Dokumentenidentifikation EP1287341 14.10.2004
EP-Veröffentlichungsnummer 0001287341
Anmelder Dylog Italia S.p.A., Turin/Torino, IT
Erfinder PIPINO, Marco, I-10034 Chivasso, IT
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60105415
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 08.06.2001
EP-Aktenzeichen 019367150
WO-Anmeldetag 08.06.2001
PCT-Aktenzeichen PCT/IB01/01015
WO-Veröffentlichungsnummer 0001094923
WO-Veröffentlichungsdatum 13.12.2001
EP-Offenlegungsdatum 05.03.2003
EP date of grant 08.09.2004
Veröffentlichungstag im Patentblatt 14.10.2004
IPC-Hauptklasse G01N 23/00


The present invention relates to an X-ray inspection method.

More particularly, the invention relates to a method of non-destructive X-ray inspection of containers of food products.

It is known that non-destructive X-ray inspection of containers of food products is carried out by stationary inspection apparatuses inside which the containers to be inspected are made to pass on a horizontal conveyor belt. Said apparatuses comprise an X-ray emitter connected with a suitable detector, and the relevant control circuits.

Inspection of containers of food products aims at detecting the presence of possible contaminants within the container. Indeed, it is possible that during the working and bottling phases a particle or fragment of a foreign substance, generally of higher specific weight than the liquid where it is by chance present, is found within the container.

It is known that in most cases non-destructive X-ray inspection of glass containers for food industry is carried out by individual apparatuses, located aside the row of said containers to be inspected. Said apparatuses are substantially equipped with an emitter and a detector between which the row of said containers to be inspected passes.

It is also known that said individual apparatuses result in an inspection of 90 to 95% the contained product, said limitation being due to shadow areas created by concavities or inclined walls in the container.

In many cases said result has been wrongly considered sufficient. In effect, a 95% validity only of the inspection has created several problems. Some attempts to remedy such problems have been made, which however were rather complex and expensive, and scarcely satisfactory.

Among such attempts it is worthwhile mentioning the solution proposed in Italian Patent 1 285 008, corresponding to the European application EP 0 795 746 A1, in the name of the same Applicant, which discloses a side inspection apparatus for glass containers and/or cans for food industry. Said apparatus comprises a static structure consisting of two modular units arranged at 90° relative to each other and at 45° relative to the container displacement line. One unit is equipped with a semi-panoramic emitter and a detector, whereas the other unit is equipped with a detector only, identical to that of the first unit

Such a solution allowed eliminating some shadow areas due for instance to the curvature of the container bottoms. Yet it does not allow a direct inspection of the container bottom, that is of the region where contaminants become deposited.

A design of stereoscopic X-ray imaging system having two linear parallel detectors and one X-ray emitter for inspecting passenger baggage is disclosed in Evans JPO et Al. "Design of a stereoscopic X-ray imaging system using a single X-ray source" NDT & E International, Butterworth-Heinemann, Oxford, GB Vol.33, Nr.5, Pages 325-332.

Another example of X-rays inspection apparatus equipped with a single source and a pair of linear receivers is disclosed in DE19823448.

These latter two prior art methods, however, are not suitable for inspecting food containers having a neck and inclined walls like bottles and pots.

It is therefore an object of the present invention to obviate the above drawbacks, by providing a method of using an inspection device allowing a complete and direct inspection, in quick and sure manner, of the bottom of a glass or metal container.

The above and other objects are achieved by a method of using a device for non-destructive X-ray inspection of containers of liquid products, such as glass jars or pots, in accordance with the invention, as claimed in the appended claims.

The method of the invention uses an inspection device with a vertically arranged radiation emitter and at least two radiation detectors, located close to each other, which simultaneously detect the radiation coming from the emitter according to two slightly different directions. Thus, possible zones remaining in the shadow with respect to one direction can generally be inspected by the other detector.

The invention will be now disclosed with reference to the accompanying drawings, relating to a preferred but non limiting embodiment of the invention itself, in which:

  • Fig. 1 is a schematic top view of a container in a prior art inspection device;
  • Fig. 2 is a schematic side view of an inspection device made in accordance with the invention;
  • Fig. 3 is a top view of the inspection device shown in Fig. 2; and
  • Fig. 4 is a schematic side view of a container during an inspection phase in an inspection device made in accordance with the invention.

Fig. 1 shows, in a schematic top view, a container 2 passing, e. g. on a conveyor belt (not shown), in a known inspection device comprising a radiation emitter 12, located above container 2, and a linear radiation detector 4, located below the conveyor belt. The radiation beam emitted by emitter 12 passes through container 2 and its contents and arrives at detector 4, generating, thanks to known electronic processing means, an image related with the transparency, relative to the employed radiation, of the materials passed through by the beam.

Yet, as shown in the same Fig. 1, during displacement of container 2 inside the inspection device, the whole of the container bottom, where possible contaminants are deposited, is not properly inspected. In particular, dashed areas 10a, 10b remain excluded from inspection.

This mainly occurs because, in the container portion lying between neck 6 and external wall 8, the glass layer to be passed through is thicker, because of the wall inclination.

Even though the radiation beam emitted by emitter 12 is a divergent beam and penetrates into the container wholly irradiating the bottom area, linear detector 4 can only detect radiation lying in a vertical plane passing through its sensing surface, thus leaving lateral shadow zones 10a, 10b uncovered.

An inspection device for containers of food and other products, made in accordance with the present invention, is instead disclosed referring to Figs. 2, 3 and 4.

In particular, Figs. 2 and 3 show a group of containers 22, e. g. foodstuff containing glass pots, which are conveyed by a conveyor belt 20 within a vertically arranged inspection device made in accordance with the present invention.

The inspection device comprise a radiation emitter 24, emitting a diverging ray beam 32, e. g. an X-ray beam, and means 26 adapted to detect the radiation emitted by emitter 24. The emitter position is vertically adjustable, e. g. between a low position 24 suitable for small size pots, and a high position 24', suitable for bottles or higher containers.

Actually, for an optimum operation of the device, as it will be disclosed in detail hereinafter with reference to Fig. 4, emitter 24 is to be located slightly above the neck of containers 22.

Radiation detecting means 26 comprise two distinct linear detectors 28, 30, slightly spaced and symmetrically located with respect to a vertical line passing through radiation emitter 24. Detectors 28, 30 receive radiation emitted by emitter 24 according to two different directions 32 and 32', as shown in detail in Fig. 4.

Actually Fig. 4 schematically shows an inspection phase of a pot 22, located between emitter 24, schematically shown above pot neck 34, and detectors 28 and 30. Reference symbol A in the drawing denotes the width of the inclined pot portion 36, between neck 34 and external wall 40. The drawing clearly shows that, if detectors 28, 30 are suitably spaced, the pot bottom, including the extreme bottom corners, can be wholly inspected.

Minimum spacing B between the detectors must at least be equal to twice the half-diameter difference A between neck 34 and external wall 40 of container or pot 22. Indeed in this way rays 32' emitted by emitter 24 penetrate inside container 22, without passing through inclined portion 36, and can pass, without obstacles, also through the bottom periphery, subsequently reaching detector 30. Similarly, the other end of bottom 38 of pot 22 is properly inspected by the other detector 28.

Moreover, to adapt the inspection device to containers with different shapes and sizes, the spacing between sensors 28 and 30 is made variable, of course always within the emission cone of emitter 24. Actually, to inspect wide bottom containers, a greater spacing between detectors 28 and 30 can be suitable, whereas in case of cylindrical container the detectors can be located closer to each other.

The method of the invention thus allows improving the inspection phase of container of food products, ensuring a greater security and reliability.

  1. Verfahren zur zerstörungsfreien Röntgenuntersuchung von Nahrungsmittelbehältern (22), wobei jene Behälter einen Hals (34) sowie einen Bereich (36) mit geneigter Wandung unterhalb des Halses aufweisen,

    wobei das Verfahren

    dadurch gekennzeichnet ist, daß sich ein Sender (24) geringfügig oberhalb des Halses (34) der Behälter (22) befindet, der zur Emission eines Röntgenstrahls im wesentlichen in senkrechter Richtung angeordnet ist und sich ein Strahlungsempfängerelement (26) unterhalb der Behälter (22) zur Erfassung jener Strahlung befindet und daß die Behälter (22) zwischen dem Sender (24) und dem Strahlungsempfängerelement (26) vorbeiziehen, um im wesentlichen in senkrechter Lage untersucht zu werden und daß zwei lineare Strahlungsempfänger (28, 30) im wesentlichen parallel zueinander und mit Abstand voneinander angeordnet sind, um von dem Sender (24) emittierte Strahlung (32, 32') entsprechend ihrer unterschiedlichen Richtungen aufzunehmen, wobei der Abstand (B) zwischen den beiden Strahlungsempfängern (28, 30) auf mindestens das Doppelte der Durchmesserdifferenz (A) zwischen dem Hals (34) des Behälters (22) und der Außenwandung (40) desselben Behälters eingestellt wird, so daß die in den von einem geneigten Wandabschnitt (36) des Behälters geworfenen Schatten verbleibenden Zonen bezüglich des in einer Richtung strahlungsaufnehmenden Empfängers gleichzeitig von dem in einer anderen Richtung strahlungsaufnehmenden Empfänger untersucht werden, wobei der gesamte Boden (38) des Behälters einschließlich der extremen Ecken des Bodens untersucht wird.
  2. Verfahren nach Anspruch 1,

    wobei der Abstand zwischen dem Sender (24) und jenen beiden Strahlungsempfängern (28, 30) so eingestellt wird, daß er dem Typ und der Form der zu untersuchenden Behälter (22) angepaßt ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche,

    wobei jene linearen Strahlungsempfänger (28, 30) eine Länge größer als oder gleich dem Bodendurchmesser des zu untersuchenden Behälters (22) aufweisen.
  1. A method of non-destructive X-ray inspection of containers (22) of food products, said containers having a neck (34) and a portion (36) with inclined walls below said neck, the method being characterised in that an emitter (24) is located slightly above the neck (34) of the containers (22) and is arranged to emit a radiation beam in a substantially vertical direction, and a radiation detection means (26) is located below the containers (22) for detecting said radiation, said containers (22) pass between said emitter (24) and said radiation detecting means (26) for being inspected in a substantially upright position, two linear radiation detectors (28, 30), are arranged substantially parallel to each other and spaced apart so as to receive radiation (32, 32') emitted by said emitter (24) according to different directions, the spacing (B) between said two radiation detectors (28, 30) is adjusted so as to remain equal to at least twice the half-diameter difference (A) between the neck (34) of the container (22) and the external wall (40) of the same container so that the zones remaining in the shadow created by an inclined wall portion (36) of said container with respect to one detector receiving the radiation according to one direction are simultaneously inspected by the other detector receiving the radiation according to a different direction. whereby the whole bottom (38) of said container including the extreme bottom comers is inspected.
  2. A method according to claim 1, wherein the spacing between said emitter (24) and said two radiation detectors (28, 30) is adjusted to suit the kinds and the shapes of the containers (22) to be inspected.
  3. A method according to any preceding claim, wherein said linear. radiation detectors (28. 30) have a length greater than or equal to the diameter of the bottom of the containers (22) to be inspected.
  1. Procédé d'examen non destructeur par rayons X de conteneurs (22) de denrées alimentaires (22), lesdits conteneurs comportant un col (34) et une partie (36) présentant des parois inclinées au-dessous dudit col, le procédé étant caractérisé en ce qu'un émetteur (24) est placé légèrement au-dessus du col (34) des conteneurs (22) et est agencé pour émettre un faisceau de rayons dans une direction essentiellement verticale, et en ce que des moyens de détection de rayonnement (26) sont placés au-dessous des conteneurs (22) pour détecter ledit rayonnement, lesdits conteneurs (22) passent entre ledit émetteur (24) et lesdits moyens de détection de rayonnement (26) pour être examinés dans une position essentiellement verticale, deux détecteurs de rayonnement linéaires (28, 30) sont disposés de façon essentiellement parallèle l'un à l'autre et espacés de façon à recevoir un rayonnement (32, 32') émis par ledit émetteur (24) suivant des directions différentes, l'espacement (B) entre les deux dits détecteurs de rayonnement (28, 30) est réglé de façon à rester égal à deux fois au moins la différence de la moitié du diamètre (A) entre le col (34) du conteneur (22) et la paroi externe (40) du même conteneur de façon que les zones restant dans l'ombre créée par une partie de paroi inclinée (36) dudit conteneur par rapport à un détecteur recevant les rayons suivant une direction sont simultanément examinées par l'autre détecteur recevant les rayons suivant une direction différente, de sorte que la totalité du fond (38) dudit conteneur incluant les angles d'extrémité du fond est examinée.
  2. Procédé selon la revendication 1, dans lequel la distance entre ledit émetteur (24) et les deux dits détecteurs de rayonnement (28, 30) est réglée pour s'adapter aux types et aux formes des conteneurs (22) à examiner.
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel lesdits détecteurs de rayonnement linéaire (28, 30) ont une longueur supérieure ou égale au diamètre du fond des conteneurs (22) à examiner.

A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik



Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: