PatentDe  


Dokumentenidentifikation EP1161854 17.03.2005
EP-Veröffentlichungsnummer 0001161854
Titel IONISATIONSSTAB UND VERFAHREN ZU DESSEN HERSTELLUNG
Anmelder Ion Systems, Inc., Berkeley, Calif., US
Erfinder BLITSHTEYN, Mark, New Hartford, US;
GEFTER, Peter, South San Francisco, US;
GEHLKE, J., Scott, Berkeley, US;
KNIGHT, R., Lisle, Richmond, US;
LEONARD, J., Michael, Bala Cynwyd, US;
PITEL, J., Ira, Morristown, US;
QUIGLEY, Sean, Upper Darby, US;
O'REILLY, Shane, County Cavan, IE
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60018049
Vertragsstaaten CH, DE, FR, GB, IT, LI
Sprache des Dokument EN
EP-Anmeldetag 10.03.2000
EP-Aktenzeichen 009138561
WO-Anmeldetag 10.03.2000
PCT-Aktenzeichen PCT/US00/06225
WO-Veröffentlichungsnummer 0000054559
WO-Veröffentlichungsdatum 14.09.2000
EP-Offenlegungsdatum 12.12.2001
EP date of grant 09.02.2005
Veröffentlichungstag im Patentblatt 17.03.2005
IPC-Hauptklasse H05F 3/04

Beschreibung[en]
Field of the Invention

The invention relates to the field of air ionizers which may be used as static eliminators, and more particularly to a variable length ionizing bar and method of constructing the same, for neutralizing static electricity on moving materials, often in a form of a web or sheets of paper and/or plastic material.

Background of the Invention

Ionizing bars are used to generate positive and negative ions which may be used to eliminate built-up electro-static charges on various items such as paper and/or plastic film products. Typically, when used to eliminate built-up electro-static charges on paper or plastic film products, long webs or sheets of the paper or plastic film product are passed over or under the ionizing bar in order to remove static charges. Due to the variation in width of a wide variety of paper and plastic film products, the width of the running webs and sheets varies from a few inches to several feet. As a result, a wide range of lengths of ionizing bars must be custom manufactured, usually on a short notice.

Numerous ionizing bar designs and production techniques have been described in the art, including those set forth in the following US patents: D. Koerke Pat. 3,551,743; D. Simons, Pat. 3,585,448; M. Iosue, et al., Pat. 3,652,897; H. Richardson, et al., Pat. 3,875,461; A. Testone, Pat. 3,921,037; A. Testone, Pat. 3,968,405; A. Testone, Pat. 4,031,599; H. Bennecke Pat. 4,048,667; D. Simons, Pat. 4,216,518; A. Testone, Pat. 4,263,636; B. Metz, Pat. 4,271,451; D. Saureman, Pat. 4,498,116 and Pat. 4,502,091; K. Domschat, Pat. 5,034,651 and Pat. 5,057,966; W. Larkin, Pat. 5,501,899. US-A-4,974,115 discloses an ionizing bar assembly including an elongated housing from which a plurality of alternating positive and negative emitter pins are extending parallel to each other. The emitter pins are arranged in respective parallel grooves.

Certain known ionizing bars are comprised of a single elongated central high voltage electrode. The high voltage electrode is covered with an insulative or semiconductive sleeve and conductive sleeves. Emitter pins for generating the positive and negative ions extend outward from the electrode. In this type of known ionizing bar, a tubular metallic grounded housing surrounds the high voltage electrode. The metallic grounded housing includes an arrangement of cylindrical openings through which the emitter pins extend from the high voltage electrode.

Other prior art ionizing bars are comprised of a metal housing in the form of an elongated hollow metallic channel having a longitudinally extended opening. In this type of prior art ionizing bar, a high voltage electrode consisting of cable with an inner conductive core formed by a plurality of stranded wires is contained within the metallic channel of the housing. Emitter pins are formed on the outer layer of the cable by conductive paint.

Still other known ionizing bars include two or more parallel rows of metal electrodes with sharp emitter pins extending therefrom for generating positive and negative ions on alternate rows.

Most of these prior art ionizing bars have a high voltage cable that is integral to the ionizing bar assembly and which is connected to a remotely-mounted high voltage power supply for providing power to the bar assembly. Second, although several of prior art ionizing bars do have connectors for removeably coupling a high voltage power supply to the ionizing bar, each of these connectors are located at only one end of the bar and are only suitable for a cable connection to the bar. Accordingly, a cable is coupled between the connector and the high voltage power supply. Additionally, in all of these prior art designs, the ionizing electrodes are located in a single row (positive and negative emitter pins alternating) or in two parallel rows with positive emitter pins arranged in parallel with negative emitter pins. Finally, in each of these designs all components of the bar, especially the housing, inner cables or bus rods, and insulators are custom manufactured to a desired length.

Accordingly, it is would be deisreable to provide an ionizing bar design which does not have a cable for connecting a high voltage power supply that is permanently hard-wired to the bar. Such a design should preferably include universal connectors at each end of the ionizing bar for coupling the bar directly to a power supply, or for coupling the ionizing bar to a power supply via a disconnectable extension cable. What is further needed is an ionizing bar design wherein the emitter pins are not arranged in a single row or in two parallel rows but are arranged in a more efficient configuration. What is further needed is a ioinizing bar design wherein multiple ionizing bars can be daisy chained together in order to achieve alternate lengths. Finally, what is needed is an ionizing bar design and a manufacturing method with would allow to pre-assemble a long ionizing bar assembly that will be ready to be cut to a customer-specified length and quickly shipped to the customer, rather that having to be custom assembled to a desired length.

   The objective of this invention is to provide an ionizing bar that is, a) more reliable in operation, b) more economical and easy to manufacture, c) easy to connect to a high voltage power supply directly or via an extension cable, and d) a method of fabrication that provides shorter lead time to deliver bars to the customers.

Summary of the Invention

The present invention provides an ionizing bar assembly according to claim 1 and a method for fabricating an ionizing bar assembly according to claim 13. Preferred embodiments of the invention are defined in the dependent claims.

   In accordance with the present invention, an ionizing bar assembly is comprised of a plastic housing and two individual ionizing electrode modules disposed on opposite sides of the housing. The first ionizing electrode module receives voltage of a positive polarity when coupled to a source of high voltage power, thereby generating ions of a positive polarity. The second ionizing electrode module receives voltage of a negative polarity when coupled to the source of high voltage power, thereby generating ions of a negative polarity. The ionizing electrode modules each include a plurality of printed circuit boards having signal traces thereon with ionizing electrodes or pins extending therefrom. The plurality of printed circuit boards are electrically coupled together by conductive rods or tubing which are preferably positioned adjacent to the traces on the boards and soldered at various positions along the traces. The ionizing electrode modules on each side of the housing are placed at opposing angles and are offset laterally from each other in such a way that the ionizing electrodes or pins extending from one side are located between the ionizing electrodes or pins extending from the opposite side, with the tips of each aligned along a common central linear axis.

Each ionizing bar assembly preferably slides into two end blocks, which are each located at opposite ends of the bar assembly. The end blocks each include a recess having two pins therein and two socket connectors coupled to the pins at 90 degree angles and extending through a base in each of the two end blocks. The opposite ends of each of the pins extend horizontally through a back end of the end block. The pins are designed to engage with the conductive rods or tubing when the ionizing bar assembly is placed into the recess of the end blocks. The sockets are designed to removeably couple to a high voltage power source. The opposite ends of each of the pins may terminate or may be used for coupling to dual cabling for linking multiple ionizing bar assemblies together. Multiple ionizing bar assemblies may be daisy chained together such that a total length of any desired bar length may be achieved by adding or removing ionizing bar assemblies. The end blocks not only allow the length of any desired ionizing bar to be varied for use in different systems; but, the end blocks further allow assemblies to be easily coupled or removed from a high voltage power source because the high voltage power source is not hard wired to the ionizing bar assemblies.

Brief Description of the Drawings

  • Figure 1 shows a side sectional view of the ionizing bar assembly according to present invention.
  • Figure 2 shows an end sectional view of the ionizing bar sub-assembly according to present invention.
  • Figures 3A and 3B show side views of a printed circuit board electrode module assembly.
  • Figure 4 is a diagram that shows possible locations where the ionizing bar sub-assembly can be cut into shorter sections.
  • Figure 5A shows an isometric view of an end block used in a preferred embodiment of the ionizing bar assembly of the present invention.
  • Figure 5B shows a cross-sectional side view of an end block used in a preferred embodiment of the present invention.
  • Figures 6A and 6B show isometric views of a preferred embodiment of a cable plug.
  • Figure 7 shows a side view of a double-ended pin assembly.
  • Figure 8 shows the preferred embodiment for using a double-ended pin assembly to engage an end block of the ionizing bar assembly and a cable plug coupled to a high voltage power supply.
  • Figures 9A, 9B, and 9C each show various interconnecting combinations of a power supply and ionizing bars according to the present invention.

Detailed Description

In one preferred embodiment of the present invention, an ionizing bar assembly comprised of a plastic housing and two individual ionizing electrode modules disposed on opposite sides of the housing. The first ionizing electrode module receives voltage of a positive polarity when coupled to a source of high voltage power, thereby generating ions of a positive polarity. The second ionizing electrode module receives voltage of a negative polarity when coupled to the source of high voltage power, thereby generating ions of a negative polarity. The ionizing electrode modules each include a plurality of printed circuit boards having signal traces thereon with ionizing electrodes or pins extending therefrom. The plurality of printed circuit boards are electrically coupled together by conductive rods or tubing which are preferably positioned adjacent to the traces on the boards and soldered at various positions along the traces. The ionizing electrode modules on each side of the housing are placed at opposing angles and are offset laterally from each other in such a way that the ionizing electrodes or pins extending from one side are located between the ionizing electrodes or pins extending from the opposite side, with the tips of each substantially aligned along a common central linear axis.

Each ionizing bar assembly preferably slides into two end blocks, which are each located at opposite ends of the bar assembly. The end blocks each include a recess having two pins therein and two socket connectors coupled to the pins at 90 degree angles and extending through a base in each of the two end blocks. The opposite ends of each of the pins extend horizontally through a back end of the end block. The pins are designed to engage with the conductive rods or tubing when the ionizing bar assembly is placed into the recess of the end blocks. The sockets are designed to removeably couple to a high voltage power source. The opposite ends of each of the pins may terminate or may be used for coupling to dual cabling for linking multiple ionizing bar assemblies together. Multiple ionizing bar assemblies may be coupled together to achieve a total length of any desired bar length simply by adding or removing ionizing bar assemblies in a daisy-chain type configuration. The end blocks not only allow the length of any desired ionizing bar to be varied for use in different systems; but, the end blocks further allow assemblies to be easily coupled or removed from a high voltage power source because the high voltage power source is not hard wired to the ionizing bar assemblies.

Figure 1 shows a side sectional view of an ionizing bar assembly in accordance with onepreferred embodiment of the present invention. As shown, the ionizing bar assembly 1 includes an elongated rigid dielectric housing 11 which is preferably fabricated of plastic or any other electrically insulating material using any well known extrusion process. The ionizing bar assembly 1 further includes two identical ionizing electrode modules 13a and 13b which are located on opposite sides of the dielectric housing 11, and two identical end blocks 15a and 15b, located at opposite ends of the dieletric housing 11.

Figure 2 shows a cross-sectional view of the ionizing bar assembly in accordance with one preferred embodiment of the present invention. As shown, the dielectric housing 11 has two symmetrical slots 22a and 22b which extend along the length of the dielectric housing 11. The symmetrical slots 22a and 22b are separated by an insulating barrier 23 located between them which also extends along the length of the dielectric housing 11. The symmetrical slots 22a and 22b receive two high voltage ionizing electrode modules 13a and 13b which are inserted securely into the symmetrical slots 22a and 22b and extend along the entire length of each slot. Each high voltage ionizing electrode module 13a and 13b includes a printed circuit board (PCB) component 23a and 23b and ionizing electrodes 25 extending therefrom. Components 23a and 23b are absolutely identical and are specified under two numbers for convenience only. It is understood that a single PCB component 23a or 23b has several ionizing electrodes 25 extending therefrom at regular intervals along the length of the PCB component 23a and 23b.

The ionizing electrodes 25 are in the form of tapered pins which are electrically coupled to PCB components 23a and 23b - i.e. the ionizing electrodes 25 are preferably soldered to the PCB components 23a and 23b along the length of the module at equal and regular intervals. The sharp ends of the ionizing electrodes 25 protrude through the narrow slots 22a and 22b that extend along the length of the dielectric housing 11. The ionizing electrode modules 13a and 13b are positioned at opposing angels toward each other and are offset from each other laterally in such a way that the ionizing electrodes 25 of one module 13a on a first side of the ionizing bar assembly 1 are located between the electrodes 25 of the opposing module 13b on the opposite side of the ionizing bar assembly 1, with the tips of each of the opposing electrodes 25 substantially aligned along a common linear axis running parallel to the ionizing bar assembly 1.

Preferably, the electrodes 25 are arranged at an angle facing each other so that the tips of the ionizing electrodes 25 are substantially aligned along the common linear axis which extends parallel to the center of the housing 11. Positioning the ionizing electrodes at an angle preferrably ranging from 30° to 120° toward each other and substantially aligning their tips along a straight central axis has several advantages over conventional electrode designs in which the electrodes are arranged in a row along the same plane. First, this arrangement helps maximize electrical field intensity between emitter pins of two electrodes of opposite polarity in order to improve ionization efficiency. Second, this arrangement also physically separates positive and negative electrode modules, increasing clearance and creepage distances between the conductors of opposite polarities and thus improving the reliability of the device.

The dielectric housing 11 and the high voltage ionizing electrode modules 13a and 13b can be made as long as necessary and practical. For example, the dielectric housing 11 can be extruded as long as tens of feet and longer, and then cut to a manageable length of 10-12 feet. Furthermore, even though it is possible to fabricate long strips of the PCB components 23a and 23b, it is not very practical. Accordingly, the PCB components 23a and 23b of the high voltage ionizing electrode modules 13a and 13b will be manufactured in smaller lengths, such as 12" or so, and multiple PCB components are then linked together, as will be further described later herein. In another embodiment of this invention, high-value high-voltage rated resistors are connected in series with the ionizing electrodes 25. The purpose of these resistors is to limit short-circuit current from the electrodes for safety, as well as to help stabilize corona discharge at the ionizing electrodes 25.

Figure 3A shows a side view of a PCB component 23a with ionizing electrodes extending therefrom in accordance with a preferred embodiment of the present invention. Figure 3B shows a close-up view of the PCB component 23a in order to illustrate how a single PCB component and ionizing electrodes 25 extending therefrom are coupled. Referring now to Figure 3A, the PCB component 23a comprises a two-sided printed circuit board strip 33. Surface mount resistors 41 and electrodes 25 are mounted on one side of the printed circuit board strip 33. A bus trace 35 is located on the opposite side of the circuit board strip 33.

Referring now to Figure 3B, the first side of the printed circuit board strip 33 is shown, with a cut out showing the bus trace 35 located on the opposite side of the board strip 33. As shown, several smaller traces 37 are included on the first side of the board strip 33 and are positioned perpendicular to the bus trace 35 and extending from the bus trace 35. These smaller traces 37 are positioned at equal and regular intervals that can range from S" to 4" apart from each other along the bus trace 35 depending upon the required density of ionization along the length of the bar. The smaller traces 37 are coupled to the bus trace 35 on the opposite side of the board strip 33 by a plated through hole. The smaller traces 37 electrically coupled the bus trace 35 to first ends 39a of surface-mount resistors 41 which are preferably soldered on the first side of the circuit board strip 33.

As further shown in Figure 3B, additional small traces 43 connect opposite ends 39b of the surface mount resistors 41 to individual electrode pads 45. The ionizing electrodes 25 are soldered to these pads on the first side of the board strip 33. In this way, each of the ionizing electrodes 25 is electrically coupled to the bus trace 35 through a surface mount resistor 41. In a preferred embodiment, the ionizing electrodes 25 are made of stainless steel, tungsten, or some other metal. The electrodes 25 are machine tapered to a tip. Alternatively, the tip may be tapered using any electro-chemical etching process known in the art of wafer fabrication. Electro-chemical etching is preferred for tapering the electrodes 25 since this process provides a smoother surface that stabilizes ion current over time and helps lower the rate of emitter point contamination. If the electrodes 25 are made from stainless steel or tungsten, these metals may be difficult to solder to the first side of the board strip 33. In order to overcome this problem, the electrodes 25 can be electro-chemically plated with a nickel or gold layer. The plating of the electrodes 25 makes it possible to solder the electrodes to the electro pads 45 on the first side of the board strip 33. In applications characterized by dusty, chemically-aggressive environment, different plating material may be used for positive or negative electrodes. For example, negative ionizing electrodes may have emitter points plated with nickel, and positive electrodes which are typically more prone to contamination, may have emitter points plated with gold.

In a preferred embodiment, several PCB components 23 are coupled together in order to form a single high voltage ionizing electrode module 13a and 13b. The PCB components are arranged in a row with the bus traces on each individual PCB component 23 are butt-ended one to another inside the dielectric housing 11. Referring now again to Fig. 2, where a cross-section of the ionizing bar assembly 1 is shown, the dielectric housing 11 has two symmetrical details 27a and 27b which extend the length of the housing 11. Conductive rods 29a and 29b, or lengths of copper or brass tubing are disposed inside the details 27a and 27b. These conductive rods 29a and 29b are positioned in close contact with the bus traces 35 on each of the circuit board strips 33 of the PCB components 23a and 23b. Accordingly, multiple PCB components 23a and 23b are electrically coupled to one another by the engagement of the bus traces 35 on each of the circuit board strips 33 with the conductive rods 29a and 29b. In order to ensure reliable coupling of the conductive rods 29a and 29b with the bus traces 35, the conductive rods 29a and 29b may be soldered to the bus traces 35 at regular intervals along each of the PCB components 23a and 23b.

After the high voltage ionizing electrode modules 13a and 13b are securely inserted into the slots 22a and 22b within the dielectric housing 11, the outer walls 21 of the housing 11 close over the high voltage ionizing electrode modules 13a and 13b, locking the PCB components 23a and 23b inside the housing 11 and narrowing the slots 22a and 22b substantially to the diameter of the ionizing electrodes 25 which extend outward from the PCB components 23a and 23b. After the high voltage ionizing electrode modules 13a and 13b are each inserted into their respective slots 22a and 22b the slots are filled with an insulating sealant (not shown) in order to prevent industrial dirt and residue from entering inside the ionizing bar assembly 1. In a preferred embodiment, room temperature curing adhesive, or heat curing or light curing adhesive is used as the insulating sealant.

It is noted that the ionizing bar assembly 1 may be manufactured in a long standard length of several feet. Once assembled, the ionizing bar assembly I can be cut into any desired length. Figure 4 shows the preferred locations where the ionizing bar assembly 1 can be cut into shorter lengths. The locations where the ionizing bar subassembly could be conveniently cut are indicated by numerals 48a through 48i. These locations preferably repeat at increments equal to the distance between neighboring ionizing electrodes in the electrode module on one side of the bar in order to ensure that there will always be an equal number ofpairs of positive and negative electrodes. The cuts are made exactly in the center between the neighboring ionizing electrodes on both sides of the ionizing bar assembly 1 at locations where there are no surface mount resistors.

Referring again to the ionizing bar assembly 1 shown in Figure 1, after the bar is cut to a desired length, assembly of the bar is completed by placing two identical end blocks 15a and 15b on each end of the cut assembly. The end blocks 15a and 15b safely terminate the bus traces 35 on the high voltage ionizing electrode modules 13a and 13b and insulate the ends of the conductive rods 29a and 29b. The end blocks 15a and 15b further provide reliable electrical connection of a high voltage power supply to the bus traces 35 of the high voltage ionizing electrode modules 13a and 13b through the slotted pin assemblies contained within the end blocks 15a and 15b. Finally, the end blocks 15a and 15b facilitate the mechanical attachment of the ionizing bar assembly 1 to the production equipment where the bar is to be installed and utilized.

Figure 5A shows an isometric view of an end block 51 used in a preferred embodiment of the ionizing bar assembly of the present invention. The end block 51 can be molded out of dielectric polymer materials, such as ABS, PVC, or any other dielectric polymer known in the art. The end block 51 includes a recess 53 in the cross-sectional shape of the dielectric housing 11, such that the ends of the housing slide inside the recess 53 in each of the two end blocks 51. The end block 51 further includes two pin connector assemblies 55 that can be either insert-molded or inserted into a rear side of the end block 51. The pin connector assemblies 55 engage with the conductive rods 29a and 29b (i.e. the slotted pins 56 will fit securely within the copper tubing) when the housing 11 slides into the recess, thereby electrically coupling the pin connector assemblies 55 to the bus traces 35 of the high voltage ionizing electrode modules 13a and 13b.

Figure 5B shows a cross sectional side view of an end block 51 used in a preferred embodiment of the ionizing bar assembly of the present invention. As shown, the pin connector assemblies 55 are preferably slotted pins and socket assemblies which include a slotted pin 56 that fits securely into the metal tubing (i.e. the conductive rod 29a) while the socket 59 extends vertically upward through the end block 51 when the end block 51 is secured to the end of the ionizing bar assembly 1. The sockets 59 are accessible via holes or openings molded into the end blocks 51. In a preferred embodiment, the end block 51 is designed in two individual portions, a bar-side portion 60 (where the recess is located) and mount-side portion 62 (where the bar may be coupled to the apparatus or to another bar using cabling, as will be described further hereinafter). The two portions will telescope into each other and be secured together using epoxy or another type of adhesive.

A source of high voltage can be connected to the ionizing bar assembly 1 directly via the sockets 59 or may be coupled to the ionizing bar assembly 1 via a cable connected between the power supply and the sockets 59 in the end block 51. If cabling is used, the cable will preferably have cable plugs on each end for coupling to the sockets 59. Figure 6 shows a preferred embodiment of a cable plug 61 with a cable attached to it which may used to couple a high voltage power supply to the ionizing bar assembly. As shown, the cable plug 61 consists of a base 63 and a cover 65 which are formed as two plastic molded parts. In the base, there are two socket connectors 67a and 67b inserted into two holes. The sockets in the cable plug 61 are identical to the sockets 59 in the end blocks 51, and the distance between the sockets in both components is identical. The two cables 69a and 69b are cut to the desired length and their ends are stripped of insulation. The center conductor of each cable 69a and 69b is inserted into a through hole 71 formed at the outer end of the corresponding socket and then secured with a set screw 72. The base of the cable plug and the cover are joined together with two self-tapping screws from the base side of the assembly.

In an alternative embodiment, the socket connecters on the end blocks 51 may be converted into male pins using double-ended pin assemblies. Figure 7 shows a double-ended pin assembly 73 which may be is used to change the female socket connectors in the end blocks 51 into male pin connectors. A first end 75 of the double-ended pin 73 has a machined groove 77. A second and opposite end 79 of the double-end pin 73 is preferably smooth. A grommet 81 made of an elastic material is securely fastened around the middle portion of the double-end pin 73. In a preferred embodiment, the sockets used in the end blocks 51 are each equipped with a contact, such as #08 contact manufactured by Mill-Max Mfg. Corp., which is press fit inside the barrel of the socket. The machined groove 77 located at the first end 75 of the double-ended pin 73 is formed to slip through the contact when engaged in the sockets in the end block 51. The fingers of the contact will engage into the machined groove 77 and prevent easy removal of the double-ended pin out of the socket in the end block 51. When the grooved end 75 of the double-ended pin 73 is engaged into the socket it may sustain up to a 20 lb force tension without coming loose in order to insure a fail safe connection. The second and opposite end 79 of the double-ended pin 73 has a smooth surface which preferably couples to the cable plug of a high voltage power supply or an extension cable.

Figure 8 illustrates double-ended pins 73 engaged between an end block 51 of an ionizing bar and a cable plug 61 coupled to a high voltage power supply for supplying power to the ionizing bar assembly 1. As shown, the end block 51 has two sockets 59, and the cable plug 61 also has two sockets 67. The double-end pins 73 are inserted into the end block 51 of the ionizing bar with the grooved ends 75 inside. The fingers of the contact 83 allow the grooved end 75 to pass through. However, the double-ended pins 73 are securely held in place by the fingers of the contact 83 which engage into the groove 77 and prevent extraction of the pin. Therefore, the end block of the bar becomes a male connector in the illustrated configuration. The socket 67 of the cable plug 63 accepts the smooth end 79 of the double-end pin 73. The extraction force of the pin inserted with its smooth end is low, and upon separation of the cable plug from the end block 51 of the ionizing bar assembly 1 the double ended pins 73 remain locked within the end block 51. In other words, the cable plug will remain a female connector. As a result, the cable plug that attaches the high voltage cables to the ionizing bar will not have any exposed high voltage pins if the cable plug is disconnected from the ionizing bar assembly 1. This provides an additional safety measure and makes it easier and safer to connect/disconnect the ionizing bar from the application system. The grommet 81 that is placed over the middle portion of the double-end pins 73 engages and seals the interface between the end block 51 and the connector plug. In a preferred embodiment, the two parts are mechanically held together with a plastic snap-in fastener 90.

Referring to FIG. 9, the ionizing bar assembly of the present invention has several advantages. First, a removeable power supply 92 with output sockets can be directly connected to one of the end blocks 93 of the ionizing bar 1a, with double-ended pins coupled between the sockets in the end block 93 and the high voltage power supply 92 in order to safely secure the removeable power supply 92 to the end block 93. The opposite end block 94 may terminate with sockets at the end block 94 without any double-ended pins inserted therein. This configuration is illustrated in Figure 9a.

Alternatively, a high voltage power supply 92 with output sockets can be directly connected to one of the end blocks 93 of the ionizing bar 1a, with double-ended pins coupled between the sockets in the end block 93 and the high voltage power supply 92. The second end block 94, located at an opposite end of the ionizing bar 1a, always terminates with connector sockets for safety. A cable plug 95, of an extension cable 96, can be used at the end block 94 in order to couple a second ionizing bar 1b assembly to the first ionizing bar assembly 1a. The cable plug 95 has pins. A cable plug 97 has sockets that would connect to the pins in the end block 98 of the second bar 1b. An extension cable, similar to a bar, always has sockets at the open energized end. An opposite end block 99 in the second ionizing bar assembly 1b terminates with sockets at the end block 99 without any double-ended pins inserted therein. This configuration is illustrated in Figure 9b.

Finally, a high voltage power supply 92 with output sockets may be connected to a first cable plug 101 at a first end of a first extension cable 102. The first cable plug 101 has double-end pins inserted into its sockets with the grooved ends inside in order to safely secure the first cable plug 101 to the power supply 92. A second cable plug 103, located at the other opposite end of the first extension cable 102 preferably has output sockets. The second cable plug 103 connects to a first end block 93 of a first ionizing bar 1a, the first end block 93 preferably has double-ended pins inserted into its sockets with the grooved ends inside. The first cable plug 95 of the second extension cable 96 is connected to the second end block 94 of the first ionizing bar 1a, located at the opposite end of the ionizing bar 1a. The second cable plug 97 on the other end of the second extension cable 96 connects to the first end block 98 of the second ionizing bar 1b. The opposite end block 99 of the second ionizing bar 1b terminates with output sockets. This configuration is illustrated in Figure 9c.

From the above description, it will be apparent that the invention disclosed herein provides a novel and advantageous ionizing bar assembly and method of fabricating the same. The foregoing discussion discloses and describes merely exemplary methods and embodiments of the present invention. As will be understood by those familiar with the art, the invention may be embodied in other specific forms without departing from the scope of the invention. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.


Anspruch[de]
  1. Ionisierungs-Stabaufbau mit:
    • einem länglichen dielektrischen Gehäuse (11), das ein Paar länglicher Schlitze (22a, 22b) aufweist, die durch eine längliche Barriere getrennt sind; und
    • Ionisierungs-Elektrodenmodulen (25), die an gegenüberliegenden Seiten des Gehäuses (11) in jedem Schlitz des Paars länglicher Schlitze (22a, 22b) vorgesehen sind, wobei die Ionisierungs-Elektrodenmodule (25) leitende Buselemente (35) mit daran angebrachten Emitterstiften umfassen, die sich an ausgewählten Stellen entlang der Schlitze mit zueinander konvergierenden Winkeln aus den Schlitzen (22a, 22b) erstrecken.
  2. Ionisierungs-Stabaufbau nach Anspruch 1 mit einem Endblock (15a, 15b) aus dielektrischem Material, der an einem Ende des dielektrischen Gehäuses (11) über den dort vorgesehenen Ionisierungs-Elektrodenmodulen angeordnet ist.
  3. Ionisierungs-Stabaufbau nach Anspruch 1, wobei die Ionisierungs-Elektrodenmodule (25) umfassen:
    • gedruckte Leiterplatten (23a, 23b), auf denen Buselemente (35) angeordnet sind, auf welchen sich von diesen erstreckende Emitterstifte angebracht sind, wobei der Aufbau umfaßt:
      • Leiter (29a, 29b), die in Kontakt mit den Buselementen (35) der ionisierenden Elektrodenmodule (35) angeordnet sind, um mit den gedruckten Leiterplatten (23a, 23b) in elektrischem Kontakt zu stehen.
  4. Ionisierungs-Stabaufbau nach Anspruch 3, wobei die Ionisierungs-Elektrodenmodule (25) eine Vielzahl der gedruckten Leiterplatten (23a, 23b) umfassen, die in einer im wesentlichen kontinuierlichen Anordnung entlang der länglichen Schlitze (22a, 22b) angeordnet sind, wobei deren Buselemente (35) über die Leiter (29a, 29b) mit diesen in Kontakt stehen.
  5. Ionisierungs-Stabaufbau nach Anspruch 3, wobei die Buselemente (35) jeweils auf einer ersten Seite jeder gedruckten Leiterplatte (23a, 23b) angeordnet sind und die sich davon erstreckenden Emitterstifte an den Elektrodenflächen (45) angebracht sind, welche auf einer zweiten Seite jeder gedruckten Leiterplatte (23a, 23b) befestigt sind, wobei die Elektrodenflächen (45) mit den Buselementen (35) über Bahnen (45) verbunden sind, die auf den zweiten Seiten der gedruckten Leiterplatten (23a, 23b) angeordnet und über Leiter (29a, 29b) elektrisch verbunden sind, die durch die gedruckten Leiterplatten (23a, 23b) hindurchführen und die auf den zweiten Seiten vorgesehene Bahnen (45) mit den Buselementen (35) verbinden, die auf den ersten Seiten vorgesehen sind.
  6. Ionisierungs-Stabaufbau nach Anspruch 5, der Widerstände (41) umfaßt, die jede der Elektrodenfläche (45), die auf der zweiten Seite der gedruckten Leiterplatte (23a, 23b) angeordnet sind, mit den Buselementen (35) verbinden, die auf der ersten Seiten angeordnet sind.
  7. Ionisierungs-Stabaufbau nach Anspruch 1, wobei die Emitterstifte der Ionisierungs-Elektrodenmodule (25), die in den Schlitzen (22a, 22b) des Gehäuses (11) angeordnet sind, in Längsrichtung zueinander versetzt sind, um die Emitterstifte, die sich von den in den Schlitzpaaren (22a, 22b) angeordneten Ionisierungs-Elektrodenmodulen (25) erstrekken, mit Zwischenraum zueinander anzuordnen.
  8. Ionisierungs-Stabaufbau nach Anspruch 2, wobei der Endblock (15a, 15b) umfaßt:
    • ein Verbinderpaar (55), das angeordnet ist, elektrische Verbindungen mit den leitenden Buselementen (35) der Ionisierungs-Elektrodenmodule (25) am Ende des Gehäuses (11) auszubilden.
  9. Ionisierungs-Stabaufbau nach Anspruch 8, umfassend: ein Paar der Endblöcke (15a, 15b), die an jedem Ende des Gehäuses (11) vorgesehen sind, um an jedem Ende des Gehäuses (11) elektrische Verbindungen mit den in den Schlitzen (22a, 22b) angeordneten Ionisierungs-Elektrodenmodulen (25) auszubilden.
  10. Ionisierungs-Stabaufbau nach Anspruch 9 mit einem zusätzlichen Ionisierungs-Stabaufbau, der leitende Buselemente (35) aufweist, die zu Ionisierungs-Elektrodenmodulen (25) gehören, welche in diesen elektrisch über jeweilige Endblöcke (15a, 15b) mit den leitenden Buselementen (35) der Ionisierungs-Elektrodenmodule (25) des Ionisierungs-Stabaufbaus verbunden sind.
  11. Ionisierungs-Stabaufbau nach Anspruch 8, wobei jedes Verbinderpaar (55) umfaßt:
    • einen leitenden geschlitzten Stift, der in dem Endblock (15a, 15b) angeordnet ist, um in Reaktion auf eine verschiebbare Verbindung des dielektrischen Gehäuses mit dem Endblock (15a, 15b) eine verschiebbare elektrische Verbindung mit dem leitenden Buselement eines Ionisierungs-Elektrodenmoduls am Ende des dielektrischen Gehäuses (11) auszubilden, um die Ionisierungs-Elektrodenmodule (25), die in dem Schlitzpaar (22a, 22b) in dem Gehäuse (11) vorgesehen sind, über den Endblock (15a, 15b) mit positiver und negativer Hochspannung zu versorgen.
  12. Ionisierungs-Stabaufbau nach Anspruch 9, wobei jedes Verbinderpaar (55) einen leitenden Sockel (59) umfaßt, der hinter einer Öffnung innerhalb der Vertiefung des Endblocks (15a, 15b) vorgesehen ist und einen leitend geschlitzten Stift umfaßt, der verschiebbar, durch die Öffnung hindurch mit dem leitenden Sockel (59) verbunden ist.
  13. Verfahren zum Herstellen eines Ionisierungs-Stabaufbaus mit den Schritten:
    • Ausbilden eines länglichen dielektrischen Gehäuses (11) mit einem Paar länglicher Schlitze (22a, 22b), die in dem Gehäuse durch eine dazwischen vorgesehene Barriere getrennt sind;
    • Ausbilden von Ionisierungs-Elektrodenmodulen (25), die jeweils einen leitenden Bus aufweisen, der entlang ihrer Länge angeordnet ist und der Emitterstifte aufweist, die mit diesem verbunden sind und sich von diesen seitlich erstrecken; und
    • Sichern der Ionisierungs-Elektrodenmodule (25) in den Schlitzen (22a, 22b) in dem Gehäuse (11) mittels Emitter-Stiften, die aus diesen mit konvergierenden Winkeln hervorragen.
  14. Verfahren nach Anspruch 13, das ferner den Schritt umfaßt:
    • Schneiden des Gehäuses (11) über eine gewünschte Länge und quer zu den Schlitzen (22a, 22b), nachdem die Ionisierungs-Elektrodenmodule (25) in den Schlitzen (22a, 22b) gesichert wurden.
  15. Verfahren nach Anspruch 14, das ferner die Schritte umfaßt:
    • Ausbilden dielektrischer Endblöcke (15a, 15b), die jeweils eine Vertiefung aufweisen, um in diesen verschiebbar ein Ende des dielektrischen Gehäuses (11) aufzunehmen, und
    • die jeweils einen Verbinder-Aufbau (55) aufweisen, der in diesem angeordnet ist, um die Ionisierungs-Elektrodenmodule (25) in den Schlitzen (22a, 22b) zu kontaktieren;
    • Schieben eines Endblocks (15a, 15b) über ein Ende um die gewünschte Länge des dielektrischen Gehäuses (11), wobei der Verbinder-Aufbau (55) in Kontakt mit dem leitenden Bus jedes Ionisierungs-Elektrodenmoduls (25) ist; und
    • Schieben eines weiteren Endblocks (15a, 15b) über ein entgegengesetztes Ende des Gehäuses (11), wobei der Verbinder-Aufbau (55) in Kontakt mit dem leitenden Bus jedes Ionisierungs-Elektrodenmoduls (25) ist.
  16. Verfahren nach Anspruch 13, wobei die Ionisierungs-Elektrodenmodule (25) in den Schlitzen (22a, 22b) gesichert werden und sich die Emitterstifte seitlich von diesen bei zueinander konvergierenden Winkeln erstrecken, wobei die Spitzen der Emitter-Stifte im wesentlichen entlang einer gemeinsamen Mittelachse ausgerichtet und in Längsrichtung mit Zwischenraum zueinander angeordnet werden.
  17. Verfahren nach Anspruch 13, wobei der Schritt des Ausbildens der Ionisierungs-Elektrodenmodule (25) umfaßt:
    • Herstellen gedruckter Leiterplatten (23a, 23b), die jeweils eine Busbahn auf einer Seite aufweisen, wobei die Emitterstifte mit der Busbahn verbunden werden und sich von der entgegengesetzten Seite aus erstrecken; und
    • Anordnen der gedruckten Leiterplatten (23a, 23b) in den Schlitzen (22a, 22b), wobei die Busbahnen (45) auf jeder Leiterplatte in einem Schlitz einen durchgehenden elektrischen Schaltkreis im wesentlichen entlang der gewünschten Länge des Gehäuses (11) bilden.
  18. Verfahren nach Anspruch 13, wobei der Schritt des Ausbildens von Ionisierungs-Elektrodenmodulen (25) umfaßt:
    • Herstellen einer Vielzahl gedruckter Leiterplatten (23a, 23b), die auf einer Seite jeweils eine Busbahn und auf der anderen Seite sich davon erstreckende Emitterstifte aufweisen, welche elektrisch mit der Busbahn auf der einen Seite der gedruckten Leiterplatten (23a, 23b) verbunden werden; und
    • Anordnen der Vielzahl der gedruckten Leiterplatten (23a, 23b) Seite an Seite in den Schlitzen (22a, 22b) des Gehäuses (11), wobei die auf jeder Leiterplatte vorgesehenen Busbahnen (45) elektrisch miteinander mit allen Leiterplatten in einem Schlitz verbunden werden.
  19. Verfahren nach Anspruch 13, wobei der Schritt des Sichems umfaßt:
    • Längsversetzen der Ionisierungs-Elektrodenmodule (25) in einem Schlitz des Paars Schlitze (22a, 22b) gegenüber den Ionisierungs-Elektrodenmodulen (25) in dem anderen Schlitz des Paars Schlitze (22a, 22b), um die Emitterstifte, die sich von jedem Ionisierungs-Elektrodenmodul (25) erstrecken, mit Zwischenraum zueinander anzuordnen.
  20. Verfahren nach Anspruch 15, das ferner die Schritte umfaßt:
    • Ausbilden eines zusätzlichen Stab-Ionisierungsaufbaus mit einer gewünschten Länge;
    • Aufschieben von Endblöcken (15a, 15b) über die Enden des dielektrischen Gehäuses (11) des zusätzlichen Stab-Ionisierungsaufbaus; und
    • elektrisches Verbinden mit den ionisierenden Elektrodenmodulen (25) in den entsprechenden Schlitzen (22a, 22b) des dielektrischen Gehäuses (11) durch die Endblöcke (15a, 15b).
  21. Verfahren zum Entfernen elektrostatischer Ladung von einer sich bewegenden dielektrischen Bahn mittels eines Stab-Ionsierungsaufbaus nach Anspruch 1, wobei das längliche Gehäuse (11) quer zu der Bewegung der dielektrischen Bahn angeordnet wird, und die Emitterstifte in geringem Abstand zu einer Oberfläche der Bahn angeordnet werden; und hohe ionisierende Spannungen an die Ionisierungs-Elektrodenmodule (25) angelegt werden, die in jedem der Anzahl von Schlitzen (22a, 22b) angeordnet sind, um in der Nähe der Oberfläche der Bahn, benachbart zu den Spitzen der Emitterstifte, die im wesentlichen ausgerichtet entlang einer Querachse relativ zur Bewegung der Bahn angeordnet sind, Ionen auszubilden.
Anspruch[en]
  1. An ionizing bar assembly comprising:
    • an elongated dielectric housing (11) having a pair of elongated slots (22a, 22b) separated by an elongated barrier; and
    • ionizing electrode modules (25) disposed on opposite sides of the housing (11) within each of the pair of elongated slots (22a, 22b), said ionizing electrode modules (25) including conductive bus elements (35) with emitter pins attached thereto to extend from the slots (22a, 22b) at selected locations therealong at converging angles toward each other.
  2. The ionizing bar assembly of claim 1 comprising an end block (15a, 15b) of dielectric material positioned at an end of the dielectric housing (11) over the ionizing electrode modules (25) disposed thereat.
  3. The ionizing bar assembly of claim 1, wherein the ionizing electrode modules (25) comprise:
    • printed circuit boards (23a, 23b) having bus elements (35) thereon with the emitter pins attached thereto and extending therefrom, and the assembly comprises:
      • conductors (29a, 29b) positioned in contact with the bus elements (35) of the ionizing electrode modules (25) for electrically coupling to the printed circuit boards (23a, 23b).
  4. The ionizing bar assembly of claim 3 in which the ionizing electrode modules (25) include a plurality of said printed circuit boards (23a, 23b) disposed in substantially contiguous array along the elongated slots (22a, 22b) with the bus elements (35) thereof connected via the conductors (29a, 29b) in contact therewith.
  5. The ionizing bar assembly of claim 3, wherein the bus elements (35) are each located on a first side of each of the printed circuit boards (23a, 23b) and the emitter pins extending therefrom are attached to electrode pads (45) mounted on a second side of each of the printed circuit boards (23a, 23b), said electrode pads (45) being electrically coupled to the bus elements (35) via traces (45) located on the second sides of the printed circuit boards bus elements (35) via traces (45) located on the second sides of the printed circuit boards (23a, 23b) and via conductors (29a, 29b) through the printed circuit boards (23a, 23b) which connect the traces (45) on the second sides to the bus elements (35) on the first sides.
  6. The ionizing bar assembly of claim 5 including resistors (41) connecting each of the electrode pads (45) on the second side of each of the printed circuit boards (23a, 23b) and the bus elements (35) on the first side.
  7. The ionizing bar assembly of claim 1, wherein the emitter pins of the ionizing electrode modules (25) located in the slots (22a, 22b) of the housing (11) are offset from each other in the elongation direction to interspace the emitter pins extending from the ionizing electrode modules (25) disposed in the pair of slots (22a, 22b).
  8. The ionizing bar assembly of claim 2 in which the end block (15a, 15b) includes:
    • a pair of connectors (55) disposed to form electrical connections to the conductive bus elements (35) of ionizing electrode modules (25) at the end of the housing (11).
  9. The ionizing bar assembly of claim 8 comprising:
    • a pair of said end blocks (15a, 15b) located at each end of the housing (11) to form electrical connections to the bus elements (35) of the ionizing electrode modules (25) in the slots (22a, 22b) at each end of the housing (11).
  10. The ionizing bar assembly of claim 9 comprising an additional ionizing bar assembly having conductive bus elements (35) of ionizing electrode modules (25) therein electrically connected through respective end blocks (15a, 15b) to the conductive bus elements (35) of the ionizing electrode modules (25) of said ionizing bar assembly.
  11. The ionizing bar assembly of claim 8, wherein each of the pair of connectors (55) comprises:
    • a conductive slotted pin positioned in the end block (15a, 15b) to form slidable electrical connection with the conductive bus element of an ionizing electrode module at the end of the dielectric housing (11) in response to slidable engagement therewith of the end block (15a, 15b) for supplying high positive and negative voltages through the end block (15a, 15b) to the ionizing electrode modules (25) disposed in the pair of slots (22a, 22b) in the housing (11).
  12. The ionizing bar assembly of claim 9 in which each of the pair of connectors (55) includes a conductive socket (59) disposed behind an aperture within the recess of the end block (15a, 15b), and includes the conductive slotted pin slidably attached to the conductive socket (59) through the aperture
  13. A method for fabricating an ionizing bar assembly comprising:
    • forming an elongated dielectric housing (11) having a pair of elongated slots (22a, 22b) therein separated by a barrier therebetween;
    • forming ionizing electrode modules (25) each with a conductive bus disposed along the length thereof and with emitter pins connected to and extending laterally therefrom; and
    • securing the ionizing electrode modules (25) in the slots (22a, 22b) in the housing (11) with the emitter pins protruding therefrom at converging angles.
  14. The method of claim 13, further comprising the step of cutting the housing (11) transverse to the slots (22a, 22b) at a desired length after securing the ionizing electrode modules (25) in the slots (22a, 22b).
  15. The method of claim 14 further comprising the steps of:
    • forming dielectric end blocks (15a, 15b) each having a recess for slidably receiving therein an end of the dielectric housing (11), and each having a connector (55) assembly herein disposed to connect with the ionizing electrode modules (25) in the slots (22a, 22b);
    • sliding an end block (15a, 15b) over an end of the desired length of dielectric housing (11) with the connector (55) assembly in contact with the conductive bus of each of said ionizing electrode modules (25); and
    • sliding another end block (15a, 15b) over an opposite end of the housing (11) with the connector (55) assembly in contact with the conductive bus of each of said ionizing electrode modules (25).
  16. The method claim 13, wherein the ionizing electrode modules (25) are secured in the slots (22a, 22b) with the emitter pins extending laterally therefrom at converging angles toward each other with tips of the emitter pins substantially aligned and longitudinally interspaced along a common central axis.
  17. The method of claim 13, wherein the step of forming the ionizing electrode modules (25) comprises:
    • fabricating printed circuit boards (23a, 23b) each having a bus trace on one side and having the emitter pins coupled to the bus trace and extending from the opposite side; and
    • arranging the printed circuit boards (23a, 23b) in the slots (22a, 22b) with the bus traces (45) on each board in a slot forming a continuous electrical circuit substantially along the desired length of the housing (11).
  18. The method of claim 13, wherein the step of forming ionizing electrode modules (25) comprises:
    • fabricating a plurality of printed circuit boards (23a, 23b) each having a bus trace on one side and emitter pins extending therefrom on the opposite side electrically coupled to the bus trace on the one side of the printed circuit boards (23a, 23b); and
    • arranging the plurality of printed circuit boards (23a, 23b) side by side in the slots (22a, 22b) of the housing (11) with the bus traces (45) on each board electrically coupled together with all of the boards in a slot.
  19. The method of claim 13 in which the step of securing includes longitudinally offsetting the ionizing electrode modules (25) in one of the pair of slots (22a, 22b) from the ionizing electrode modules (25) in the other of the pair of slots (22a, 22b) to interspace the emitter pins extending from each of the ionizing electrode modules (25).
  20. The method of claim 15 further comprising the steps of:
    • forming an additional ionizing bar assembly of desired length;
    • sliding end blocks (15a, 15b) over ends of the dielectric housing (11) of the additional ionizing bar assembly; and
    • electrically coupling to the ionizing electrode modules (25) in corresponding slots (22a, 22b) of the dielectric housing (11) through the end blocks (15a, 15b).
  21. A method for removing electrostatic charges from a moving dielectric web using an ionizing bar assembly as in claim 1 in which the elongated housing (11) is disposed transverse to the movement of the dielectric web with the emitter pins positioned in close proximity to a surface of the web; and

    high ionizing voltages are applied to the ionizing electrode modules (25) disposed in each of the number of slots (22a, 22b) to form ions in the vicinity of the surface of the web adjacent the tips of the emitter pins positioned in substantial alignment along a transverse axis relative to movement of the web.
Anspruch[fr]
  1. Ensemble de barre d'ionisation, comprenant:
    • un boîtier diélectrique allongé (11) comportant une paire de fentes allongées (22a, 22b) séparées par une barrière allongée; et
    • des modules d'électrode d'ionisation (25) disposés sur des côtés opposés du boîtier (11) à l'intérieur de chaque fente de la paire de fentes allongées (22a, 22b), lesdits modules d'électrode d'ionisation (25) comprenant des éléments de bus conducteur (35) pourvus de broches d'émetteur attachées à ceux-ci pour s'étendre à partir des fentes (22a, 22b) à des endroits sélectionnés le long de celles-ci sur des angles les faisant converger les unes vers les autres.
  2. Ensemble de barre d'ionisation selon la revendication 1, comprenant un bloc d'extrémité (15a, 15b) constitué d'une matière diélectrique et positionné à une extrémité du boîtier diélectrique (11) au-dessus les modules d'électrode d'ionisation (25) disposés à celle-ci.
  3. Ensemble de barre d'ionisation selon la revendication 1, dans lequel les modules d'électrode d'ionisation (25) comprennent:
    • des plaquettes à circuits imprimés (23a, 23b) comprenant des éléments de bus (35) sur celles-ci avec les broches d'émetteur attachées sur ceux-ci et s'étendant à partir de ceux-ci, l'ensemble comprenant:
      • des conducteurs (29a, 29b) positionnés en contact avec les éléments de bus (35) des modules d'électrode d'ionisation (25) pour être couplés électriquement aux plaquettes à circuits imprimés (23a, 23b).
  4. Ensemble de barre d'ionisation selon la revendication 3, dans lequel les modules d'électrode d'ionisation (25) comprennent une pluralité desdites plaquettes à circuits imprimés (23a, 23b) disposées en un agencement substantiellement contigu le long des fentes allongées (22a, 22b) avec les éléments de bus (35) de ceux-ci connectés via les conducteurs (29a, 29b) en contact avec ceux-ci.
  5. Ensemble de barre d'ionisation selon la revendication 3, dans lequel les éléments de bus (35) sont chacun situés sur un premier côté de chacune des plaquettes à circuits imprimés (23a, 23b), et les broches d'émetteur s'étendant à partir de ceux-ci sont attachées à des patins d'électrode (45) montés sur un deuxième côté de chacune des plaquettes à circuits imprimés (23a, 23b), lesdits patins d'électrode (45) étant électriquement couplés aux éléments de bus (35) par l'intermédiaire de traces (45) situées sur les deuxièmes côtés des plaquettes à circuits imprimés (23a, 23b) et par l'intermédiaire de conducteurs (29a, 29b) à travers les plaquettes à circuits imprimés (23a, 23b) qui connectent les traces (45) sur les deuxièmes côtés aux éléments de bus (35) sur les premiers côtés.
  6. Ensemble de barre d'ionisation selon la revendication 5, comprenant des résistances (41) reliant chacun des patins d'électrode (45) sur le deuxième côté des plaquettes à circuits imprimés (23a, 23b) et les éléments de bus (35) sur le premier côté.
  7. Ensemble de barre d'ionisation selon la revendication 1, dans lequel les broches d'émetteur des modules d'électrode d'ionisation (25) situés dans les fentes (22a, 22b) du boîtier (11) sont décalées les unes par rapport aux autres dans la direction d'allongement pour espacer les broches d'émetteur s'étendant à partir des modules d'électrode d'ionisation (25) disposés dans la paire de fentes (22a, 22b).
  8. Ensemble de barre d'ionisation selon la revendication 2, dans lequel le bloc d'extrémité (15a, 15b) comprend:
    • une paire de connecteurs (55) disposés de manière à former des connexions électriques aux éléments de bus conducteur (35) des modules d'électrode d'ionisation (25) à l'extrémité du boîtier (11).
  9. Ensemble de barre d'ionisation selon la revendication 8, comprenant:
    • une paire desdits blocs d'extrémité (15a, 15b) situés à chaque extrémité du boîtier (11) de manière à former des connexions électriques aux éléments de bus (35) des modules d'électrode d'ionisation (25) situés dans les fentes (22a, 22b) à chaque extrémité du boîtier (11).
  10. Ensemble de barre d'ionisation selon la revendication 9, comprenant un ensemble de barre d'ionisation supplémentaire comprenant des éléments de bus conducteur (35) des modules d'électrode d'ionisation (25) dans celle-ci électriquement connectés à travers des blocs d'extrémité respectifs (15a, 15b) aux éléments de bus conducteur (35) des modules d'électrode d'ionisation (25) dudit ensemble de barre d'ionisation.
  11. Ensemble de barre d'ionisation selon la revendication 8, dans lequel chaque connecteur de la paire de connecteurs (55) comprend:
    • une broche fendue conductrice positionnée dans le bloc d'extrémité (15a, 15b) de manière à former une connexion électrique coulissante avec l'élément de bus conducteur d'un module d'électrode d'ionisation à l'extrémité du boîtier diélectrique (11) en réaction à un engagement coulissant avec celui-ci du bloc d'extrémité (15a, 15b) pour fournir des tensions positives et négatives élevées à travers le bloc d'extrémité (15a, 15b) aux modules d'électrode d'ionisation (25) disposés dans la paire de fentes (22a, 22b) dans le boîtier (11).
  12. Ensemble de barre d'ionisation selon la revendication 9, dans lequel chaque connecteur de la paire de connecteurs (55) comprend une douille conductrice (59) disposée derrière une ouverture à l'intérieur de l'évidement du bloc d'extrémité (15a, 15b), et comprend la broche fendue conductrice attachée d'une façon coulissante à la douille conductrice (59) à travers l'ouverture.
  13. Procédé pour fabriquer un ensemble de barre d'ionisation, comprenant les étapes consistant à:
    • former un boîtier diélectrique allongé (11) comportant une paire de fentes allongées (22a, 22b) dans celui-ci séparées par une barrière entre les deux;
    • former des modules d'électrode d'ionisation (25) pourvus chacun d'un bus conducteur disposé le long de la longueur de ceux-ci et comportant des broches d'émetteur connectées à celui-ci et s'étendant latéralement à partir de celui-ci; et
    • fixer les modules d'électrode d'ionisation (25) dans les fentes (22a, 22b) dans le boîtier (11) avec les broches d'émetteur qui sont saillantes à partir de ceux-ci sous des angles convergents.
  14. Procédé selon la revendication 13, comprenant en outre l'étape consistant à couper le boîtier (11) transversalement par rapport aux fentes (22a, 22b) à une longueur souhaitée après la fixation des modules d'électrode d'ionisation (25) dans les fentes (22a, 22b).
  15. Procédé selon la revendication 14, comprenant en outre les étapes consistant à:
    • former des blocs d'extrémité diélectriques (15a, 15b) présentant chacun un évidement pour recevoir d'une façon coulissante dans celui-ci une extrémité du boîtier diélectrique (11), et présentant chacun un ensemble de connecteur (55) disposé dans celui-ci pour se connecter avec les modules d'électrode d'ionisation (25) dans les fentes (22a, 22b);
    • faire coulisser un bloc d'extrémité (15a, 15b) sur une extrémité de la longueur souhaitée du boîtier diélectrique (11) avec l'ensemble de connecteur (55) en contact avec le bus conducteur de chacun desdits modules d'électrode d'ionisation (25); et
    • faire coulisser un autre bloc d'extrémité (15a, 15b) sur une extrémité opposée du boîtier (11) avec l'ensemble de connecteur (55) en contact avec le bus conducteur de chacun desdits modules d'électrode d'ionisation (25).
  16. Procédé selon la revendication 13, dans lequel les modules d'électrode d'ionisation (25) sont fixés dans les fentes (22a, 22b) avec les broches d'émetteur s'étendant latéralement à partir de ceux-ci sous des angles les faisant converger les uns vers les autres avec les pointes des broches d'émetteur substantiellement alignées et longitudinalement espacées le long d'un axe central commun.
  17. Procédé selon la revendication 13, dans lequel l'étape de formation des modules d'électrode d'ionisation (25) comprend les étapes consistant à:
    • fabriquer des plaquettes à circuits imprimés (23a, 23b) présentant chacune une trace de bus sur un premier côté et comportant les broches d'émetteur couplées à la trace de bus et s'étendant à partir du côté opposé; et
    • arranger les plaquettes à circuits imprimés (23a, 23b) dans les fentes (22a, 22b) avec les traces de bus (45) sur chaque plaquette dans une fente formant un circuit électrique continu substantiellement le long de la longueur souhaitée du boîtier (11).
  18. Procédé selon la revendication 13, dans lequel l'étape de formation des modules d'électrode d'ionisation (25) comprend les étapes consistant à:
    • fabriquer une pluralité de plaquettes à circuits imprimés (23a, 23b) présentant chacune une trace de bus sur un premier côté et des broches d'émetteur s'étendant à partir de celles-ci sur le côté opposé électriquement couplées à la trace de bus sur le premier côté des plaquettes à circuits imprimés (23a, 23b); et
    • arranger la pluralité de plaquettes à circuits imprimés (23a, 23b) côte à côte dans les fentes (22a, 22b) du boîtier (11) avec les traces de bus (45) sur chaque plaquette électriquement couplées de concert avec toutes les plaquettes dans une fente.
  19. Procédé selon la revendication 13, dans lequel l'étape de fixation comprend le décalage longitudinal des modules d'électrode d'ionisation (25) dans une première fente de la paire de fentes (22a, 22b) à partir des modules d'électrode d'ionisation (25) dans l'autre fente de la paire de fentes (22a, 22b) pour espacer les broches d'émetteur s'étendant à partir de chacun des modules d'électrode d'ionisation (25).
  20. Procédé selon la revendication 15, comprenant en outre les étapes consistant à:
    • former un ensemble de barre d'ionisation supplémentaire présentant une longueur souhaitée;
    • faire coulisser les blocs d'extrémité (15a, 15b) sur les extrémités du boîtier diélectrique (11) de l'ensemble de barre d'ionisation supplémentaire; et
    • coupler électriquement les modules d'électrode d'ionisation (25) dans des fentes correspondantes (22a, 22b) du boîtier diélectrique (11) à travers les blocs d'extrémité (15a, 15b).
  21. Procédé pour supprimer les charges électrostatiques d'une bande diélectrique mobile en utilisant une ensemble de barre d'ionisation selon la revendication 1, dans lequel le boîtier allongé (11) est disposé transversalement par rapport au déplacement de la bande diélectrique avec les broches d'émetteur positionnées dans le voisinage immédiat de la surface de la bande; et

       des tensions d'ionisation élevées sont appliquées aux modules d'électrode d'ionisation (25) disposés dans chaque fente d'un certain nombre de fentes (22a, 22b) de manière à former des ions dans le voisinage de la surface de la bande à proximité des pointes des broches d'émetteur positionnées en alignement substantiel le long d'un axe transversal par rapport au déplacement de la bande.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com