PatentDe  


Dokumentenidentifikation EP1256969 15.07.2004
EP-Veröffentlichungsnummer 0001256969
Titel Vakuumleistungsschalterelektrode und Verfahren für dessen Herstellung
Anmelder Kabushiki Kaisha Meidensha, Tokio/Tokyo, JP
Erfinder Takebuchi, Hidemitsu, Tokyo 141-0032, JP;
Matsui, Yoshihiko, Tokyo 141-0032, JP;
Nishijima, Akira, Tokyo 141-0032, JP;
Fukatsu, Yoshihiro, Tokyo 141-0032, JP
Vertreter Manitz, Finsterwald & Partner GbR, 80336 München
DE-Aktenzeichen 60200609
Vertragsstaaten DE, GB
Sprache des Dokument EN
EP-Anmeldetag 27.02.2002
EP-Aktenzeichen 020045415
EP-Offenlegungsdatum 13.11.2002
EP date of grant 09.06.2004
Veröffentlichungstag im Patentblatt 15.07.2004
IPC-Hauptklasse H01H 33/66

Beschreibung[en]
1. FIELD OF THE INVENTION

The present invention relates to an electrode of a vacuum circuit breaker, and a method of producing the electrode of the vacuum circuit breaker. Especially, the present invention is applicable to an electrode which is shaped substantially into a cup and has a longitudinal magnetic field.

2. DESCRIPTION OF THE RELATED ART

An electric arc occurs between electrodes during circuit break. For improving breaking capability of a vacuum circuit breaker, an entire surface of each of the electrodes is subjected to a damage caused by the electric arc. In other words, concentration of the electric arc in one spot on the surface should be prevented. For receiving the damage (caused by the electric arc) on the entire surface, a constitution having a longitudinal magnetic-field electrode (axial magnetic-field electrode) is adopted, as is seen in Fig. 7 and Fig. 8.

As is seen in Fig. 7, there is provided a constitution of the longitudinal magnetic-field electrode having an electrode 01 (immovable side) and an electrode 02 (movable side). The electrode 01 is constituted of a contact 01a, and a coil electrode 01b which is disposed on a side opposite to a contact face of the contact 01a. The movable electrode 02 is constituted of a contact 02a, and a coil electrode 02b which is disposed on a side opposite to a contact face of the contact 02a. Each of the coil electrode 01b and the coil electrode 02b has an arm extending radially from an axial center thereof. The arm has a peak end which is fitted with a coil extending circumferentially. With electric current flowing in the coil circumferentially, a magnetic field is caused in parallel with the electric arc (longitudinal magnetic field). The longitudinal magnetic field applied to the electric arc prevents radial diffusion of charged particles, to thereby stabilize the electric arc. The thus stabilized electric arc reduces loss, to thereby control increase in temperature of the electrode. With this, the breaking capability of the vacuum circuit breaker is improved.

The longitudinal magnetic-field electrode is, however, complicated in overall constitution. Moreover, each component part used for the longitudinal magnetic-field electrode is also complicated in constitution (unit constitution). Therefore, producing the longitudinal magnetic-field electrode is costly. For reducing the production cost, the longitudinal magnetic-field electrode should be simple in constitution and reduced in number of component parts.

As is seen in Fig. 8, there is provided a constitution of the longitudinal magnetic-field electrode having an electrode 011 and an electrode 012 opposed to the electrode 011. On a periphery of a cup member of the electrode 011, a slit 011a (inclined) is formed to provide a coil section 011b. On a periphery of a cup member of the electrode 012, a slit 012a (inclined) is formed to provide a coil section 012b. Moreover, the cup member of the electrode 011 has an opening which is sealed with a contact 011c, while the cup member of the electrode 012 has an opening which is sealed with a contact 012c.

As is seen in Fig. 9 (cross section of the longitudinal magnetic-field electrode in Fig. 8), the electrode 011 has a reinforcing pipe 011d in addition to the cup member (coil section 011b) and the contact 011c, while the electrode 012 has a reinforcing pipe 012d in addition to the cup member (coil section 012b) and the contact 012c. Each of the reinforcing pipe 011d and the reinforcing pipe 012d is mated in a hollow section of the cup member, so as to reinforce stability (of the longitudinal magnetic-field electrode) against mechanical impact caused by a contacting of the contact 011c on the contact 012c when the vacuum circuit breaker is inputted.

The longitudinal magnetic-field electrode (having the cup member) in Fig. 8 and Fig. 9 is smaller in number of component parts than the longitudinal magnetic-field electrode in Fig. 7. However, it is necessary for the cup member in Fig. 8 and Fig. 9 to be formed with the slit 011a and the slit 012a, so as to provide, respectively, the coil section 011b and the coil section 012b.

Therefore, as is seen in Fig. 10, there is provided a turn blade 013 shaped substantially into a disk. For machining the cup member (copper) so as to form the slit 011a and the slit 012a, the turn blade 013 is turned with a predetermined inclination angle relative to the cup member. Conventionally, this is a general machining (slitting) method.

As shown in Fig. 10, machining with the turn blade 013 has advantages such as easiness and low cost. The machining with the turn blade 013 has, however, difficulty in securing a long circumferential dimension of the slit 011a and the slit 012a. Smaller inclination angle of the turn blade 013 (relative to the cup member) makes the machining more difficult.

The longitudinal magnetic field between the electrode 011 and the electrode 012 is proportional to a product of electric current (flowing in each of the coil section 011b and the coil section 012b) and a turning angle. The product is defined as "ampere · turn = i · n". In other words, the circumferential length of each of the slit 011a and the slit 012a is an important determinant of the turning angle (number of turns n) of the electric current. The longer the circumferential length is, the higher the longitudinal magnetic field is.

The above summarizes that the electrode 011 (having the cup member) and the electrode 012 (having the cup member) constituting the longitudinal magnetic field according to the related art have a difficulty in obtaining strong magnetic field, and therefore are not sufficient for the vacuum circuit breaker that requires capability of breaking a high voltage and a large electric current.

Moreover, the vacuum circuit breaker with the electrode 011 and the electrode 012 according to the above related art is disadvantageous in terms of strength for the following causes: The smaller the inclination angle of slitting the slit 011a and the slit 012a is, the more acute the junction A (see Fig. 8) is. The acuteness of the junction A (coil section 011b with the contact 011c, and the coil section 012b with the contact 012c) causes stress concentration. Thereby, the junction A is likely to peel after repeated operations (opening and closing) of the electrode 011 and the electrode 012 of the vacuum circuit breaker.

Hereinafter described are more details of the vacuum circuit breaker having the electrode 011 and the electrode 012.

As is seen in Fig. 11, there is provided a conceptual view of the vacuum circuit breaker having the electrode 011 and the electrode 012. The vacuum circuit breaker is constituted of a vacuum envelope 017, the electrode 011 and the electrode 012 as main component parts. The vacuum envelope 017 has an insulator tube 014 made of material such as ceramic, glass and the like. The insulator tube 014 has a first end (upper) sealed with an end plate 015 made of metal, and a second end (lower) sealed with an end plate 016 made of metal. With the thus sealed internal section, the vacuum envelope 017 is highly exhausted (vacuum). In the vacuum envelope 017, the electrode 011 is fixed to an end (lower in Fig. 11) of an immovable rod 018 while the electrode 012 is fixed to an end (upper in Fig. 11) of a movable rod 019. The electrode 011 and the electrode 012 are opposed to each other, and make a relative movement toward (contacting) and away (parting) from each other. With an inclination, an electric current I flows in the coil section 011b (of the electrode 011) and the coil section 012b (of the electrode 012), to thereby generate a longitudinal magnetic field B. With the thus generated longitudinal magnetic field B, the vacuum circuit breaker has a good breaking capability. In Fig. 11, also shown are a bellows 020 and an intermediate shield 021.

DE 41 14 636 A discloses a contact system for vacuum circuit breaker with a pair of switching members. On the winding body of at least one of the switching member there are provided slit sections.

BRIEF SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to provide an electrode of a vacuum circuit breaker. The electrode under the present invention is the one that is shaped into a cup and has a longitudinal magnetic field, and that causes such a strong magnetic field as to feature a preferable breaking capability. Moreover, the electrode under the present invention is the one that features a sufficient mechanical strength even after repeated opening and closing operations (of a movable electrode and an immovable electrode).

It is another object of the present invention to provide a method of producing, with ease, the electrode of the vacuum circuit breaker featuring the preferable breaking capability and the sufficient mechanical strength, as described above.

According to a first aspect of the present invention, there is provided an electrode of a vacuum circuit breaker, as defined in claim 1.

According to a second aspect of the present invention, there is provided a method of producing an electrode of a vacuum circuit breaker, as defined in claim 6.

According to a third aspect of the present invention, there is provided a vacuum circuit breaker, as defined in claim 10.

The other objects and features of the present invention will become understood from the following description with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

  • Fig. 1 is a perspective view of an electrode 1 (electrode 2), according to a first embodiment of the present invention;
  • Fig. 2 is a cross sectional view of the electrode 1 (electrode 2) shown in Fig. 1;
  • Fig. 3 is a perspective view of a method of producing the electrode 1 (electrode 2) in Fig. 1;
  • Fig. 4 is a radial distribution of a longitudinal magnetic element in a cross section at substantially the middle of the electrode 1 (electrode 2) according to the first embodiment, as compared with that of an electrode according to a related art;
  • Fig. 5 is a front view of an electrode 11 (electrode 12), according to a second embodiment of the present invention;
  • Fig. 6 is a front view of an electrode 21 (electrode 22), according to a third embodiment of the present invention;
  • Fig. 7 is a perspective view of an electrode 01 (electrode 02), according to a first example of the related art;
  • Fig. 8 is a perspective view of an electrode 011 (electrode 012), according to a second example of the related art;
  • Fig. 9 is a longitudinal cross section of the electrode 011 (electrode 012) shown in Fig. 8;
  • Fig. 10 is a perspective view of a method of producing the electrode 011 (electrode 012) shown in Fig. 8; and
  • Fig. 11 is a schematic of a vacuum circuit breaker having the electrode 011 (electrode 012) shown in Fig. 8.

DETAILED DESCRIPTION OF THE EMBODIMENT

As is seen in Fig. 1, there are provided an electrode 1 and an electrode 2, according to a first embodiment of the present invention.

Like the electrode 011 and the electrode 012 in Fig. 11, the electrode 1 is fixed to the end (lower in Fig. 11) of the immovable rod 018 while the electrode 2 is fixed to the end (upper in Fig. 11) of the movable rod 019. The electrode 1 and the electrode 2 are opposed to each other, and make a relative movement toward (contacting) and away (parting) from each other. Moreover, the electrode 1 is constituted of a cup member and a contact 1c (shaped substantially into a disk) for sealing an opening of the cup member, while the electrode 2 is constituted of a cup member and a contact 2c (shaped substantially into a disk) for sealing an opening the cup member. The relative movement of the contact 1c and the contact 2c toward (contacting) and away (parting) from each other opens and closes the electric path.

According to the first embodiment, the cup member of the electrode 1 has a periphery which is formed with a slit 1a extending continuously and stepwise from a first end of the cup member to a second end of the cup member, while the cup member of the electrode 2 has a periphery which is formed with a slit 2a extending continuously and stepwise from a first end of the cup member to a second end of the cup member. Each of the slit 1a and the slit 2a is plural in number, to thereby form, respectively, a coil section 1b and a coil section 2b.

Hereinafter described referring to Fig. 3 is how to form the slit 1a and the slit 2a. The cup member is turned axially by a predetermined rotational feed angle &thetas;. With a drill 3 (tool) being turned during the turning of the cup member, the cup member is fed axially by a feed length L. Herein, varying arbitrarily the rotational feed angle &thetas; and the feed length L forms an arbitrarily bent slit. For forming the slit 1a and the slit 2a that are shaped stepwise, the above "turning" and "axial feeding" are carried out alternatively and intermittently. The drill 3 used as the tool can be replaced with a wire cut, a tip saw, a water jet and the like. The number of the plurality of the slits 1a and the slit 2a is not specifically limited.

Each of the slit 1a (of the electrode 1) and the slit 2a (of the electrode 2) according to the first embodiment is formed stepwise. Therefore, electric circuit has substantially a constant cross section. Moreover, in the vicinity of each of a first junction (between the coil section 1b and the contact 1c) and a second junction (between the coil section 2b and the contact 2c), a sufficient electric current flows toward an end face of the respective slit 1a and slit 2a.

Furthermore, an inclination (of each of the slit 1a and the slit 2a) relative to an axial line (of the cup member of each of the respective electrode 1 and electrode 2) is enlarged (Hereinafter, the inclination is referred to as "circumferential slit angle."). As a result, each of the slit 1a and the slit 2a is elongated circumferentially, to thereby secure sufficient longitudinal magnetic strength corresponding to breaking capability of breaking a required high voltage and large electric current.

Moreover, each of the slit 1a and the slit 2a is formed substantially perpendicular, respectively, to the contact 1c and the contact 2c, at the first and the second end thereof. The above perpendicularity contributes to reduction in stress concentration which is caused by a mechanical impact when the vacuum circuit breaker is input. Therefore, even repeated operations (opening and closing) of the vacuum circuit breaker are unlikely to cause failures such as peeling at the first junction (between the coil section 1b and the contact 1c) and the second junction (between the coil section 2b and the contact 2c).

Fig. 4 shows a radial distribution of a longitudinal magnetic element in a cross section at substantially the middle of the electrode 1 (the electrode 2) according to the first embodiment of the present invention, as compared with that of the electrode 011 (the electrode 012) according to the related art in Fig. 8 to Fig. 10. The vertical axis in Fig. 4 is a magnetic flux density B2 (T/A) per unit current, while the horizontal axis is a radius R of the electrode 1 (the electrode 2) and the electrode 011 (the electrode 012).

In Fig. 4, a one-dot chain curve (lower) shows a characteristic of the electrode 011 (the electrode 012) with the circumferential slit angle 120°, according to the related art.

In Fig. 4, a two-dot chain curve (middle) shows a characteristic of the electrode 1 (the electrode 2) with the circumferential slit angle 120°, according to the first embodiment of the present invention. Herein, the electrode 1 (the electrode 2) is the one that is formed with the stepwise slit 1a (the stepwise slit 2a).

In Fig. 4, a solid curve (upper) shows a characteristic of the electrode 1 (the electrode 2) with the circumferential slit angle 180°, according to the first embodiment of the present invention. Herein. the electrode 1 (the electrode 2) is the one that is formed with the stepwise slit 1a (the stepwise slit 2a) in Fig. 1.

As is seen in Fig. 4, even with the circumferential slit angle 120° (middle in Fig. 4), the electrode 1 (the electrode 2) according to the first embodiment shows the longitudinal magnetic field (magnetic flux density) stronger, by about 20%, than that of the electrode 011 (the electrode 012) according to the related art (lower in Fig. 4). With the circumferential slit angle 180° (upper in Fig. 4), the electrode 1 (the electrode 2) according to the first embodiment shows much stronger longitudinal magnetic field (magnetic flux density) than that of the electrode 011 (the electrode 012) according to the related art (lower in Fig. 4).

Although the present invention has been described above by reference to the first embodiment, the present invention is not limited to the first embodiment described above. Modifications and variations of the first embodiment described above will occur to those skilled in the art, in light of the above teachings.

More specifically, as is seen in Fig. 1, each of the slit 1a (of the electrode 1) and the slit 2a (of the electrode 2) is formed stepwise. The configuration of each of the slit 1a and the slit 2a is, however, not limited to stepwise. Any other configuration is allowed provided that the features described in the following two sentences are met: 1. The inclination angles (relative to the axial line of the cup member of each of the electrode 1 and the electrode 2) are formed by a continuous curve that is a combination of a plurality of different types of straight line segments. 2. The inclination is substantially perpendicular to a reverse face of each of the contact 1c and the contact 2c. The above two features are for enlarging the circumferential slit angle so as to elongate the coil section 1b and the coil section 2b, and for reducing the stress concentration at the first junction (between the coil section 1b and the contact 1c) and the second junction (between the coil section 2b and the contact 2c).

Other allowable configurations are seen in Fig. 5 and Fig. 6.

As is seen in Fig. 5, there are provided an electrode 11 having a slit 11a, a coil section 11b and a contact 11c; and an electrode 12 having a slit 12a, a coil section 12b, and a contact 12c, according to a second embodiment of the present invention.

As is seen in Fig. 6, there are provided an electrode 21 having a slit 21a, a coil section 21b, and a contact 21c; and an electrode 22 having a slit 22a, a coil section 22b, and a contact 22c, according to a third embodiment of the present invention.

With the rotational feed angle &thetas; and the feed length L controlled arbitrarily through the method shown in Fig. 3, each of the slit 11a (of the electrode 11), the slit 12a (of the electrode 12), the slit 21a (of the electrode 21) and the slit 22a (of the electrode 22) is formed.

The entire contents of basic Japanese Patent Application No. P2001-138213 (filed on May 9, 2001) of which priority is claimed is incorporated herein by reference.

The scope of the present invention is defined by the following claims.


Anspruch[de]
  1. Elektrode (1, 2, 11, 12, 21, 22) eines Vakuumleistungsschalters mit:
    • einem Tassenelement mit einer Öffnung und einem Umfang, der mit einem Schlitz (1a, 2a, 11a, 12a, 21a, 22a) ausgebildet ist, um so einen Windungsabschnitt (1b, 2b, 11b, 12b, 21b, 22b) zu bilden, wobei ein elektrischer Strom in dem Windungsabschnitt (1b, 2b, 11b, 12b, 21b, 22b) fließt, um so ein längs gerichtetes Magnetfeld in einer Richtung entlang einer Achse des Tassenelementes zu erzeugen, wobei der Schlitz (1a, 2a, 11a, 12a, 21a, 22a) gebogen ist und sich an dem Umfang von einem ersten Ende des Tassenelementes zu einem zweiten Ende des Tassenelementes, das dem ersten Ende des Tassenelementes gegenüberliegt, erstreckt; und einem Kontakt (1c, 2c, 11c, 12c, 21c, 22c), der in eine Platte geformt ist und die Öffnung des Tassenelementes abdichtet, dadurch gekennzeichnet, dass der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) ein erstes Liniensegment umfasst, das ein erstes Ende aufweist, das im Wesentlichen rechtwinklig zu einer Rückseite des Kontaktes (1c, 2c, 11c, 12c, 21c, 22c) liegt, und dass er kontinuierlich verläuft.
  2. Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 1, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) stufenweise ausgebildet ist.
  3. Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 1, wobei

       der gebogene Schlitz (1a, 2a, 11a, 12a, 21 a, 22a) eine Kombination

       des ersten Liniensegmentes, wobei die Rückseite des Kontaktes (1c, 2c, 11c, 12c, 21c, 22c) die Öffnung des Tassenelementes abdichtet, und

       eines zweiten Liniensegmentes ist, das mit einem zweiten Ende des ersten Liniensegmentes, das dem ersten Ende des ersten Liniensegmentes gegenüberliegt, kontinuierlich verbunden ist; und

       wobei das erste Segment und das zweite Segment eine Schrägstellung bilden.
  4. Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 1, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) in der Mehrzahl vorhanden ist.
  5. Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 1, wobei der Kontakt (1c, 2c, 11c, 12c, 21c, 22c) im Wesentlichen in eine Scheibenplatte geformt ist.
  6. Verfahren zum Herstellen einer Elektrode (1, 2, 11, 12, 21, 22) eines Vakuumleistungsschalters, wobei die Elektrode (1, 2, 11, 12, 21, 22) ein Tassenelement mit einer Öffnung umfasst, die mit einem Kontakt (1c, 2c, 11c, 12c, 2 1 c, 22c) abgedichtet ist, der in eine Platte geformt ist, wobei das Tassenelement einen Umfang aufweist, der mit einem Schlitz (1a, 2a, 11a, 12a, 21a, 22a) ausgebildet ist, um einen Windungsabschnitt (1b, 2b, 11b, 12b, 21b, 22b) zu bilden, wobei ein elektrischer Strom in dem Windungsabschnitt (1b, 2b, 11b, 12b, 21b, 22b) fließt, um ein längs gerichtetes Magnetfeld in einer Richtung entlang einer Achse des Tassenelementes zu erzeugen, wobei das Verfahren die folgenden Schritte umfasst, dass:
    • das Tassenelement um die Achse des Tassenelementes herum um einen vorbestimmten Drehzufuhrwinkel (0) bezüglich eines Werkzeugs (3) gedreht wird, und
    • das Werkzeug (3) in der Richtung entlang der Achse des Tassenelementes relativ zu dem Tassenelement während des Drehvorgangs des Tassenelements zugeführt wird, um so den Schlitz (1a, 2a, 11a, 12a, 21a, 22a) zu bilden, der gebogen ist und sich kontinuierlich an dem Umfang von einem ersten Ende des Tassenelementes zu einem zweiten Ende des Tassenelementes, das dem ersten Ende des Tassenelementes gegenüberliegt, zu erstrecken, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) ein erstes Liniensegment mit einem ersten Ende umfasst, das im Wesentlichen rechtwinklig zu einer Rückseite des Kontaktes (1c, 2c, 11c, 12c, 21c, 22c) ist.
  7. Verfahren zum Herstellen der Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 6, wobei der Drehvorgang und der Zuführvorgang alternativ ausgeführt werden.
  8. Verfahren zum Herstellen der Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 6, wobei der Drehvorgang und der Zuführvorgang diskontinuierlich ausgeführt werden.
  9. Verfahren zum Herstellen der Elektrode (1, 2, 11, 12, 21, 22) des Vakuumleistungsschalters nach Anspruch 6, wobei das Werkzeug (3) ein Bohrer (3) ist.
  10. Vakuumleistungsschalter mit:
    • einem Paar aus einer ersten Elektrode (1, 11, 21) und einer zweiten Elektrode (2, 12, 22), die der ersten Elektrode (1, 11, 21) gegenüberliegt, wobei jede der ersten Elektrode (1, 11, 21) und zweiten Elektrode (2, 12, 22) umfasst:
      • ein Tassenelement mit einer Öffnung und einem Umfang, der mit einem Schlitz (1a, 2a, 11a, 12a, 21a, 22a) ausgebildet ist, um so einen Windungsabschnitt (1b, 2b, 11b, 12b, 21b, 22b) zu bilden, wobei ein elektrischer Strom in dem Windungsabschnitt (1b, 2b, 11b, 12b, 21b, 22b) fließt, um so ein längs gerichtetes Magnetfeld in einer Richtung entlang einer Achse des Tassenelementes zu erzeugen, wobei der Schlitz (1a, 2a, 11a, 12a, 21a, 22a) gebogen ist und sich an dem Umfang von einem ersten Ende des Tassenelementes zu einem zweiten Ende des Tassenelementes, das dem ersten Ende des Tassenelementes gegenüberliegt, kontinuierlich erstreckt; und einen Kontakt (1c, 2c, 11c, 12c, 21c, 22c), der in eine Platte geformt ist und die Öffnung des Tassenelementes abdichtet, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) ein erstes Liniensegment umfasst, das ein erstes Ende aufweist, das im Wesentlichen rechtwinklig zu einer Rückseite des Kontaktes (1c, 2c, 11c, 12c, 21c, 22c) liegt.
  11. Vakuumleistungsschalter nach Anspruch 10, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) von jeder der ersten Elektrode (1, 11, 21) und der zweiten Elektrode (2, 12, 22) stufenweise ausgebildet ist.
  12. Vakuumleistungsschalter nach Anspruch 10, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) eine Kombination ist aus:
    • einem ersten Liniensegment, wobei die Rückseite des Kontaktes (1c, 2c, 11c, 12c, 21c, 22c) die Öffnung des Tassenelementes abdichtet, und
    • einem zweiten Liniensegment ist, das kontinuierlich mit einem zweiten Ende des ersten Liniensegmentes, das dem ersten Ende des ersten Liniensegmentes gegenüberliegt, verbunden ist; und
       wobei das erste Segment und das zweite Segment eine Schrägstellung bilden.
  13. Vakuumleistungsschalter nach Anspruch 10, wobei der gebogene Schlitz (1a, 2a, 11a, 12a, 21a, 22a) in der Mehrzahl vorhanden ist.
  14. Elektrode (1, 2, 11, 12, 21, 22) nach Anspruch 3, wobei das zweite Ende des ersten Liniensegments bezüglich des zweiten Liniensegments keinen darüber hinausgehenden Abschnitt aufweist.
  15. Verfahren zum Herstellen der Elektrode (1, 2, 11, 12, 21, 22) nach Anspruch 6, wobei das zweite Ende des ersten Liniensegmentes bezüglich des zweiten Liniensegmentes keinen darüber hinausgehenden Abschnitt aufweist.
  16. Vakuumleistungsschalter nach Anspruch 12, wobei das zweite Ende des ersten Liniensegmentes bezüglich des zweiten Liniensegmentes keinen darüber hinausgehenden Abschnitt aufweist.
Anspruch[en]
  1. An electrode (1, 2, 11, 12, 21, 22) of a vacuum circuit breaker, comprising:
    • a cup member having an opening and a periphery which is formed with a slit (1a, 2a, 11a, 12a, 21a, 22a) so as to form a coil section (1b, 2b, 11b, 12b, 21b, 22b), an electric current flowing in the coil section (1b, 2b, 11b, 12b, 21b, 22b) so as to generate a longitudinal magnetic field in a direction along an axis of the cup member, the slit (1a, 2a, 11a, 12a, 21a, 22a) being bent and extending on the periphery from a first end of the cup member to a second end of the cup member opposite to the first end of the cup member; and
    • a contact (1c, 2c, 11c, 12c, 21c, 22c) shaped into a plate, and sealing the opening of the cup member, characterised in that the bent slit (1a, 2a, 11a, 12a, 21a, 22a) includes a first line segment having a first end which is substantially perpendicular to a reverse face of the contact (1c, 2c, 11c, 12c, 21c, 22c), and in that it extends continuously.
  2. The electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker, as claimed in claim 1, in which the bent slit (1a, 2a, 11a, 12a, 21a, 22a) is formed stepwise.
  3. The electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker, as claimed in claim 1, in which

       the bent slit (1a, 2a, 11a, 12a, 21a, 22a) is a combination of:
    • the first line segment, the reverse face of the contact (1c, 2c, 11c, 12c, 21c, 22c) sealing the opening of the cup member, and
    • a second line segment continuously connected to a second end of the first line segment opposite to the first end of the first line segment; and
    • the first segment and the second segment form an inclination.
  4. The electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker as claimed in claim 1, in which the bent slit (1a, 2a, 11a, 12a, 21a, 22a) is plural in number.
  5. The electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker as claimed in claim 1, in which the contact (1c, 2c, 11c, 12c, 2 1 c, 22c) is shaped substantially into a disk plate.
  6. A method of producing an electrode (1, 2, 11, 12, 21, 22) of a vacuum circuit breaker, the electrode (1, 2, 11, 12, 21, 22) comprising a cup member having an opening which is sealed with a contact (1c, 2c, 11c, 12c, 21c, 22c) shaped into a plate, the cup member having a periphery which is formed with a slit (1a, 2a, 11a, 12a, 2 1 a, 22a) so as to form a coil section (1b, 2b, 11b, 12b, 21b, 22b), an electric current flowing in the coil section (1b, 2b, 11b, 12b, 21b, 22b) so as to generate a longitudinal magnetic field in a direction along an axis of the cup member, the method comprising the following operations of:
    • turning the cup member around the axis of the cup member by a predetermined rotational feed angle (&thetas;) relative to a tool (3); and
    • feeding the tool (3), in the direction along the axis of the cup member, relative to the cup member during the turning operation of the cup member, so as to form the slit (1a, 2a, 11a, 12a, 21a, 22a) which is bent and continuously extending on the periphery from a first end of the cup member to a second end of the cup member opposite to the first end of the cup member, the bent slit (1a, 2a, 11a, 12a, 21a, 22a) including a first line segment having a first end which is substantially perpendicular to a reverse face of the contact (1c, 2c, 11c, 12c, 21c, 22c).
  7. The method of producing the electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker as claimed in claim 6, in which the turning operation and the feeding operation are carried out alternatively.
  8. The method of producing the electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker as claimed in claim 6, in which the turning operation and the feeding operation are carried out intermittently.
  9. The method of producing the electrode (1, 2, 11, 12, 21, 22) of the vacuum circuit breaker as claimed in claim 6, in which the tool (3) is a drill (3).
  10. A vacuum circuit breaker comprising:
    • a pair of a first electrode (1, 11, 21) and a second electrode (2, 12, 22) opposite to the first electrode (1, 11, 21), each of the first electrode (1, 11, 21) and the second electrode (2, 12, 22) comprising:
      • a cup member having an opening and a periphery which is formed with a slit (1a, 2a, 11a, 12a, 21a, 22a) so as to form a coil section (1b, 2b, 11b, 12b, 21b, 22b), an electric current flowing in the coil section (1b, 2b, 11b, 12b, 21 b, 22b) so as to generate a longitudinal magnetic field in a direction along an axis of the cup member, the slit (1a, 2a, 11a, 12a, 21a, 22a) being bent and continuously extending on the periphery from a first end of the cup member to a second end of the cup member opposite to the first end of the cup member; and
      • a contact (1c, 2c, 11c, 12c, 21c, 22c) shaped into a disk plate, and sealing the opening of the cup member, the bent slit (1a, 2a, 11 a, 12a, 21a, 22a) including a first line segment having a first end which is substantially perpendicular to a reverse face of the contact (1c, 2c, 11c, 12c, 21c, 22c).
  11. The vacuum circuit breaker as claimed in claim 10, in which the bent slit (1a, 2a, 11a, 12a, 21a, 22a) of each of the first electrode (1, 11, 21) and the second electrode (2, 12, 22) is formed stepwise.
  12. The vacuum circuit breaker as claimed in claim 10, in which

       the bent slit (1a, 2a, 11a, 12a, 21a, 22a) is a combination of:
    • the first line segment, the reverse face of the contact (1c, 2c, 11c, 12c, 21c, 22c) sealing the opening of the cup member, and
    • a second line segment continuously connected to a second end of the first line segment opposite to the first end of the first line segment; and
    • the first segment and the second segment form an inclination.
  13. The vacuum circuit breaker as claimed in claim 10, in which the bent slit (1a, 2a, 11a, 12a, 21a, 22a) is plural in number.
  14. The electrode (1, 2, 11, 12, 21, 22) as claimed in claim 3, in which

    the second end of the first line segment is free of a going-beyond portion relative to the second line segment.
  15. The method of producing the electrode (1, 2, 11, 12, 21, 22) as claimed in claim 6, in which

    the second end of the first line segment is free of a going-beyond portion relative to the second line segment.
  16. The vacuum circuit breaker as claimed in claim 12, in which

    the second end of the first line segment is free of a going-beyond portion relative to the second line segment.
Anspruch[fr]
  1. Electrode (1, 2, 11, 12, 21, 22) d'un coupe-circuit à vide, comportant :
    • un élément à coupelle ayant une ouverture et une périphérie qui est formée de façon à présenter une fente (1a, 2a, 11a, 12a, 21a, 22a) afin de former une section de bobine (1b, 2b, 11b, 12b, 21b, 22b), un courant électrique circulant dans la section de bobine (1b, 2b, 11b, 12b, 21b, 22b) afin de générer un champ magnétique longitudinal dans une direction suivant un axe de l'élément à coupelle, la fente (1a, 2a, 11a, 12a, 21a, 22a) étant courbée et s'étendant sur la périphérie depuis une première extrémité de l'élément à coupelle jusqu'à une seconde extrémité de l'élément à coupelle opposée à la première extrémité de l'élément à coupelle ; et
    • un contact (1c, 2c, 11c, 12c, 21c, 22c) façonné en une plaque, et scellant l'ouverture de l'élément à coupelle, caractérisée en ce que la fente courbée (1a, 2a, 11a, 12a, 21a, 22a) comprend un premier segment de ligne ayant une première extrémité qui est sensiblement perpendiculaire à une face opposée du contact (1c, 2c, 11c, 12c, 21c, 22c), et en ce qu'elle s'étend en continu.
  2. Electrode (1, 2, 11, 12, 21, 22) du coupe-circuit à vide selon la revendication 1, dans laquelle la fente courbée (la, 2a, 11a, 12a, 21a, 22a) est formée en gradins.
  3. Electrode (1, 2, 11, 12, 21, 22) du coupe-circuit à vide selon la revendication 1, dans laquelle

       la fente courbée (la, 2a, 11a, 12a, 21a, 22a) est une combinaison :
    • du premier segment de ligne, la face opposée du contact (1c, 2c, 11c, 12c, 21c, 22c) scellant l'ouverture de l'élément à coupelle, et
    • d'un second segment de ligne relié en continu à une seconde extrémité du premier segment de ligne opposée à la première extrémité du premier segment de ligne ; et
    • le premier segment et le second segment forment une inclinaison.
  4. Electrode (1, 2, 11, 12, 21, 22) du coupe-circuit à vide selon la revendication 1, dans laquelle la fente courbée (1a, 2a, 11a, 12a, 21a, 22a) comprend plusieurs fentes.
  5. Electrode (1, 2, 11, 12, 21, 22) du coupe-circuit à vide selon la revendication 1, dans laquelle le contact (1c, 2c, 11c, 12c, 21c, 22c) est façonné suivant sensiblement une plaque en forme de disque.
  6. Procédé de production d'une électrode (1, 2, 11, 12, 21, 22) d'un coupe-circuit à vide, l'électrode (1, 2, 11, 12, 21, 22) comportant un élément à coupelle ayant une ouverture qui est scellée par un contact (1c, 2c, 11c, 12c, 21c, 22c) façonné en une plaque, l'élément à coupelle ayant une périphérie qui est formée de façon à présenter une fente (1a, 2a, 11a, 12a, 21a, 22a) afin de former une section de bobine (1b, 2b, 11b, 12b, 21b, 22b), un courant électrique circulant dans la section de bobine (1b, 2b, 11b, 12b, 21b, 22b) afin de générer un champ magnétique longitudinal dans une direction suivant un axe de l'élément à coupelle, le procédé comprenant les opérations suivantes qui consistent :
    • à faire tourner l'élément à coupelle autour de l'axe de l'élément à coupelle d'un angle d'avance de rotation prédéterminé (&thetas;) par rapport à un outil (3) ; et
    • à faire avancer l'outil (3), dans la direction suivant l'axe de l'élément à coupelle, par rapport à l'élément à coupelle pendant l'opération de tournage de l'élément à coupelle, afin de former la fente (1a, 2a, 11a, 12a, 21a, 22a) qui est courbée et s'étend en continu sur la périphérie depuis une première extrémité de l'élément à coupelle jusqu'à une seconde extrémité de l'élément à coupelle opposée à la première extrémité de l'élément à coupelle, la fente courbée (1a, 2a, 11a, 12a, 21a, 22a) comprenant un premier segment de ligne ayant une première extrémité qui est sensiblement perpendiculaire à une face opposée du contact (1c, 2c, 11c, 12c, 21c, 22c).
  7. Procédé de production de l'électrode (1, 2, 11, 12, 21, 22) de coupe-circuit à vide selon la revendication 6, dans lequel l'opération de tournage et l'opération d'avance sont exécutées de façon alternée.
  8. Procédé de production de l'électrode (1, 2, 11, 12, 21, 22) de coupe-circuit à vide selon la revendication 6, dans lequel l'opération de tournage et l'opération d'avance sont exécutées par intermittence.
  9. Procédé de production de l'électrode (1, 2, 11, 12, 21, 22) de coupe-circuit à vide selon la revendication 6, dans lequel l'outil (3) est un foret (3).
  10. Coupe-circuit à vide comportant :
    • une paire formée d'une première électrode (1, 11, 21) et d'une seconde électrode (2, 12, 22) opposée à la première électrode (1, 11, 21), chacune de la première électrode (1, 11, 21) et de la seconde électrode (2, 12, 22) comportant :
      • un élément à coupelle ayant une ouverture et une périphérie qui est formée de façon à présenter une fente (1a, 2a, 11a, 12a, 21a, 22a) afin de former une section de bobine (1b, 2b, 11b, 12b, 21b, 22b), un courant électrique circulant dans la section de bobine (1b, 2b, 11b, 12b, 21b, 22b) de façon à générer un champ magnétique longitudinal dans une direction suivant un axe de l'élément à coupelle, la fente (1a, 2a, 11a, 12a, 21a, 22a) étant courbée et s'étendant en continu sur la périphérie depuis une première extrémité de l'élément à coupelle jusqu'à une seconde extrémité de l'élément à coupelle opposée à la première extrémité de l'élément à coupelle ; et
      • un contact (1c, 2c, 11c, 12c, 21c, 22c) façonné en une plaque en forme de disque, et scellant l'ouverture de l'élément à coupelle, la fente courbée (1a, 2a, 11a, 12a, 21a, 22a) comprenant un premier segment de ligne ayant une première extrémité qui est sensiblement perpendiculaire à une face opposée du contact (1c, 2c, 11c, 12c, 21c, 22c).
  11. Coupe-circuit à vide selon la revendication 10, dans lequel la fente courbée (1a, 2a, 11a, 12a, 21a, 22a) de chacune de la première électrode (1, 11, 21) et de la seconde électrode (1, 12, 22) est formée en gradins.
  12. Coupe-circuit à vide selon la revendication 10, dans lequel la fente courbée (1a, 2a, 11a, 12a, 21a, 22a) est une combinaison:
    • du premier segment de ligne, la face opposée du contact (1c, 2c, 11c, 12c, 21c, 22c) scellant l'ouverture de l'élément à coupelle, et
    • d'un second segment de ligne relié en continu à une seconde extrémité du premier segment de ligne opposée à la première extrémité du premier segment de ligne ; et
    • le premier segment et le second segment forment une inclinaison.
  13. Coupe-circuit à vide selon la revendication 10, dans lequel 1a fente courbée (1a, 2a, 11a, 12a, 21a, 22a) comprend plusieurs fentes.
  14. Electrode (1, 2, 11, 12, 21, 22) selon la revendication 3, dans laquelle

       la seconde extrémité du premier segment de ligne ne comporte pas de partie dépassante par rapport au second segment de ligne.
  15. Procédé de production de l'électrode (1, 2, 11, 12, 21, 22) selon la revendication 6, dans lequel

       la seconde extrémité du premier segment de ligne ne comporte pas de partie dépassante par rapport au second segment de ligne.
  16. Coupe-circuit à vide selon la revendication 12, dans lequel la seconde extrémité du premier segment de ligne ne comporte pas de partie dépassante par rapport au second segment de ligne.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com