PatentDe  


Dokumentenidentifikation EP1253312 07.04.2005
EP-Veröffentlichungsnummer 0001253312
Titel Geräuscharmer integrierter Luftfilter
Anmelder Officine Metallurgiche G. Cornaglia S.p.A., Beinasco, IT
Erfinder Cornaglia, Umberto, 10027 Testona, IT;
Tarabocchia, Alessio, 10100 Torino, IT
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60203059
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 18.04.2002
EP-Aktenzeichen 020087334
EP-Offenlegungsdatum 30.10.2002
EP date of grant 02.03.2005
Veröffentlichungstag im Patentblatt 07.04.2005
IPC-Hauptklasse F02M 35/14
IPC-Nebenklasse F02M 35/12   F02M 35/00   F02B 27/02   

Beschreibung[en]

The present invention relates to a low-noise integrated air-filtering device.

As is known, noise reduction in reciprocating-type engines, especially internal-combustion engines for vehicles for non-military use, is a requirement that is assuming an ever-increasing importance. The said noise is mainly caused by pressure waves that are generated on account of the reciprocating motion of the pistons in the cylinders and that propagate along the air-intake and exhaust-gas pipes.

Consequently, in order to achieve the aim, silencer devices, such as candle-like perforated elements, are currently employed, which enable conversion of part of the energy associated to the pressure waves into heat. Normally, the silencer devices are set along the exhaust pipe and contribute to reducing considerably the overall noise level of the engine (see for example GB 1 507 247, JP 6 048 386, US 2 553 326).

Frequently, however, this is not sufficient, and it necessary to adopt additional solutions. In particular, it is possible to add further silencer elements also along the air-intake pipe, for example upstream of the air-intake filter.

The known solutions, however, present a number of drawbacks, which are linked mainly to the bulk, in so far as the silencer elements currently available must be inserted externally to the air-intake filter, and which are linked to the characteristics of noise-deadening of the silencer device, which can be made by assembling distinct elements together.

As is known to a person skilled in the art, in fact, the performance of a silencer device is markedly affected by the geometry both of the device itself and of the flow of air that conveys the noise that is to be attenuated. On the other hand, the use of distinct silencer elements that are assembled along the air-intake pipe does not enable an optimal geometry, and hence noise is reduced only partially.

Furthermore, it is not possible to modify either the dimensions or the noise-attenuation characteristics of the individual elements that form the silencer device, which consequently is not suitable for being used on engines that are different, for example, in terms of displacement or in terms of other constructional features. It is thus necessary to provide different elements according to the type of engine on which the said elements are to be used, and this entails high production costs.

The purpose of the present invention is to provide a low-noise integrated air-filtering device which enables the above-mentioned drawbacks to be overcome and which, moreover, is of simple and inexpensive implementation.

Provided in accordance with the present invention is a low-noise integrated air-filtering device according to claim 1.

In this way, the device is not only compact and of reduced overall dimensions, but can also be built with an optimal geometry which enables noise abatement in an extremely efficient way. In particular, the use of a resonator element and a damping element, which substantially operate in contiguous frequency bands, makes it possible to achieve a high damping effect over a wide spectrum of frequencies.

In addition, the device forms a single body which can be conveniently mounted on different engines as a replacement for the traditional air-intake filter.

The linear geometry and the symmetry of the pipe with respect to a barycentric axis of symmetry enable effective reduction of the undesired effects of resonance due to the transverse modes of propagation of the pressure waves, and thus enable a further improvement in noise deadening.

For a better understanding of the present invention, an embodiment thereof will be described hereinafter, purely by way of non-limiting example and with reference to the attached drawings, in which:

  • Figure 1 is a simplified diagram of an integrated device according to the present invention, in a longitudinal cross-sectional view; and
  • Figure 2 presents plots of quantities regarding the device of Figure 1.

With reference to Figure 1, a low-noise integrated air-filtering device, designated as a whole by 1, comprises a casing 2, which has a longitudinal axis A of symmetry, an inlet pipe 3 and an outlet pipe 4, which are coaxial to the longitudinal axis A. Housed inside the casing 2 are a filter cartridge 5, of a type in itself known, and a silencer device 7, which includes at least one resonator element 8 and one first damping element 10. In detail, the resonator element 8, the first damping element 10 and the filter cartridge 5 are set in series together and form an axial sequence, in which the resonator element 8 and the first damping element 10 are set upstream of the filter cartridge 5.

According to the present invention, the longitudinal axis A of symmetry is also a barycentric axis of the device 1. In addition, the resonator element 8, the first damping element 10 and the filtering cartridge 5 define a linear conduit 11 coaxial to the longitudinal axis A of symmetry. In particular, the linear conduit 11 is traversed by a flow of air sucked in towards the engine (not shown). The said flow of air conveys pressure waves which are generated by the engine itself during its normal operation and which are the source of the noise that is to be attenuated.

Preferably, the resonator 8 is an in-line Helmholtz resonator and has a neck 12, which has an adjustable length L, and a volume V. In this way, the resonator element 8 is particularly suited for attenuating noise in a medium-to-low frequency band, up to approximately 300 Hz. In addition, the frequency of maximum damping can be adjusted, as will be explained hereinafter.

In detail, the neck 12 of the resonator element 8 has an annular shape and is defined comprised between an outlet stretch 3a of the inlet pipe 3 and a first stretch 11a of the linear conduit 11.

In particular, the outlet stretch 3a of the inlet pipe 3 is inserted, in an axially slidable way, inside the first stretch 11a of the linear conduit 11.

The axial position of the inlet pipe 3 with respect to the linear conduit 11 (and hence the length L of the neck 12) can be adjusted by means of an actuation device, comprising, for example, a rack 13, carried integrally by the inlet pipe 3 and set longitudinally, and a gear 14, driven by a motor, of a known type and not illustrated.

Optionally, a diaphragm 15 can be inserted inside the casing 2 in order to reduce by a pre-set amount the volume V of the resonator element 8.

The first damping element 10 is a candle-like perforated element with low density of perforation, for attenuation of the noise in a medium-to-high frequency band, up to approximately 900 Hz. For example, the density of perforation is between approximately 4% and 5%.

An annular region, which is defined between the casing 2 and the first damping element 10 and which moreover is axially delimited by a first wall 17a and a second wall 17b, forms an expansion chamber 17, which contributes to attenuating the noise generated by the engine, as will be explained later on with reference to Figure 2.

According to a preferred embodiment of the present invention, the integrated device 1 comprises a second damping element 18, set inside the casing 2, downstream of the filter cartridge 5. In addition, the second damping element 18 is coaxial to the longitudinal axis A of symmetry and is connected to the outlet pipe 4. In particular, the second damping element 8 is a candle-like perforated element with high perforation density for noise damping in a high-frequency band, substantially with frequencies higher than 600 Hz.

Figure 2 shows damping curves of the resonator element 8, of the first damping element 10 and of the expansion chamber 17 in a frequency band of between 0 and 1000 Hz. In detail, the damping curve for the resonator element 8 is illustrated with a solid line; the damping curve for the first damping element 10 is illustrated with a dashed line; and the damping curve for the expansion chamber 17 (i.e., due exclusively to a sharp variation in the section of the pipe in which the air flows) is illustrated with a dashed-and-dotted line.

As mentioned previously, when the engine on which the integrated device 1 is operating, the inlet pipe 3, the linear conduit 11 and the outlet pipe 4 of the integrated device 1 itself are traversed by a flow of air in which substantially periodic pressure waves, which are a source of noise, propagate.

The noise is mainly attenuated by the resonator element 8 and by the first damping element 10. The integrated device 1, as a whole, is particularly effective in damping transverse modes of propagation of the pressure waves. As is known to a person skilled in the art, the said result can be obtained when the flow of air develops substantially about a barycentric axis of the damping device (in the case of the integrated device 1, the flow of air develops substantially about the longitudinal axis A of symmetry, which is a barycentric axis). In this way, in fact, it is possible to shift secondary resonance frequencies present in the damping and air-filtering devices towards high frequency values, namely ones that are outside the spectrum of frequencies of the pressure waves that generate noise. The said secondary resonance frequencies are not therefore excited, and undesired resonance effects are thus prevented.

In addition, the maximum attenuating frequency of the resonator element 8 can be adjusted. In an in-line Helmholtz resonator, such as the resonator element 8, the said maximum frequency of attenuation corresponds, in fact, to the characteristic resonance frequency FR given by the following equation: FR = 1 / (2π) sqrt(C2S / (LEFFV)) where C is the speed of sound, S is the area of a radial section of the neck 12 of the resonator element 8, and LEFF is the effective length of the neck 12. The said effective length LEFF is in turn defined, to a first approximation, by the following expression: LEFF = L + 0.8 sqrt(S)

Clearly, the possibility of varying the axial position of the inlet pipe 3 with respect to the linear conduit 11 enables adjustment of the length L of the neck 12 of the resonator element 8 and, consequently, also its characteristic frequency of resonance FR.

It is moreover evident from equation (1) that the characteristic frequency of resonance FR can be modified also by varying the volume V of the resonator element 8. For this purpose, as mentioned previously, it is possible to insert, inside the casing 12, the diaphragm 15, which reduces the volume V by a pre-set amount. In this way, the integrated device 1 can be readily adapted to the noise characteristics of various engines.

In particular, the sequence of the elements inside the casing 2 may be different from the one illustrated. For example, the resonator element 8 and the first damping element 10 may be set downstream of the filter cartridge 5; on the other hand, the second damping element 18 may be set upstream of said filter cartridge 5.


Anspruch[de]
  1. Rauscharme integrierte Luftfiltervorrichtung (1), die einen Mantel (2), der ein Einlassrohr (3) und ein Auslassrohr (4) aufweist, einen Filtereinsatz (5), der in den Mantel (2) eingesetzt ist, und eine Dämpfungsvorrichtung (7) einschließlich eines Resonatorelements (8) umfasst, dadurch gekennzeichnet, dass
    • (i) die Dämpfungsvorrichtung (7) femer ein damit kombiniertes erstes Dämpfungselement (10) enthält, wobei das Resonatorelement (8) und das Dämpfungselement (10) hintereinander eingesetzt sind und in dem Mantel (2) enthalten sind,
    • (ii) wobei das Resonatorelement (8), das erste Dämpfungselement (10) und der Filtereinsatz (5) eine axiale Folge bilden und so angeordnet sind, dass sie ein geradliniges Rohr (11) definieren, das von einem Luftstrom durchquert wird und koaxial zu einer Symmetrieachse (A) des Mantels (2), die eine baryzentrische Achse der Vorrichtung (1) ist, angeordnet ist, sodass das Einlassrohr (3) und das Auslassrohr (4) ebenfalls koaxial zu der Symmetrieachse (A) sind,
    • (iii) das Resonatorelement (8) ein in das Rohr eingepasster Helmholtz-Resonator ist und das erste Dämpfungselement (10) ein kerzenartiges gelochtes Element ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das erste Resonatorelement (10) ein kerzenartiges gelochtes Element mit einer niedrigen Lochungsdichte ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Resonatorelement (8) einen Hals (12) mit einer Länge (L), die eingestellt werden kann, aufweist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Hals (12) des Resonatorelements (8) eine ringförmige Form hat und zwischen einem Auslassabschnitt (3a) des Einlassrohrs (3), der in einem ersten Abschnitt (11a) des geradlinigen Rohrs (11) eingefügt ist, und dem ersten Abschnitt (11a) des geradlinigen Rohrs (11) definiert ist, wobei das Einlassrohr (3) in Bezug auf das geradlinige Rohr (11) außerdem axial verschiebbar ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche 2 bis 4, dadurch gekennzeichnet, dass sie eine Expansionskammer (17) umfasst, die durch einen ringförmigen Bereich definiert ist, der zwischen dem Mantel (2) und dem ersten Dämpfungselement (10) eingeschlossen ist, und der außerdem durch eine erste Wand (17a) und eine zweite Wand (17b) axial abgegrenzt ist.
  6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass sie ein zweites Dämpfungselement (18) umfasst, das auf der Auslassseite des Filtereinsatzes (5) in dem Mantel (2) eingesetzt ist, wobei das Resonatorelement (18) koaxial zu der baryzentrischen Symmetrieachse (A) ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das zweite Dämpfungselement (18) ein kerzenartiges gelochtes Element mit einer hohen Lochungsdichte zur Geräuschdämpfung in einem Hochfrequenzband, im Wesentlichen mit Frequenzen höher als 600 Hz, ist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche 2 bis 7, dadurch gekennzeichnet, dass das erste Dämpfungselement (18), das durch das kerzenartige gelochte Element mit niedriger Lochungsdichte gebildet wird, eine Lochungsdichte zwischen etwa 4 % und 5 % aufweist, sodass es das Geräusch in einem Mittel- bis Hochfrequenzband bis zu etwa 900 Hz abschwächen kann.
Anspruch[en]
  1. A low-noise integrated air-filtering device (1), comprising a casing (2), which has an inlet pipe (3) and an outlet pipe (4), a filter element (5), which is set inside said casing (2), and a silencer device (7) including one resonator element (8), characterized in that
    • (i)- said silencer device (7) further includes, in combination, one first damping element (10), said resonator element (8) and said damping element (10) being set in series together and contained inside said casing (2);
    • (ii)- said resonator element (8), said first damping element (10) and said filter element (5) forming an axial sequence and being arranged so as to define a linear conduit (11) traversed by a flow of air and arranged coaxial to an axis of symmetry (A) of said casing (2) which is a barycentric axis of said device (1) so as said inlet pipe (3) and said outlet pipe (4) are coaxial too with .said axis of symmetry (A);
    • (iii)- said resonator element (8) being an in-line Helmholtz resonator, and said first damping element (10) being a candle-like perforated element.
  2. The device according to Claim 1, characterized in that said first damping element (10) is a candle-like perforated element having a low perforation density.
  3. The device according to Claim 1 or 2, characterized in that said resonator element (8) has a neck (12) having a length (L) that can be adjusted.
  4. The device according to Claim 3, characterized in that said neck (12) of said resonator element (8) has an annular shape and is defined between an outlet stretch (3a) of said inlet pipe (3), which is inserted inside a first stretch (11a) of said linear conduit (11), and said first stretch (11a) of said linear conduit (11), said inlet pipe (3) being moreover axially slidable with respect to said linear conduit (11).
  5. The device according to anyone of the foregoing Claims 2 to 4,characterized in that it comprises an expansion chamber (17) defined by an annular region which is comprised between said casing (2) and said first damping element (10) and which is moreover axially delimited by a first wall (17a) and a second wall (17b).
  6. The device according to any one of Claim 2 to 5, characterized in that it comprises a second damping element (18), set inside said casing (2), downstream of said filter element (5), said damping element (18) being coaxial to said barycentric axis of symmetry (A).
  7. The device according to Claim 6, characterized in that said second damping element (18) is a candle-like perforated element with high perforation density, for noise damping in a high-frequency band, substantially with frequencies higher than 600 Hz.
  8. The device according to anyone of the foregoing claims 2 to 7, characterized in that said first damping element (18) formed by said candle-like perforated element with low perforation density, has a density of perforation between approximately 4% and 5%, so as to be able to attenuate the noise in a medium-to-high frequency band, up to approximately 900 Hz.
Anspruch[fr]
  1. Dispositif intégré (1) de filtration de l'air à faible bruit, comportant une enveloppe (2) qui a un conduit d'entrée (3) et un conduit de sortie (4), un élément à filtre (5) qui est placé à l'intérieur de ladite enveloppe (2), et un dispositif silencieux (7) comprenant un élément résonateur (8), caractérisé en ce que
    • (i) ledit dispositif silencieux (7) comprend en outre, en combinaison, un premier élément amortisseur (10), ledit élément résonateur (8) et ledit élément amortisseur (10) étant assemblés en série et contenus à l'intérieur de ladite enveloppe (2) ;
    • (ii) ledit élément résonateur (8), ledit premier élément amortisseur (10) et ledit élément à filtre (5) formant une séquence axiale ou étant agencés de façon à définir un conduit linéaire (11) parcouru par un écoulement d'air et agencé de façon à être centré sur l'axe de symétrie (A) de ladite enveloppe (2) qui est l'axe barycentrique dudit dispositif (1) afin que ledit tuyau d'entrée (3) et ledit tuyau de sortie (4) soient coaxiaux aussi avec ledit axe de symétrie (A) ;
    • (iii) ledit élément résonateur (8) étant un résonateur de Helmholtz en ligne, et ledit premier élément amortisseur (10) étant un élément perforé analogue à une chandelle.
  2. Dispositif selon la revendication 1, caractérisé en ce que ledit premier élément amortisseur (10) est un élément perforé analogue à une chandelle ayant une faible densité de perforations.
  3. Dispositif selon la revendication 1 ou 2,caractérisé en ce que ledit élément résonateur (8) comporte un col (12) ayant une longueur (L) qui peut être réglée.
  4. Dispositif selon la revendication 3, caractérisé en ce que ledit col (12) dudit élément résonateur (8) a une forme annulaire et est défini entre un tronçon de sortie (3a) dudit tuyau d'entrée (3) qui est inséré à l'intérieur d'un premier tronçon (11a) dudit conduit linéaire (11), et ledit premier tronçon (11a) dudit conduit linéaire (11) ; ledit tuyau d'entrée (3) pouvant en outre coulisser axialement par rapport audit conduit linéaire (11).
  5. Dispositif selon l'une quelconque des revendications précédentes 2 à 4, caractérisé en ce qu'il comporte une chambre (17) d'expansion définie par une région annulaire qui est formée entre ladite enveloppe (2) et ledit premier élément amortisseur (10), et qui est en outre délimitée axialement par une première paroi (17a) et une seconde paroi (17b).
  6. Dispositif selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'il comporte un second élément amortisseur (18) placé à l'intérieur de ladite enveloppe (2), en aval dudit élément à filtre (5), ledit élément amortisseur (18) étant coaxial avec ledit axe barycentrique de symétrie (A).
  7. Dispositif selon la revendication 6, caractérisé en ce que ledit second élément amortisseur (18) est un élément perforé analogue à une chandelle à haute densité de perforations pour amortir les bruits dans une bande de hautes fréquences, sensiblement à des fréquences supérieures à 600 Hz.
  8. Dispositif selon l'une quelconque des revendications précédentes 2 à 7, caractérisé en ce que ledit premier élément amortisseur (18) formé par ledit élément perforé analogue à une chandelle à faible densité de perforations présente une densité de perforations comprise entre environ 4 % et 5 %, afin de pouvoir atténuer le bruit dans une bande de fréquences moyennes à élevées, s'élevant jusqu'à environ 900 Hz.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com