perturbation-producing element, as shown in Fig. 3a, is in the form of a small flap which is cyclically activated by drive 6 to oscillate towards and away from the axis of symmetry 7 of the system, such that each produces cyclical fluid perturbations or oscillations emanating from the solid boundary of the discharge nozzle 4 and into the jet discharged from the nozzle. These perturbations are in the form of vortices 8 extending azimuthally along the circumference and propagating downstream along the diverging wall 4a of the nozzle 4. The azimuthal extent of these vortices depends on the number of elements activated simultaneously, and on the strength and frequency of the perturbations generating them. The flow will attach to that part of the surface in which the vortices acquired sufficient strength (in intensity and size) but it will only deflect partially towards the surface whenever the strength of the vortices is insufficient to cause complete reattachment. Very weak perturbations, or perturbations of inadequate frequencies, will not affect the flow. Thus, by selectively controlling the perturbation-producing elements 5, a wide variety of controls may be effected.

Fig. 2 illustrates for purposes of example eight perturbation-producing elements 5a-5h arranged in an oval array around the longitudinal axis 7 of the exit nozzle 4. If all the perturbation-producing elements are activated, this will enhance both the spreading and the mixing of the exiting jet. When ambient fluid is present and the body shown in Fig. 1 generates "base drag", the enhanced mixing will increase the pressure recovery and thrust efficiency of the jet, thereby augmenting the thrust produced by the discharged jet and will also reduce the base drag.

Directional control can be effected by selective activation of the perturbation-producing elements 5a-5h in Fig. 2, as follows: Activation of elements 5b and 5c will deflect the jet upward; activation of elements 5f and 5g will deflect the jet downward; activation of elements 5a and 5h will deflect the jet to the left; and activation of opposing elements 5d and 5e will deflect the jet to the right. Simultaneous activation of certain elements, such as elements 5c and 5g, or 5b and 5f, will generate a moment around the longitudinal axis 7 to produce a roll and will also swirl the jet.

The above forces and moments will be proportional to the magnitude and frequency of the perturbations. Thus, the perturbation-producing elements 5a-5h can be controlled in an on/off manner; they can also be controlled continuously by changing the input frequency and/or amplitude of the oscillations. Reducing the amplitude of any combination of elements as described above will deflect or rotate the jet in the opposite direction. The oscillation frequency should be in the range such that the dimensionless frequency F=f*L/Uj=0.5 to 3 where f is the forcing frequency, L is the length of the diverging part of the nozzle and Uj is approximately the mean flow velocity in the nozzle.

Figs. 3b-3d show how the jet discharged from the nozzle 4 is controlled. Fig. 3b illustrates the jet flow when none of the perturbation-producing elements 5a-5h is activated, this being the basic state without perturbations. Fig. 3c illustrates the jet flow when the lower perturbation-producing elements (e.g., 5e-5h) are activated, thereby producing vectoring, resulting in a jet deflection of about 25° in the example illustrated; the jet flow illustrated in Fig. 3c also produces some additional spreading of the discharge jet, thereby producing a partial thrust augmentation. Fig. 3d illustrates the jet flow when all the perturbation-producing elements, e.g., 5a-5h, are activated, thereby producing maximum spreading, resulting in maximum thrust augmentation.

The perturbation-producing elements 5 may take other forms. For example, the above-cited US Patent 5,209,438, illustrates perturbation-producing elements including: a pivotal flap oscillated by a cam rotated by a drive against the force of a spring; a plate or ribbon located substantially parallel to the surface of a wing carrying such element and reciprocating towards and away from the wing surface by a drive; an obstruction located substantially perpendicular to the upper surface of a wing and reciprocated by a drive in and out of a recess; and a rotating vane projecting slightly above the upper surface of a wing and rotated by a drive.

Figs. 4-6 illustrate further constructions of perturbation-producing elements that may be used.

The perturbation-producing element shown in Fig. 4 is in the form of a chamber 10 within the controlled body 11 (e.g., aircraft, missile, sea vessel, etc.) which is pressurized, e.g., by a passageway 12 leading to a pressure source located elsewhere, e.g., either in or out of the combustion chamber 13. In this case, the entrance end of the divergent wall 14 of the discharge nozzle 15 is formed with an opening 16 communicating with the pressurized chamber 10. Opening 16 is cyclically restricted and enlarged by a rotating bar 17 of non-circular cross-section (shown by way of example of substantially square cross- section) which is rotated in opening 16. Thus, by rotating bar 17 within opening 16, the spaces on opposite sides of the valve member are cyclically restricted and enlarged, to produce the perturbations or oscillations which form the vortices described above which propagate along the inside of the diverging wall 14 of the discharge nozzle 15, to reattach the flow to the nozzle wall 14, and thereby to divert the jet and to control the movement of body 11 as described above with respect to Figs. 1-3.

Figs. 5 and 6 illustrate another form of perturbation-producing system which may be used. In this case, the perturbation-producing element is also in the form of a chamber 20 (which may be further subdivided to smaller chambers arranged around the circumference of the nozzle and pressurized individually to different levels), in the body 21 being controlled and pressurized by a passageway 22 communicating with a pressure source (such as a combustion chamber 23, or a compressor). As described above with respect to Fig. 4, the pressurized chambers 20 are also at the entrance of the divergent wall 24 of the discharge nozzle 25 and communicate via openings 26 with the nozzle. This opening is cyclically enlarged and restricted to produce the required perturbations. In this case, however, the perturbations are produced by momentary jets issued perpendicularly to the fixed member 27 formed with a plurality of openings 27a, and a reciprocating member 28 also formed with a plurality of openings 28a. The arrangement is such that as member 28 slides back and forth, or moves in one direction around the periphery of the nozzle, openings 28a are cyclically moved in and out of alignment with openings 27a in the fixed member 27, to thereby cyclically produce jets of controlled strength from the pressurized chambers 20. These generate vortices which propagate downstream along the inner surface of the diverging wall 24 of the discharge nozzle 25.

Fig. 7 illustrates a variation wherein the plurality of perturbation-producing elements, therein designated 35a-35h, are arranged in a circular array, rather than in an oval array (Fig. 2); and Fig. 8 illustrates a variation wherein the perturbation-producing elements, therein designated 45a-45h are arranged in a rectangular array. In both cases, the perturbation-producing elements may be controlled as described above to produce the enhanced spreading of the discharge jet, and/or to provide the directional and/or rotational control of the fluid jet, and thereby of the solid body, as described above with respect to Figs. 1-3.

Fig. 9 illustrates the application of the invention to a multi-jet-propelled system generally designated 50, including jet sub-systems (e.g., engines) 51, 52, in the two wings on the opposite sides of the longitudinal axis 53 of the system. The two jet sub-systems 51, 52 can be constructed and controlled as described above in order to produce a differential jet deflection for controlling the roll 55 around the longitudinal axis of the system 53. Changing the entire rate of the spreads of the jets from either engine 51 or 52, differentially changes the thrust generated by the jets from those engines and produces a yawing moment around the vertical axis 54.

Figure 10 illustrates the invention also applied to a winged system, generally designated 60. Here, the perturbation-producing elements are applied to one or both wings, as shown at 61 and 62, respectively, and are controlled so as to produce more or less lift dCL (64) and more or less thrust dCT (63), and thereby to roll around axis 68, and/or to yaw about axis 67.

Whereas in the above-described embodiments, the perturbation-producing elements are shown as being applied to a body moving in air, it will be appreciated that the invention could also be applied to a body (such as a ship, submarine, etc.) moving in water or in space (rockets, satellites equipped with control jets), to control their motion, translatory and/or rotational, in the same manner as described above.

Figure 11 illustrates a further application of the invention for controlling the direction of flow of a fluid medium with respect to a solid body, such as a fluid stream flowing through a main pathway defined by the solid body. Thus, Figure 11 illustrates the solid boundary, generally designated 70, having a flush-mounted inlet ducts 71, 72 for letting in a fluid for cooling or combustion purposes into an engine 73 (or other interior sub-systems). By providing the perturbation-producing element, generally designated 74, at the inlet end of one or both of the ducts 71, 72, the perturbations produced by the cyclically driven elements will reduce or eliminate the separation bubbles which normally are generated near the sharp comers of the inlet ducts. This will deviate more of the fluid flow into the controlled ducts and will thereby increase the flow rate into the controlled ducts.

It is important to note that there is a superficial resemblance between the present invention and the teachings of GB 2 045 704. Therein is taught the continuous, as opposed to cyclical, introduction of a perturbation perpendicularly into a fluid flow such as found in a rocket motor or jet engine to form shock waves in the fluid. The shock waves cause the fluid flow local to the perturbation to detach from the rocket nozzle, changing the direction of the rocket thrust when applied to selected sections of the nozzle.

European Patent Specification No. 0 149 947 discloses a gas propeller having at least one pair of diametrically opposed lateral nozzles for supplying a thrust force directed towards the rear of the missile or projectile includes a cake of solid propellant relatively insensitive to the combustion pressure, and opening-closing valves for each of the nozzles. These valves have sliding elements provided with pneumatic flip-flop actuators that are controlled by control circuits including a logic operator which prevents the simultaneous closing of the two nozzles of a same pair. The sliding elements of the valves are provided with mechanical safety means in order to limit the relative displacement of these sliding elements.


Anspruch[de]
  1. Vorrichtung zum Steuern einer Bewegung eines flüssigen Mediums, das von einem festen Medium durch eine Grenze (70) getrennt ist und wo das flüssige Medium sich relativ zu einem festen Medium bewegt, umfassend:
    • a. eine Mehrzahl von Verwirbelung erzeugenden Elementen (5a - 5h; 74), die an ausgewählten Stellen um die Achse einer Flüssigkeitsstrahlaustrittsdüse (4, 15) regelmäßig angeordnet sind, dadurch gekennzeichnet, dass die Vorrichtung des Weiteren umfasst:
    • b. eine Vorrichtung (6) zum kreisförmigen Antreiben wenigstens eines einer Mehrzahl von Verwirbelung erzeugenden Elementen (5a - 5h; 74), um so kreisförmige Flüssigkeitsverwirbelungen im flüssigen Medium zu erzeugen, die ausreichen, um die Bewegung des flüssigen Mediums relativ zum festen Medium zu verändern.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flüssigkeitsstrahlaustrittsdüse (15) ein Eingangsende umfasst, das eine ablenkende Wand (14) aufweist, und dadurch gekennzeichnet, dass die Mehrzahl von Verwirbelung erzeugenden Elementen (5) an der ablenkenden Wand (14) angeordnet ist.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das feste Medium ein Festkörper ist, welcher eine Verbrennungskammer oder Druckkammer umfasst, welche die Flüssigkeitsstrahlaustrittsdüse miteinschließt, durch welche ein flüssiger Strahl ausgestoßen wird, wobei die Mehrzahl von Verwirbelung erzeugenden Elementen durch die Vorrichtung (6) ausgewählt betätigbar ist, um die Richtung des Ausstoßes des Flüssigkeitsstrahls von der Austrittsdüse zu steuern und dadurch die Richtung der Bewegung des Festkörpers zu steuern.
  4. Vorrichtung nach Anspruch 1, des Weiteren umfassend:
    • c. einen Spalt (71, 72) in einem festen Medium, wobei der Spalt (71, 72) in Verbindung mit einem sekundären Flüssigkeitsflusspfad (73) steht;
    und wobei wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen so angeordnet ist, dass bei Betätigung durch die Vorrichtung (6) diese Veränderung der Bewegung wirksam einen Abschnitt des flüssigen Mediums durch den Spalt (71, 72) in den sekundären Flüssigkeitsflusspfad (73) umlenkt.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der sekundäre Flüssigkeitsflusspfad (73) von der Grenze (70) durch eine äußere Oberfläche des festen Mediums getrennt ist.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen (5) eine kreisförmig schwingende Klappe umfasst.
  7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen (5) eine abwechselnd kleiner und größer werdende Öffnung (16) im festen Medium umfasst, wobei die Öffnung (16) die Verbindung zwischen einer Kammer (10) und dem flüssigen Medium erlaubt.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Öffnung (16) abwechselnd kleiner und größer gemacht wird durch die Drehung einer Stange (17) mit einem nicht kreisförmigen Querschnitt, die als ein Ventilelement in der Öffnung (16) wirkt, um eine kreisförmige Flüssigkeitsverwirbelung zu erzeugen.
  9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Öffnung (26) abwechselnd kleiner und größer durch ein Element (27, 28) gemacht wird, das mit einer Blende (27a, 28a) ausgebildet ist, wobei das Element (27, 28) kreisförmig angetrieben wird, um die Blende (27a, 28a) in Flucht und aus dieser Flucht mit der Öffnung (26) zu bringen, um eine kreisförmige Flüssigkeitsverwirbelung zu erzeugen.
  10. Vorrichtung nach Anspruch 7, des Weiteren ein Mittel (13, 23) umfassend, um die Kammer (10, 20) unter Druck zu setzen.
  11. Verfahren zum Steuern der Bewegung eines flüssigen Mediums, das von einem festen Medium durch eine Grenze getrennt ist und wo das flüssige Medium sich relativ zu einem festen Medium bewegt, durch Einsetzen einer Mehrzahl von Verwirbelung erzeugenden Elementen (5), die an ausgewählten Stellen um die Achse einer Flüssigkeitsstrahlaustrittsdüse (4, 15) regelmäßig angeordnet sind, dadurch gekennzeichnet, dass wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen eine kreisförmige Verwirbelung im flüssigen Medium erzeugt, wobei die Verwirbelung ausreicht, um die Bewegung des flüssigen Mediums relativ zum festen Medium zu verändern.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Verwirbelung kreisförmige Schubkräfte im flüssigen Medium erzeugt.
  13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Verwirbelung kreisförmige Momente im flüssigen Medium erzeugt.
  14. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das feste Medium ein Festkörper ist, welcher eine Verbrennungskammer oder Druckkammer umfasst, wobei die Flüssigkeitsstrahlaustrittsdüse miteingeschlossen ist, durch welche ein flüssiger Strahl ausgestoßen wird, wobei die Mehrzahl von Verwirbelung erzeugenden Elementen durch die Vorrichtung (6) ausgewählt betätigbar ist, um die Richtung des Ausstoßes des Flüssigkeitsstrahls von der Austrittsdüse zu steuern und dadurch die Richtung der Bewegung des Festkörpers zu steuern.
  15. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Flüssigkeitsstrahlaustrittsdüse (15) ein Eingangsende umfasst, das eine ablenkende Wand (14) aufweist, und dadurch gekennzeichnet, dass die Mehrzahl von Verwirbelung erzeugenden Elementen (5a - 5h) an der ablenkenden Wand (14) angeordnet ist.
  16. Verfahren nach Anspruch 11, des Weiteren umfassend:
    • d. Bereitstellung eines Spalts im festen Medium, wobei der Spalt in Verbindung mit einem sekundären Flüssigkeitsflusspfad steht;
    und wobei wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen (5) so angeordnet ist, dass bei Betätigung wenigstens eines Elements der Mehrzahl von kreisförmigen Verwirbelungen erzeugenden Elementen (5a - 5h) eine erzeugte Verwirbelung wirksam einen Abschnitt des flüssigen Mediums durch den Spalt in den sekundären Flüssigkeitsflusspfad umlenkt.
  17. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der sekundäre Flüssigkeitsflusspfad von der Grenze durch eine äußere Oberfläche des festen Mediums getrennt ist.
  18. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen (5a - 5h) eine kreisförmig schwingende Klappe umfasst.
  19. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass wenigstens eines der Mehrzahl von Verwirbelung erzeugenden Elementen (5) eine abwechselnd kleiner und größer werdende Öffnung (16) im festen Medium umfasst, wobei die Öffnung die Verbindung zwischen einer Kammer (10) und dem flüssigen Medium erlaubt.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Öffnung (16) abwechselnd kleiner und größer gemacht wird durch die Drehung einer Stange (17) mit einem nicht kreisförmigen Querschnitt, die als ein Ventilelement in der Öffnung (16) wirkt, um die Verwirbelungen zu erzeugen.
  21. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Öffnung (26) abwechselnd kleiner und größer durch ein Element (27, 28) gemacht wird, das mit einer Blende (27a, 28a) ausgebildet ist, wobei das Element (27, 28) kreisförmig angetrieben wird, um die Blende (27a, 28a) in Flucht aus dieser Flucht mit der Öffnung (26) zu bringen, um die Verwirbelungen zu erzeugen.
  22. Verfahren nach Anspruch 19, des Weiteren umfassend ein Mittel (13, 23), um die Kammer (10, 20) unter Druck zu setzen.
  23. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass wenigstens eines der Verwirbelung erzeugenden Elemente (5) eine zyklisch unter Druck gesetzte Kammer (10) in Verbindung mit dem flüssigen Medium durch eine Öffnung (16) im festen Medium umfasst.
Anspruch[en]
  1. A device for controlling the motion of a fluid medium separated from a solid medium by a boundary (70) and where the fluid medium moves relative to the solid medium comprising:
    • a. a plurality of perturbation producing elements (5a - 5h; 74) arrayed at selected locations around an axis of a fluid jet exit nozzle (4, 15)

         characterized in that the device further comprises:
    • b. a device (6) for cyclically driving at least one of said plurality of perturbation producing elements (5a - 5h; 74) so as to produce cyclical fluid perturbations in the fluid medium sufficient to alter the motion of the fluid medium relative to the solid medium.
  2. The device of claim 1 characterized in that said fluid jet exit nozzle (15) includes an entrance end having a diverging wall (14) and characterized in that said plurality of perturbation producing elements (5) are located in said diverging wall (14).
  3. The device of Claim 2 characterized in that the solid medium is a solid body which comprises a combustion or pressurized chamber including said fluid jet exit nozzle through which a fluid jet is discharged, the plurality of perturbation - producing elements being selectively activatable by said device (6) to control direction of discharge of the fluid jet from the exit nozzle and thereby control the direction of movement of said solid body.
  4. The device of claim 1 further comprising:
    • c. a gap (71, 72) in the solid medium, said gap (71, 72) in communication with a secondary fluid-flow pathway (73);
    and wherein at least one of said plurality of perturbation producing elements is located so that upon activation of said device (6), said alteration of the motion effectively redirects a portion of the fluid medium through said gap (71, 72) into said secondary fluid-flow pathway (73).
  5. The device of claim 4 characterized in that said secondary fluid-flow pathway (73) is separated from the boundary (70) by an outer surface of the solid medium.
  6. The device of claim 1 characterized in that at least one of said perturbation producing elements (5) includes a cyclically oscillated flap.
  7. The device of claim 1 characterized in that at least one of said perturbation producing elements (5) includes an alternatingly restricted and dilated opening (16) in the solid medium, the opening (16) allowing communication between a chamber (10) and the fluid medium.
  8. The device of claim 7 characterized in that said opening (16) is alternatingly restricted and dilated by rotation of a rod (17) of a non-circular cross-section acting as a valve member in said opening (16) to produce said cyclical fluid perturbations.
  9. The device of claim 7 characterized in that said opening (26) is alternatingly restricted and dilated by a member (27,28) formed with an aperture (27a, 28a), which member (27, 28) is cyclically driven to bring said aperture (27a, 28a) into and out of alignment with said opening (26) to produce said cyclical fluid perturbations.
  10. The device of claim 7 further comprising a means (13, 23) for pressurizing said chamber (10, 20).
  11. A method for controlling the motion of a fluid medium separated from a solid medium by a boundary and where the fluid medium moves relative to the solid medium by using a plurality of perturbation producing elements (5) arrayed at selected locations around an axis of a fluid jet exit nozzle, (4, 15)characterized by at least one of said plurality of perturbation producing elements produces a cyclical fluid perturbation in the fluid medium, wherein said perturbation is sufficient to alter the motion of the fluid medium relative to the solid medium.
  12. The method of claim 11 characterized in that said perturbation produces cyclical translatory forces on the fluid medium.
  13. The method of claim 11 characterized in that said perturbation produces cyclical moments on the fluid medium.
  14. The method of Claim 11 characterized in that the solid medium is a solid body which comprises a combustion or pressurized chamber including said fluid jet exit nozzle through which a fluid jet is discharged, the plurality of perturbation - producing elements being selectively activatable by said device (6) to control direction of discharge of the fluid jet from the exit nozzle and thereby control the direction of movement of said solid body.
  15. The method of claim 11 characterized in that said fluid jet exit nozzle (15) includes an entrance end having a diverging wall (14) and characterized in that said plurality of said perturbation producing elements (5a - 5h) are located in said diverging wall (14).
  16. The method of claim 11 further comprising:
    • d. providing a gap in the solid medium, said gap in communication with a secondary fluid-flow pathway:
    and wherein at least one of said at least one perturbation producing elements (5) is located so that upon activation of said at least one of said at least one cyclical fluid perturbation producing elements(5a-5h), a produced perturbation effectively redirects a portion of the fluid medium through said gap into said secondary fluid-flow pathway.
  17. The method of claim 11 characterized in that said secondary fluid-flow pathway is separated from the boundary by an outer surface of the solid medium.
  18. The method of claim 11 characterized in that at least one of said perturbation producing elements (5a-5h) includes a cyclically oscillated flap.
  19. The method of claim 11 characterized in that at least one of said perturbation producing elements (5) includes an altematingly restricted and dilated opening (16) in the solid medium, the opening allowing communication between a chamber (10), and the fluid medium.
  20. The method of claim 19 characterized in that said opening (16) is altematingly restricted and dilated by rotation of a rod (17) of a non-circular cross section acting as a valve member in said opening (16) to produce said perturbations.
  21. The method of claim 19 characterized in that said opening (26) is altematingly restricted and dilated by a member (27, 28) formed with an aperture (27a, 28a), which member (27, 28) is cyclically driven to bring said aperture (27a, 28a) into and out of alignment with said opening (26) to produce said perturbations.
  22. The method of claim 19 further comprising a means (13, 23) for pressurizing said chamber (10, 20).
  23. The method of claim 11 characterized in that at least one of said perturbation producing elements (5) includes a cyclically pressurized chamber (10) in communication with the fluid medium through an opening (16) in the solid medium.
Anspruch[fr]
  1. Dispositif permettant de contrôler le mouvement d'un milieu fluide séparé d'un milieu solide par un joint (70) et dans lequel le milieu fluide se déplace par rapport au milieu solide comprenant :
    • a. une pluralité d'éléments de perturbation (5a à 5h ; 74) disposés à des emplacements sélectionnés situés autour d'un axe d'une buse d'évacuation du jet fluide (4, 15) caractérisé en ce que le dispositif comprend :
    • b. un dispositif (6) permettant de diriger de façon cyclique au moins un de ladite pluralité d'éléments de perturbation (5a à 5h ; 74) de façon à générer des perturbations cycliques du fluide dans le milieu fluide, suffisantes pour modifier le mouvement du milieu fluide par rapport au milieu solide.
  2. Dispositif selon la revendication 1, caractérisé en ce que ladite buse d'évacuation du jet fluide (15) comprend une face d'entrée ayant une paroi divergente (14) et caractérisé en ce que ladite pluralité d'éléments de perturbation (5) est située dans ladite paroi divergente (14).
  3. Dispositif selon la revendication 2, caractérisé en ce que le milieu solide est un corps solide comprenant une chambre de combustion ou pressurisée comprenant la buse d'évacuation du jet fluide à travers laquelle un jet fluide s'écoule, la pluralité des éléments de perturbation pouvant être activée de façon sélective par ledit dispositif (6) afin de contrôler le sens d'écoulement du jet fluide à partir de la buse d'évacuation et, par conséquent, de contrôler le sens du mouvement dudit corps solide.
  4. Dispositif selon la revendication 1 comprenant également :
    • c. un intervalle (71, 72) dans le milieu solide, ledit intervalle (71, 72) étant en communication avec une voie d'écoulement secondaire du fluide (73) ;
    et dans lequel au moins un de ladite pluralité d'éléments de perturbation est situé de telle sorte qu'au moment de l'activation dudit dispositif (6), ladite modification du mouvement redirige de façon effective une partie du milieu fluide à travers ledit intervalle (71, 72) dans ladite voie d'écoulement secondaire du fluide (73).
  5. Dispositif selon la revendication 4, caractérisé en ce que ladite voie d'écoulement secondaire du fluide (73) est séparée du joint (70) par une surface externe du milieu solide.
  6. Dispositif selon la revendication 1, caractérisé en ce qu'au moins un des éléments de perturbation (5) comprend un clapet à oscillation cyclique.
  7. Dispositif selon la revendication 1, caractérisé en ce qu'au moins un desdits éléments de perturbation (5) comprend un espace (16) étant alternativement restreint et dilaté dans le milieu solide, l'espace (16) permettant la communication entre une chambre (10) et le milieu fluide.
  8. Dispositif selon la revendication 7, caractérisé en ce que l'espace (16) est alternativement restreint ou dilaté par rotation d'une tige (17) d'une section transversale non circulaire fonctionnant comme une vanne dans ledit espace (16) afin de générer lesdites perturbations cycliques du fluide.
  9. Dispositif selon la revendication 7, caractérisé en ce que ledit espace (26) est alternativement restreint et dilaté au moyen d'un élément (27, 28) ayant une ouverture (27a, 28a), lequel élément (27, 28) est commandé de façon cyclique afin d'aligner ou non ladite ouverture (27a, 28a) avec ledit espace (26) afin de générer lesdites perturbations cycliques du fluide.
  10. Dispositif selon la revendication 7 comprenant un moyen (13, 23) permettant de pressuriser ladite chambre (10, 20).
  11. Procédé permettant de contrôler le mouvement d'un milieu fluide séparé d'un milieu solide par un joint et dans lequel le milieu fluide se déplace par rapport au milieu solide en utilisant une pluralité d'éléments de perturbation (5) disposés à des emplacements sélectionnés autour d'un axe d'une buse d'évacuation du jet fluide (4, 15), caractérisé par le fait qu'au moins un de ladite pluralité d'éléments de perturbation génère une perturbation cyclique du fluide dans le milieu fluide, dans lequel ladite perturbation est suffisante pour modifier le mouvement du milieu fluide par rapport au milieu solide.
  12. Procédé selon la revendication 11, caractérisé en ce que ladite perturbation génère des forces de translation cycliques au niveau du milieu fluide.
  13. Procédé selon la revendication 11, caractérisé en ce que ladite perturbation génère des moments cycliques au niveau du milieu fluide.
  14. Procédé selon la revendication 11, caractérisé en ce que le milieu solide est un corps solide comprenant une chambre à combustion ou pressurisée dotée de ladite buse d'évacuation du jet fluide à travers laquelle un jet fluide s'écoule, la pluralité des éléments de perturbation pouvant être activée de façon sélective au moyen dudit dispositif (6) afin de contrôler le sens d'écoulement du jet fluide à partir de la buse d'évacuation et, par conséquent, de contrôler le sens du mouvement dudit corps solide.
  15. Procédé selon la revendication 11, caractérisé en ce que ladite buse d'évacuation du jet fluide (15) comprend une face d'entrée ayant une paroi divergente (14) et caractérisé en ce que ladite pluralité desdits éléments de perturbation (5a à 5h) est située dans ladite paroi divergente (14).
  16. Procédé selon la revendication 11 comprenant :
    • d. la fourniture d'un intervalle dans le milieu solide, ledit intervalle étant en communication avec une voie d'écoulement secondaire du fluide ;
    et dans lequel au moins un desdits éléments de perturbation (5) est situé de telle sorte qu'au moment de l'activation d'au moins un desdits éléments de perturbation cyclique du fluide (5a à 5h), la génération d'une perturbation redirige de façon effective une partie du milieu fluide à travers ledit intervalle dans ladite voie d'écoulement secondaire du fluide.
  17. Procédé selon la revendication 11, caractérisé en ce que ladite voie d'écoulement secondaire du fluide est séparée du joint par une surface externe du milieu solide.
  18. Procédé selon la revendication 11, caractérisé en ce qu'au moins un desdits éléments de perturbation (5a à 5h) comprend un clapet à oscillation cyclique.
  19. Procédé selon la revendication 11, caractérisé en ce qu'au moins un desdits éléments de perturbation (5) comprend un espace (16) alternativement restreint et dilaté dans le milieu solide, l'espace permettant la communication entre une chambre (10), et le milieu fluide.
  20. Procédé selon la revendication 19, caractérisé en ce que ledit espace (16) est alternativement restreint et dilaté par rotation d'une tige (17) d'une section transversale non circulaire fonctionnant comme une vanne dans ledit espace (16) afin de générer lesdites perturbations.
  21. Procédé selon la revendication 19, caractérisé en ce que ledit espace (26) est alternativement restreint et dilaté par un élément (27, 28) ayant une ouverture (27a, 28a), lequel élément (27, 28) est commandé de façon cyclique pour aligner ou non ladite ouverture (27a, 28a) avec ledit espace (26) afin de générer lesdites perturbations.
  22. Procédé selon la revendication 19 comprenant également un moyen (13, 23) permettant de pressuriser ladite chambre (10, 20).
  23. Procédé selon la revendication 11, caractérisé en ce qu'au moins un desdits éléments de perturbation (5) comprend une chambre pressurisée de façon cyclique (10) en communication avec le milieu fluide à l'aide d'un espace (16) dans le milieu solide.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com