PatentDe  


Dokumentenidentifikation EP1132646 24.03.2005
EP-Veröffentlichungsnummer 0001132646
Titel Drahtseilisolator und Lichtpressherstellungsmethode dafür
Anmelder Enidine Inc., Orchard Park, N.Y., US
Erfinder Latvis, Jr., Michael Paul, Orchard Park, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60018162
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 20.12.2000
EP-Aktenzeichen 001278522
EP-Offenlegungsdatum 12.09.2001
EP date of grant 16.02.2005
Veröffentlichungstag im Patentblatt 24.03.2005
IPC-Hauptklasse F16F 7/14

Beschreibung[en]
Background of the Invention: Field of the Invention:

This invention relates in general to vibrational energy isolators, and in particular, wire rope isolators. More specifically, but without restriction to the particular embodiment hereinafter described in accordance with the best mode of practice, this invention relates to wire rope vibration isolators employing a plurality of U-shaped half loops in a wire rope or a number of wire ropes that flex during use so as to dispel vibrational energy.

Background of the Prior Art:

Excessive vibrational energy can damage and/or cause the deterioration of sophisticated machinery. In industries in which movement is inherent in daily operations, such as avionics and shipping, the need to minimize unwanted vibrational energy is imperative. These industries have come to rely heavily on sensitive electronic equipment, like navigational computers, to maintain daily operations. Constant jostling of electronic equipment can cause system failures that lead to costly downtime to replace and/or repair the damaged equipment.

Over the years, many devices have been designed to contain damaging vibrations and dampen unwanted kinetic energy. These devices use the unwanted kinetic energy to move simple machinery, like pistons and springs, so as to divert the unwanted energy from shock-sensitive equipment attached to the isolator. A good example of a member of this class of devices is the wire rope isolator. The most common wire rope isolators employ a helical wire cable secured between a pair of retaining members. When the isolator is in use, vibrational energy causes the wire rope coil to move in a spring-like fashion, which in turn moves the retaining members vertically toward each other. This movement drains the vibrational energy before it reaches the affixed sensitive equipment.

The art of wire rope vibration isolators has been contributed to by a number of proposed devices detailed in U.S. Patent No. 5,549,285 issued to Collins and U.S. Patents Nos. 5,441,243 and 5,791,636 both issued to Loziuk. These patents describe vibrational energy isolators that consist of coiled wire ropes secured between two parallel retaining bars. Holes drilled into the retaining bars maintain the helical shape of the wire rope. Vibrational energy causes the wire rope coil to contract which in turn moves the entrapment bars vertically relative to each other thus absorbing vibrational energy in the process.

There are several drawbacks, however, with the helical design. First, conventional isolators are ineffective when the support load is a few pounds. Further, because helical wire rope isolators are intended to support heavier loads, the components of these isolators are manufactured from stronger more solid materials like steel which tends to be more costly than less sturdier metals like aluminum. In addition, the assembly of wire rope isolators requires a tool to wind the wire rope and the another to secure the wire coil by either fastening or crimping. This factor, coupled with the need to use more expensive materials, increases the costs associated with the production of helical wire rope isolators. Finally, in addition to aforementioned limitations, helical wire rope isolators are also not well suited for applications with limited spatial requirements due to the requirement that the wire coil be of a certain length to be functional.

A type of wire rope isolator not employing a wire rope coil is described the closest prior art, in French Patent No. 2,601,739 issued to Le Derf et al. This wire rope isolator consists of a pair of entrapment bars in which a singular wire rope is manipulated into a "saddle" formation. Two pairs of parallel U-shaped half loops are formed that are parallel to the axis of one of the retaining bars. When in use, the U-shaped half loops flex and contract causing the retaining bars to move vertically relative to each other. This design, however, can lack uniform stiffness on all axes.

Accordingly, there continues to be a need for wire rope isolators that can support relatively light loads, are constructed from less costly materials, require limited steps in manufacturing, can be used when space is limited and provide uniform stiffness about all axes of the isolator.

Summary of the Invention:

It is, therefore, an object of the present invention to improve energy absorption devices.

Another object of the present invention is to produce a wire rope isolator that does not utilize a wire rope with a spiral formation but still retains elastic properties inherent in the spiral formation.

It is a further object of the present invention to produce a wire rope isolator that has a simpler design than conventional isolators.

Still another object of the present invention is to design a wire rope isolator for use in capabilities with spatial limitations.

It is yet a further object of the present invention to construct a wire rope isolator suited to support relatively light masses.

An additional object of the present invention is to manufacture wire rope isolators using cost effective materials.

Yet a further objective of the present invention is to develop a method of manufacturing a wire rope isolator using a singular tool.

Still yet another object of the present invention is to design a wire rope isolator with uniform stiffness on all axes of the isolator.

These and other objects are attained in accordance with the present invention. There is an embodiment of a wire rope vibration isolator that includes a pair of mounting blocks spaced apart by a singular wire rope or a number of wire ropes manipulated into a cloverleaf pattern about the pair of mounting blocks. According to one aspect of the present invention, each mounting block consists of a pair of elongated flanges attached tangentially to a flat web. The elongated flanges have a depth that is greater than the width of the flat web. When the flanges are connected to the web, so that the top surface of the web is coplanar with the top surface of each flange, a lower section of each flange extends below the surface of the web. The flanges run the length of the flat web, are parallel to each other, and are of equal dimensions. Holes extend axially through each flange. The isolator is assembled by first passing a singular wire rope through a flange hole of a mounting block. After the rope is passed completely through the flange of one block, it arcs outward and into the flange hole directly across from it on the opposing mounting block forming a U-shaped half loop between the mounting blocks. The wire rope is then passed completely through the flange hole of this mounting block, is arced outward again, and passed through the empty flange hole of the first mounting block. This process is repeated until the wire rope passes through all the flanges forming four U-shaped half loops arranged in a cloverleaf formation about the mounting blocks. Each U-shaped half loop extends outward from the mounting blocks at an angle of preferably 45°, although other degree measurements are possible so long as the rope exhibits uniform stiffness characteristics about all axes of mounting blocks. A compressing force applied to each mounting block secures the lower sections of the flanges into locking contact with the wire rope contained within. The U-shaped half loops formed remain elastically deformable allowing vertical movement of the mounting blocks to dissipate vibrational energy.

The cloverleaf formation can also be achieved using a plurality of ropes.

Brief Description of the Drawings:

Further objects of the present invention together with additional features contributing thereto and advantages accruing therefrom will be apparent from the following description of a preferred embodiment of the invention which is shown in the accompanying drawing with like reference numerals indicating like components throughout, wherein:

  • Fig. 1 is a perspective view of one embodiment of the mounting block for a wire rope isolator;
  • Fig. 2 is a perspective view of one embodiment of a wire rope vibration isolator according to the present invention;
  • Fig. 3 is a cross-sectional view of a wire rope vibration isolator taken along line 3 of Fig. 2; and
  • Fig. 4 is an away side elevation view of a crimping press with the isolator positioned thereon in accordance with the method of the present invention.

Detailed Description of the Invention:

Fig. 1 shows the wire rope isolator mounting block 1 in accordance with the present invention. The mounting block consists of a flat web 2 having a top surface 2A and a bottom surface 2B. A pair of elongated flanges 3 and 4 are tangentially connected to the web so that the top surface 2A of the web is coplanar with the top surface of each flange 3 and 4. Each flange 3 and 4 has a depth (D) that is greater than the width (d) of the web 2 so that the lower section of each flange 3 and 4 extends below the bottom surface 2B of the web 2. In the embodiment of this invention represented by Fig.1, the ratio of the flange diameter to the web diameter is 2:1, however, different ratios are possible so long as the lower portion of the flange extends below the lower surface of the web. The lower portions of the end flanges form an extension below the bottom surface of the web. In the embodiment illustrated in Fig. 1, semi-circular extensions are formed, however, non-circular configurations are possible. The mounting block, as described above, is ideally produced by extrusion so as to lower manufacturing costs.

Each of the flanges 3 and 4 contains at least one hole 3A and 4A that passes axially therethrough. The holes of each flange should be of a sufficient diameter to allow a wire rope to pass therethrough. In the shown embodiment, the flange holes are cylindrical and the diameters of said holes 3A and 4A are half the depth of the flanges 3 and 4. In other embodiments, either the flange, the hole or both may be non-cylindrical. In still other embodiments, the diameter of the holes need not be half the depth of the corresponding flange. A chamfer or radius may be situated at the entrance and exit of the flange holes.

Fig. 2 shows an elevated side view of the assembled wire rope isolator in accordance with the present invention. The isolator consists of an upper mounting block 1 and a lower mounting block 5 of a design consistent with that represented by Fig.1 and described at length previously. The upper mounting block 1 includes a pair of parallely elongated end flanges 3 and 4 and similarly the lower mounting block 5 includes a pair of elongated end flanges 7 and 8. In the represented embodiment, both mounting blocks 1 and 5, including web 2 and 6 and end flanges 3, 4, 7 and 8 of each respective block, have equivalent dimensions, however, this is not a requirement of the present invention.

The bottom surfaces 2B and 6B of each mounting block 1 and 5 are situated so that end flanges 3 and 4 of the upper mounting block 1 are offset 90° from end flanges 7 and 8 of the lower mounting block 5. The end of a wire rope 9 is positioned in one flange hole of one of the mounting blocks. It should be noted that end of the wire rope can be located in any of the four flange holes. To assist in describing the construction of this invention, it is assumed that an end of the wire rope 9 is located in hole 3A of elongated end flange 3. The wire rope 9 is manipulated so as to form a U-shaped half loop 9A that extends outwardly from the mounting block at an angle of 45° relative to the horizontal planes of the mounting blocks 1 and 5. The U-shaped half loop 9A is formed with ample slack so as to possess elastic properties. The wire rope 9 is then manipulated into the entrance of the flange hole directly across from the exit of the flange hole that the wire rope previously passed through. In the illustrated example, the wire rope exits hole 3A, arcs outward, then enters hole 8A of flange 8 of the lower mounting block 5. The wire rope 9 is then passed completely through hole 8A and is looped outward toward flange hole 4A of the upper mounting block 1. U-shaped half loop 9B (not shown) is formed. After entering hole 4A and passing therethrough, the wire rope is again arced outward to flange 7 of the lower mounting block 5 creating U-shaped half loop 9C. The wire rope passes through hole 7A, is looped outward forming U-shaped half loop 9D. The terminal end of the wire rope 9 is positioned in hole 3A. The U-shaped half loops formed should extend outwardly from the horizontal planes of the mounting blocks at 45° angles, however, other angles are possible. When completed, the wire rope will be in a "cloverleaf" formation about the mounting blocks. The flanges 3, 4, 7 and 8 are then crimped in one or more than one locations to form mechanical bonds (not shown) that secure the wire rope and maintain the cloverleaf formation.

Fig. 3 illustrates a cross-sectional side view of the assembled wire rope isolator from a perspective along axis 3 of Fig. 2. Crimps 10 and 11 of the upper mounting block 1 are created when a sufficient force is applied to the mounting blocks 1 and 5 so as to plastically deform the lower sections of the flanges 3, 4 and 7, 8 into locking contact with the wire rope 9. At each indentation, mounting block 1 has been crimped forming a mechanical bond between the mounting block 1 and the wire rope 9. U-shaped half loops 9A and 9D arc outwardly at 45° angles from the vertical plane of the mounting blocks 1 and 5. The cross sectional view of mounting block 5 shows end flanges 7 and 8 with holes 7A and 8A passing axially therethrough. Web 6 with top surface 6A and bottom surface 6B connects elongated end flanges 7 and 8. Wire rope 9 has been passed through both flanges 7 and 8. Crimps 12 and 13 securing the wire rope 9 to lower mounting block 5 are not shown in this perspective. When construction is completed, the U-shaped half loops 9A, 9B, 9C and 9D flex outwardly and contract inwardly relative to the mounting blocks 1 and 5 allowing the mounting blocks 1 and 5 to move vertically relative to each other so as to dissipate vibrational energy in the process.

Fig. 4 illustrates the crimping process that creates the wire rope isolator. Fixture bar 14 has raised rails 14A and 14B and fixture bar 15 has raised rails 15A and 15B. In the illustrated embodiment of the present invention, the fixture bars 14 and 15 are relatively rectangular, although other shapes are possible, with a top side and a bottom side. The rails 14A, 14B, 15A and 15B have a raised triangular cross section and are located on only one side of each fixture bar 14 and 15 although it is possible to form raised rails with a different geometry. The fixture bars 14 and 15 are affixed to each other perpendicularly with the flat side of each fixture bar 14 and 15 against the other.

After the wire rope has been assembled as described above, the upper and lower mounting blocks 1 and 5 (not shown) are positioned about fixture bars 14 and 15, respectively, so that the end flanges 3 and 4 of block 1 and 7 and 8 of block 5 are perpendicular to the raised rails of the fixture bar 14 or 15 situated directly across from it. In the illustrated example, the bottom surface 2B of mounting block 1 is positioned so that the lower sections of flanges 3 and 4 face the raised rails 14A and 14B of the upper fixture bar 14. Once positioned, a force of sufficient magnitude is applied to both mounting blocks 1 and 5 so as to compress each block against the rails of the opposing fixture bar to plastically deform the elongated end flanges 3 and 4 (7 and 8 are not shown) into locking contact with wire rope 9 contained therein. Mechanical bonds are formed between the mounting blocks 1 and 3 and the wire rope 9 which hold the rope in place and maintain the cloverleaf formation. If constructed properly, the U-shaped half loops 9A, 9B, 9C and 9D of the described embodiment retain an elastic quality allowing outward flexing and inward contracting when in use. It is possible to assemble the wire rope isolator and crimp the wire rope using the same tool.

It is also desirable to include in at least one flange hole, an internal vertical web to block the wire rope from passing completely through the hole contained in the flange. This "blind hole" aligns the free end of the wire rope. It is highly desirable that the mechanical bond between the mounting block and the wire rope not be formed at either end of the wire rope. If the free end of the wire rope is too close to the crimp, the quality of the isolator is compromised. The internal vertical web indicates the position of the end of the wire rope preventing possible crimping of either end of the rope. If the crimp securing the wire rope is located on the end of the wire rope, it is possible that the wire rope can be pulled out of the mounting block during use.

While this invention has been described in detail with reference to a certain preferred embodiment and preferred method for making the illustrated embodiment, it should be appreciated that the present invention is not limited to those precise embodiments. Rather, in view of the present disclosure which describes the best mode for practicing the invention, many modifications and variations would present themselves to those of skill in the art without departing from the scope of this invention, as defined in the following claims.


Anspruch[de]
  1. Ein Halterungsblock (1, 5) für einen Drahtseil-Schwingungsisolator, der aus Folgendem besteht:
    • einem flachen Gewebe (2, 6) mit einer Oberfläche (2A, 6A), einer Unterfläche (2B, 6B) und einer Dicke (d), dadurch gekennzeichnet, dass
      • längliche Endflansche (3, 4, 7, 8) an den zwei gegenüberliegenden Enden des besagten Gewebes (2, 6) montiert sind, wobei besagte Oberfläche (2A, 6A) des besagten Gewebes (2, 6) mit der Oberfläche (2A, 6A) jedes der Endflansche (3, 4, 7, 8) in einer Ebene ist,
      • jeder Endflansch (3, 4, 7, 8) eine Dicke (D) hat, die größer ist als die Dicke (d) des Gewebes (2, 6), so dass der untere Teilabschnitt jedes der Endflansche (3, 4, 7, 8) unter die Unterfläche (2B, 6B) des besagten Gewebes reicht, und
      • jeder Endflansch (3, 4, 7, 8) eine axial durchgehende Bohrung (3A, 4A, 7A, 8A) enthält, und ein Drahtseil (9) durch besagte Bohrung (3A, 4A, 7A, 8A) hineingeführt und hindurch gezogen werden kann, wobei jede Bohrung (3A, 4A, 7A, 8A) den unteren Teilabschnitt des besagten Endflansches (3, 4, 7, 8) durchdringt und eine mechanische Verformung eines jeden Endflansches (3, 4, 7, 8) das in besagter Bohrung (3A, 4A, 7A, 8A) befindliche Drahtseil (9) mit dem Endflansch (3, 4, 7, 8) fest verankert.
  2. Der Halterungsblock (1, 5) gemäß Anspruch 1, wobei die besagten gegenüberliegenden Endflansche (3, 4, 7, 8) und die axialen Bohrungen (3A, 4A, 7A, 8A) jedes der Endflansche zylinderförmig sind.
  3. Der Halterungsblock (1, 5) gemäß Anspruch 1, wobei jeder Endflansch (3, 4, 7, 8) am Ausgang und Eingang zumindest einer axialen Bohrung (3A, 4A, 7A, 8A) abgeschrägt ist.
  4. Der Halterungsblock (1, 5) gemäß Anspruch 1, wobei jeder Endflansch (3, 4, 7, 8) am Ausgang und Eingang zumindest einer axialen Bohrung (3A, 4A, 7A, 8A) abgerundet ist.
  5. Der Halterungsblock (1, 5) gemäß Anspruch 1, wobei zumindest eine Flanschbohrung (3A, 4A, 7A, 8A) ein innen senkrecht angebrachtes Gewebe enthält, wodurch das Ende des Drahtseils (9) positioniert wird.
  6. Ein Drahtseil-Schwingungsisolator, der Folgendes enthält:
    • ein Paar übereinander liegender Halterungsblöcke (1, 5);
    • jeder Halterungsblock (1, 5) des weiteren aus einem flachen Gewebe (2, 6) mit einer Oberfläche (2A, 6A), einer Unterfläche (2B, 6B) und einer Dicke (d) besteht unddadurch gekennzeichnet ist, dass zwei Endflansche (3, 4, 7, 8) an gegenüberliegenden Enden des besagten Gewebes (2, 6) montiert sind und sich die Oberfläche (2A, 6A) des Gewebes (2, 6) in einer Linie mit der Oberfläche (2A, 6A) jedes der Endflansche (3, 4, 7, 8) befindet, und der untere Teilabschnitt jedes der Endflansche (3, 4, 7, 8) tiefer herunter reicht als die Oberfläche des Gewebes (2, 6);
    • jeder Endflansch (3, 4, 7, 8) eine axial durchgehende Bohrung (3A, 4A, 7A, 8A) enthält, die den unteren Teilabschnitt des Endflansches (3, 4, 7, 8) durchdringt;
    • ein Drahtseil (9) in die besagten Bohrungen (3A, 4A, 7A, 8A) hineinführt und durch sie hindurchführt und dadurch die Halterungsblöcke (1, 5) auseinander gehalten werden; und
    • zumindest eine Einquetschung (10 bis 13) an dem unteren Teilabschnitt jedes der Endflansche (3, 4, 7, 8) angebracht und dadurch das Drahtseil (9) mit dem Endflansch (3, 4, 7, 8) fest verankert wird.
  7. Der Drahtseil-Schwingungsisolator gemäß Anspruch 6, wobei die besagten Endflansche (3, 4, 7, 8) des einen Halterungsblocks (1, 5) gegenüber den gegenüberliegenden Halterungsblock (1, 5) um 90° gedreht angeordnet sind und das Drahtseil (9) so durch die Halterungsblöcke (1, 5) geführt ist, dass eine Anzahl U-förmiger Halbschleifen (9A bis 9D) zwischen den Halterungsblöcken (1, 5) gebildet werden.
  8. Der Drahtseil-Schwingungsisolator gemäß Anspruch 6, wobei jeder Endflansch (3, 4, 7, 8) und die axialen Bohrung (3A, 4A, 7A, 8A) jedes der Endflansche (3, 4, 7, 8) zylinderförmig ist.
  9. Der Drahtseil-Schwingungsisolator gemäß Anspruch 6, wobei jeder Endflansch (3, 4, 7, 8) am Ausgang und Eingang jeder axialen Bohrung (3A, 4A, 7A, 8A) abgeschrägt ist.
  10. Der Drahtseil-Schwingungsisolator gemäß Anspruch 6, wobei jeder Endflansch (3, 4, 7, 8) am Ausgang und Eingang jeder axialen Bohrung (3A, 4A, 7A, 8A) abgerundet ist.
  11. Der Drahtseil-Schwingungsisolator gemäß Anspruch 6, wobei zumindest eine Flanschbohrung (3A, 4A, 7A, 8A) ein innen senkrecht angebrachtes Gewebe enthält, wodurch ein Ende des Drahtseils (9) positioniert wird.
  12. Eine Methode zur Herstellung eines Drahtseil-Schwingungsisolators, die folgende Schritte umfasst:
    • Bildung eines Halterungsblocks (1, 5) durch das Befestigen länglicher Endflansche (3, 4, 7, 8) an den gegenüberliegenden Enden eines Gewebes (2, 6) und zwar derart, dass die unteren Teilabschnitte jedes der Endflansche (3, 4, 7, 8) unter die Unterfläche (2B, 6B) des Gewebes (2, 6) herunter reicht;
    • Erzeugung von Bohrungen (3A, 4A, 7A, 8A) in axialer Richtung durch jedes der Endflansche (3, 4, 7, 8);
    • Platzieren zweier Halterungsblöcke (1, 5) und zwar so, dass die Endflansche (3, 4, 7, 8) des einen Halterungsblocks senkrecht zu den Endflanschen (3, 4, 7, 8) des anderen Halterungsblocks (1, 5) ausgerichtet sind und die unteren Teilabschnitte der Endflansche (3, 4, 7, 8) des einen Halterungsblocks hin zu den unteren Teilabschnitten der Endflansche (3, 4, 7, 8) des anderen Halterungsblocks (1, 5) ausgerichtet sind;
    • Führung eines Drahtseils (9) in und durch die Bohrungen (3A, 4A, 7A, 8A) in besagten Endflanschen (3, 4, 7, 8), so dass damit eine Serie von U-förmigen Halbschleifen (9A bis 9D) zwischen den Halterungsblöcken (1, 5) gebildet werden; und
    • Pressen des Halterungsblocks (1, 5) mit genügend starker Kraft gegen die herausragenden Rippen (14A, 14B, 15A, 15B) einer Quetschvorrichtung (14, 15), so dass besagte unteren Teilabschnitte der besagten Endflansche (3, 4, 7, 8) mit dem innerhalb der besagten Endflansche (3, 4, 7, 8) befindlichen Drahtseil (9) fest verankert werden.
  13. Die Methode gemäß Anspruch 12, wobei jeder Endflansch (3, 4, 7, 8) und die darin befindlichen axialen Bohrungen (3A, 4A, 7A, 8A) zylinderförmig sind.
  14. Die Methode gemäß Anspruch 12, wobei besagte herausragenden Rippen (14A, 14B, 15A, 15B) einen dreiecksförmigen Querschnitt haben.
  15. Die Methode gemäß Anspruch 12, wobei besagte Endflansche (3, 4, 7, 8) des einen Halterungsblocks (1, 5) gegenüber denen des gegenüberliegenden Halterungsblocks (1, 5) um 90° gedreht angeordnet sind und ein Drahtseil (9) so durch die besagten Halterungsblöcke (1, 5) hindurchgeführt ist, dass sich eine Anzahl U-förmiger Halbschleifen (9A bis 9D) zwischen den Halterungsblöcken (1, 5) gebildet werden.
  16. Die Methode gemäß Anspruch 12, wobei besagte Endflansche (3, 4, 7, 8) am Ausgang und Eingang jeder axialen Bohrung (3A, 4A, 7A, 8A) abgeschrägt ist.
  17. Die Methode gemäß Anspruch 12, wobei besagte Endflansche (3, 4, 7, 8) am Ausgang und Eingang jeder axialen Bohrung (3A, 4A, 7A, 8A) abgerundet ist.
  18. Die Methode gemäß Anspruch 12, mit dem zusätzlichen Schritt, dass die freien Drahtseilenden (9) durch ein innerhalb zumindest einer axialen Bohrung (3A, 4A, 7A, 8A) eines Endflansches (3, 4, 7, 8) senkrecht angebrachten Gewebes so positioniert werden, das die Quetschverbindung nicht direkt an einem der Enden des Drahtseils (9) gebildet wird.
Anspruch[en]
  1. A mounting block (1, 5) for a wire rope isolator that includes:
    • a flat web (2, 6) having a top surface (2A, 6A) and bottom surface (2B, 6B) and a width (d); characterized by
    • a pair of elongated end flanges (3, 4, 7, 8) mounted at opposite ends of said web (2, 6) so that said top surface (2A, 6A) of said web (2, 6) is coplanar with the top surface (2A, 6A) of each flange (3, 4, 7, 8);
    • each flange (3, 4, 7, 8) has a depth (D) that is greater that the width (d) of the web (2, 6) so that a lower section of each flange (3, 4, 7, 8) extends below the bottom surface (2B, 6B) of said web (2, 6), and
    • each flange (3, 4, 7, 8) containing a hole (3A, 4A, 7A, 8A) passing axially therethrough so that wire rope (9) can pass into and through said hole (3A, 4A, 7A, 8A), each hole (3A, 4A, 7A, 8A) penetrating the lower section of said flange (3, 4, 7, 8) whereby mechanically deforming the lower section of each flange (3, 4, 7, 8) will lock the flange to the wire rope (9) contained in said hole (3A, 4A, 7A, 8A).
  2. The mounting block (1, 5) of claim 1 wherein said opposed flanges (3, 4, 7, 8) and the axial holes (3A, 4A, 7A, 8A) of each flange are cylindrical.
  3. The mounting block (1, 5) of claim 1 wherein each flange (3, 4, 7, 8) contains a chamfer at the exit and entrance of each axial hole (3A, 4A, 7A, 8A).
  4. The mounting block (1, 5) of claim 1 wherein each flange (3, 4, 7, 8) contains a radius at the exit and entrance of at least one axial hole (3A, 4A, 7A, 8A).
  5. The mounting block (1, 5) of claim 1 wherein at least one flange hole (3A, 4A, 7A, 8A) contains an internal vertical web so as to position the end of the wire rope (9).
  6. A wire rope isolator that includes:
    • a pair of opposed mounting blocks (1, 5);
    • each mounting block (1, 5) further including a web (2, 6) having a top (2A, 6A) and a bottom (2B, 6B) surface and a width (d), characterized by a pair of flanges (3, 4, 7, 8) mounted on opposite ends of said web (2, 6), each flange (3, 4, 7, 8) having a depth (D) that is greater that the width of the web (2, 6), the top surface (2A, 6A) of the web (2, 6) being coextensive with the top surfaces (2A, 6A) of the flanges (3, 4, 7, 8) so that the lower section of each flange (3, 4, 7, 8) extends downwardly beneath the surface of the web (2, 6);
    • each flange (3, 4, 7, 8) having a hole (3A, 4A, 7A, 8A) passing axially therethrough that penetrates the lower section of the flange (3, 4, 7, 8);
    • wire rope (9) passing into and through said holes (3A, 4A, 7A, 8A) to space the blocks (1, 5) apart; and
    • at least one crimp (10-13) formed in the bottom section of each flange (3, 4, 7, 8) so as to lock the wire rope (9) to the flange (3, 4, 7, 8).
  7. The wire rope isolator of claim 6 wherein said flanges (3, 4, 7, 8) on one block (1, 5) are turned 90° to those on the opposing block (5, 1) and wire rope (9) is passed between said blocks (1, 5) to form a plurality of U-shaped half loops (9A-D) between the blocks (1, 5).
  8. The wire rope isolator of claim 6 wherein each flange (3, 4, 7, 8) and the axial holes (3A, 4A, 7A, 8A) of each flange (3, 4, 7, 8) are cylindrical.
  9. The wire rope isolator of claim 6 wherein each flange (3, 4, 7, 8) contains a chamfer at the exit and entrance of each axial hole (3A, 4A, 7A, 8A).
  10. The wire rope isolator of claim 6 wherein each flange (3, 4, 7, 8) contains a radius at the exit and entrance of each axial hole (3A, 4A, 7A, 8A).
  11. The wire rope isolator of claim 6 wherein at least one flange hole (3A, 4A, 7A, 8A) contains an internal vertical web so as to align an end of the wire rope (9).
  12. A method of constructing a wire rope isolator that includes the steps of:
    • forming a mounting block (1, 5) by attaching elongated flanges (3, 4, 7, 8) along opposing ends of a web (2, 6) so that the lower section of each flange (3, 4, 7, 8) extends downwardly beneath the bottom surface (2B, 6B) of the web (2, 6);
    • passing holes (3A, 4A, 7A, 8A) axially through each of the flanges (3, 4, 7, 8);
    • placing two mounting blocks (1, 5) in spaced apart alignment so that the flanges (3, 4, 7, 8) on one block are perpendicular with the flanges (3, 4, 7, 8) on the other block (1, 5) and the lower section of the flanges (3, 4, 7, 8) on one block face the lower sections of the flanges (3, 4, 7, 8) on the other block (1, 5);
    • passing wire rope (9) into and through the holes (3A, 4A, 7A, 8A) in said flange (3, 4, 7, 8) to create a series of U-shaped half loops (9A-D) between the blocks (1, 5); and
    • compressing the block (1, 5) against the raised ribs (14A, 14B, 15A, 15B) of a crimping fixture (14, 15) with sufficient force to crimp said lower sections of said flanges (3, 4, 7, 8) into locking contact with wire rope (9) contained within each of said flanges (3, 4, 7, 8).
  13. The method of claim 12 wherein each flange (3, 4, 7, 8) and the axial holes (3A, 4A, 7A, 8A) contained therein is cylindrical.
  14. The method of claim 12 wherein said raised ribs (14A, 14B, 15A, 15B) have a triangular cross section.
  15. The method of claim 12 wherein said flanges (3, 4, 7, 8) on one block (1, 5) are turned 90° to those on the opposing block (5, 1) and wire rope (9) is passed between said blocks (1, 5) forming a plurality of U-shaped half loops (9A-D) of wire rope about the mounting blocks (1, 5).
  16. The method of claim 12 wherein each flange (3, 4, 7, 8) contains a chamfer at the exit and entrance of each axial hole (3A, 4A, 7A, 8A).
  17. The method of claim 12 wherein each flange (3, 4, 7, 8) contains a radius at the exit and entrance of each axial hole (3A, 4A, 7A, 8A).
  18. The method of claim 12 comprising the additional step of aligning the free ends of the wire rope (9) with an internal vertical web positioned in at least one axial hole (3A, 4A, 7A, 8A) of at least one flange (3, 4, 7, 8) so that the crimp formed is not located at either end of the wire rope (9).
Anspruch[fr]
  1. Bloc de montage (1, 5) pour isolateur à câble métallique comprenant :
    • un corps plan (2, 6) possédant une surface supérieure (2A, 6A) et une surface inférieure (2B, 6B) et une largeur (d) ; caractérisé par
      • une paire de brides d'extrémités allongées (3, 4, 7, 8) montées aux extrémités opposées dudit corps (2, 6) de sorte que ladite surface supérieure (2A, 6A) dudit corps (2, 6) soit coplanaire avec la surface supérieure (2A, 6A) de chaque bride (3, 4, 7, 8),
      • chaque bride (3, 4, 7, 8) possède une profondeur (D) qui est supérieure à la largeur (d) du corps (2, 6) de sorte qu'une section inférieure de chaque bride (3, 4, 7, 8) s'étende sous la surface inférieure (2B, 6B) dudit corps (2, 6), et
      • chaque bride (3, 4, 7, 8) contenant un trou (3A, 4A, 7A, 8A) la traversant axialement de sorte qu'un câble métallique (9) puisse traverser ledit trou (3A, 4A, 7A, 8A), chaque trou (3A, 4A, 7A, 8A) pénétrant la section inférieure de ladite bride (3, 4, 7, 8) moyennant quoi la déformation mécanique de la section inférieure de chaque bride (3, 4, 7, 8) verrouillera la bride sur le câble métallique (9) contenu dans ledit trou (3A, 4A, 7A, 8A).
  2. Bloc de montage (1, 5) selon la revendication 1, dans lequel lesdites brides opposées (3, 4, 7, 8) et les trous axiaux (3A, 4A, 7A, 8A) de chaque bride sont cylindriques.
  3. Bloc de montage (1, 5) selon la revendication 1, dans lequel chaque bride (3, 4, 7, 8) comporte un chanfrein à la sortie et l'entrée de chaque trou axial (3A, 4A, 7A, 8A).
  4. Bloc de montage (1, 5) selon la revendication 1, dans lequel chaque bride (3, 4, 7, 8) comporte un rayon à la sortie et à l'entrée d'au moins un trou axial (3A, 4A, 7A, 8A).
  5. Bloc de montage (1, 5) selon la revendication 1, dans lequel au moins un trou de bride (3A, 4A, 7A, 8A) comporte une paroi verticale interne afin de positionner l'extrémité du câble métallique (9).
  6. Isolateur à câble mécanique comprenant :
    • une paire de blocs de montage opposés (1, 5) ;
    • chaque bloc de montage (1, 5) comprenant en outre un corps (2, 6) possédant une surface supérieure (2A, 6A) et une surface inférieure (2B, 6B) et une largeur (d),caractérisé par une paire de brides (3, 4, 7, 8) montées aux extrémités opposées dudit corps (2, 6), chaque bride (3, 4, 7, 8) possédant une profondeur (D) qui est supérieure à la largeur du corps (2, 6), la surface supérieure (2A, 6A) du corps (2, 6) étant coextensive avec les surfaces supérieures (2A, 6A) des brides (3, 4, 7, 8), de sorte que la section inférieure de chaque bride (3, 4, 7, 8) s'étende vers le bas sous la surface du corps (2, 6) ;
    • chaque bride (3, 4, 7, 8) possédant un trou (3A, 4A, 7A, 8A) la traversant axialement, lequel pénètre la section inférieure de la bride (3, 4, 7, 8) ;
    • un câble métallique (9) passant à travers lesdits trous (3A, 4A, 7A, 8A) pour espacer les blocs (1, 5) l'un de l'autre ; et
    • au moins une sertissure (10 à 13) formée dans la section inférieure de chaque bride (3, 4, 7, 8) afin de verrouiller le câble métallique (9) sur la bride (3, 4, 7, 8)
  7. Isolateur à câble métallique selon la revendication 6, dans lequel lesdites brides (3, 4, 7, 8) sur un bloc (1, 5) sont tournées à 90° par rapport à celles situées sur le bloc opposé (5, 1) et le câble métallique (9) est passé entre lesdits blocs (1, 5) pour former une pluralité de demi-boucles en forme de U (9A à 9D) entre les blocs (1, 5).
  8. Isolateur à câble métallique selon la revendication 6, dans lequel chaque bride (3, 4, 7, 8) et les trous axiaux (3A, 4A, 7A, 8A) de chaque bride (3, 4, 7, 8) sont cylindriques.
  9. Isolateur à câble métallique selon la revendication 6, dans lequel chaque bride (3, 4, 7, 8) comporte un chanfrein à la sortie et à l'entrée de chaque trou axial (3A, 4A, 7A, 8A).
  10. Isolateur à câble métallique selon la revendication 6, dans lequel chaque bride (3, 4, 7, 8) comporte un rayon à la sortie et l'entrée de chaque trou axial (3A, 4A, 7A, 8A).
  11. Isolateur à câble métallique selon la revendication 6, dans lequel au moins un trou de bride (3A, 4A, 7A, 8A) comporte une paroi verticale interne afin d'aligner une extrémité du câble métallique (9).
  12. Procédé de conception d'un isolateur à câble métallique qui comprend les étapes consistant à :
    • former un bloc de montage (1, 5) en attachant des brides allongées (3, 4, 7, 8) le long d'extrémités opposées d'un corps (2, 6) de sorte que la section inférieure de chaque bride (3, 4, 7, 8) s'étende vers le bas sous la surface inférieure (2B, 6B) du corps (2, 6) ;
    • faire passer des trous (3A, 4A, 7A, 8A) axialement à travers chacune des brides (3, 4, 7, 8) ;
    • placer deux blocs de montage (1, 5) en les alignant, à distance l'un de l'autre de sorte que les brides (3, 4, 7, 8) sur un bloc soient perpendiculaires aux brides (3, 4, 7, 8) sur l'autre bloc (1, 5) et que la section inférieure des brides (3, 4, 7, 8) sur un bloc fasse face aux sections inférieures des brides (3, 4, 7, 8) sur l'autre bloc (1, 5) ;
    • faire passer un câble métallique (9) dans et à travers les trous (3A, 4A, 7A, 8A) dans lesdites brides (3, 4, 7, 8) pour créer un ensemble de demi-boucles en forme de U (9A à 9D) entre les blocs (1, 5) ; et
    • comprimer le bloc (1, 5) contre les nervures relevées (14A, 14B, 15A, 15B) d'un dispositif de sertissage (14, 15) avec une force suffisante pour sertir lesdites sections inférieures desdites brides (3, 4, 7, 8) en contact de verrouillage avec le câble métallique (9) contenu dans chacune desdites brides (3, 4, 7, 8).
  13. Procédé selon la revendication 12, dans lequel chaque bride (3, 4, 7, 8) et les trous axiaux (3A, 4A, 7A, 8A) contenus dans celles-ci sont cylindriques.
  14. Procédé selon la revendication 12, dans lequel lesdites nervures relevées (14A, 14B, 15A, 15B) ont une coupe transversale triangulaire.
  15. Procédé selon la revendication 12, dans lequel lesdites brides (3, 4, 7, 8) sur un bloc (1, 5) sont tournées à 90° par rapport à celles situées sur le bloc opposé (5, 1) et le câble métallique (9) est passé entre lesdits blocs (1, 5) formant une pluralité de demi-boucles en forme de U (9A à 9D) de câble métallique autour des blocs de montage (1, 5).
  16. Procédé selon la revendication 12, dans lequel chaque bride (3, 4, 7, 8) comporte un chanfrein à la sortie et à l'entrée de chaque trou axial (3A, 4A, 7A, 8A).
  17. Procédé selon la revendication 12, dans lequel chaque bride (3, 4, 7, 8) comporte un rayon à la sortie et l'entrée de chaque trou axial (3A, 4A, 7A, 8A).
  18. Procédé selon la revendication 12, comprenant l'étape supplémentaire d'alignement des extrémités libres du câble métallique (9) avec une paroi verticale interne positionnée dans au moins un trou axial (3A, 4A, 7A, 8A) d'au moins une bride (3, 4, 7, 8) de sorte que la sertissure formée ne soit pas située sur l'une ou l'autre extrémité du câble métallique (9).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com