PatentDe  


Dokumentenidentifikation DE10354281A1 23.06.2005
Titel Sensor
Anmelder Marco Systemanalyse und Entwicklung GmbH, 85221 Dachau, DE
Erfinder Reuter, Martin, 85221 Dachau, DE
Vertreter Manitz, Finsterwald & Partner GbR, 80336 München
DE-Anmeldedatum 20.11.2003
DE-Aktenzeichen 10354281
Offenlegungstag 23.06.2005
Veröffentlichungstag im Patentblatt 23.06.2005
IPC-Hauptklasse G01H 11/08
IPC-Nebenklasse G01N 27/72   
Zusammenfassung Ein Sensor zur Detektion von Körperschall mit einem Piezoelement, das zur Detektion von Schallwellen in einem Festkörper dient, weist eine Materialbrücke auf, in die das Piezoelement integriert ist. Die Materialbrücke weist an ihren Endbereichen eine Befestigungsfläche zur Befestigung der Materialbrücke an einer Montagefläche auf.

Beschreibung[de]

Die vorliegende Erfindung betrifft einen Sensor mit einem Piezoelement zur Detektion von Schallwellen in Festkörpern (Körperschallsensor) und ein Verfahren zur Montage eines solchen Sensors an einer Oberfläche.

Die Verwendung von auf die Oberfläche eines zu untersuchenden Festkörpers montierbaren piezoelektrischen Beschleunigungsaufnehmern zur Detektion von Schall oder Ultraschall in Festkörpern ist bekannt. Die Beschleunigung a der Körperoberfläche durch die mechanischen Schwingungen wird von dem piezoelektrischen Material detektiert, welches zwischen der Oberfläche und einer trägen (seismischen) Masse als Widerlager angeordnet ist. Da die Beschleunigung proportional zum Quadrat der Frequenz der Schwingung im Festkörper ist, ist die Empfindlichkeit des Sensors für kleine Frequenzen gering. Ein weiterer Nachteil derartiger Beschleunigungsaufnehmer ist, dass Frequenzen oberhalb der Resonanzfrequenz, die von der seismischen Masse und der Steifigkeit des Piezoelements abhängt, nicht detektiert werden können. Um eine höhere Grenzfrequenz zu erhalten, muss die seismische Masse verringert werden und/oder die Steifigkeit des Piezoelements erhöht werden. Dies hat eine noch geringere Empfindlichkeit für niedrige Frequenzen zur Folge.

Ein anderes bekanntes Verfahren zur Detektion von Schallwellen in Festkörpern sieht die Integration eines Piezoelementes direkt in den Festkörper vor. Das mechanische Schwingungsspektrum wird vom Piezoelement direkt in ein elektrisches Spektrum umgewandelt. Dieses Messprinzip hat zwar einen wesentlich größeren Frequenzbereich. Ein bedeutender Nachteil ist allerdings, dass im Messobjekt eine Einrichtung zum Anbringen des Sensors, wie z. B. eine Bohrung, vorgesehen sein muss, was oft nicht erwünscht ist.

Es ist daher die Aufgabe der vorliegenden Erfindung, einen Sensor der eingangs genannten Art zu schaffen, der an der Oberfläche des zu untersuchenden Festkörpers befestigbar ist und das mechanische Schwingungsspektrum in ein elektrisches Spektrum wandelt, ohne dass hierzu eine seismische Masse benötigt wird, die das detektierbare Frequenzspektrum nach oben begrenzt und der bei niedrigen Frequenzen eine hohe Empfindlichkeit hat.

Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1.

Erfindungsgemäß ist das Piezoelement des Sensors in eine Materialbrücke integriert, deren Endbereiche in Kontakt mit der Oberfläche des Festkörpers gebracht werden können. Im Betrieb wird der Sensor an den Endbereichen der Materialbrücke auf der Oberfläche des zu untersuchenden Festkörpers befestigt. Die Schallwellen, welche sich in dem Festkörper fortpflanzen, pflanzen sich auch in der Materialbrücke fort. Die damit verbundenen Druckschwankungen werden vom Piezoelement direkt in elektrische Signale umgewandelt. Für akustische Wellenlängen im Bereich größer der Brückenlänge wird die Brücke verbogen. Je nach Krümmungsrichtung der Oberfläche des Festkörpers entstehen Zugspannung oder Druckspannung am Piezoelement, die dann ebenfalls in elektrische Signale gewandelt werden.

Vorteilhafte Ausführungsformen der Erfindung sind in der Beschreibung, den Figuren sowie den Unteransprüchen beschrieben.

Nach einer ersten vorteilhaften Ausführungsform sind an den Endbereichen der Materialbrücke Permanentmagnete zur Befestigung des Sensors an einer ferromagnetischen Oberfläche vorgesehen. Diese Ausführungsform ermöglicht es, den Sensor vorübergehend oder dauerhaft an einem ferromagnetischen Messobjekt zu befestigen, ohne dass dieses beschädigt wird. Darüber hinaus ermöglichen die Magnete in den Endbereichen der Materialbrücke ein einfaches Verfahren zum dauerhaften Befestigen des Sensors an einer ferromagnetischen Oberfläche. Hierbei wird zunächst ein aushärtbares Klebemittel auf eine Montagezone aufgebracht, die entweder auf der Oberfläche des Sensors in der Nähe der Permanentmagnete oder auf der ferromagnetischen Fläche liegt. Im nächsten Schritt wird der Sensor mit Hilfe des Permanentmagneten an der ferromagnetischen Fläche im Bereich der Montagezone befestigt. Während der Sensor durch den Magneten an der ferromagnetischen Oberfläche fixiert ist, kann das Klebemittel aushärten. Zusätzliche Befestigungsvorrichtungen, um den Sensor zu fixieren, bevor das Klebemittel ausgehärtet ist, erübrigen sich somit. Die Magnete dienen also in diesem Fall allein dazu, den Sensor während des Aushärtens des Klebemittels zu fixieren.

Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass die Materialbrücke mindestens zwei Schenkel aufweist, zwischen denen das Piezoelement angeordnet ist. Diese Schenkel können über eine oder mehrere zug- und biegeelastische Materialverbindungen verbunden sein. Diese Ausführungsform ermöglicht zum einen, die Schenkel und die zug- und biegeelastische Materialverbindung aus einem Stück zu fertigen. Zum anderen ermöglicht sie das Einspannen des Piezoelements unter Druckvorspannung, wodurch übermäßige Zugspannungen auf das Piezoelement im Betrieb des Sensors vermieden werden, die das Piezoelement zerstören könnten.

Die zug- und biegeelastische Materialverbindung kann wellenförmig gebogen sein, so dass die gewünschte Elastizität auf einfache Weise erhalten wird. Alternativ oder zusätzlich kann die Materialverbindung auch eine separate Feder aufweisen.

Zur einfacheren Herstellung und Montage können die Schenkel der Materialbrücke und die zug- und biegeelastische Materialverbindung aus einem Stück gebildet sein. Dies hat zusätzlich den Vorteil, dass kein Spiel zwischen den Schenkeln und der zug- und biegeelastische Materialverbindung entstehen kann.

Nach einer weiteren Ausbildung der Erfindung können die Schenkel der Materialbrücke unter einem Winkel zueinander stehen, so dass sie ein Dreieck bilden, wobei das Piezoelement zwischen den Schenkeln angeordnet ist. Schallwellen mit einer Wellenlänge, die größer als die Länge der Brücke ist, werden von dieser Ausführungsform des Sensors aufgrund der entstehenden Verbiegung der Brücke besonders gut detektiert.

Alternativ können die Schenkel auch mit dem Piezoelement in einer Ebene liegen, was die Herstellung des Sensors vereinfacht.

Um eine bessere Übertragung der mechanischen Druckwellen auf das Piezoelement zu erreichen, sieht eine weitere vorteilhafte Ausführungsform der Erfindung vor, dass der Querschnitt der Schenkel zumindest bereichsweise größer ist als der Querschnitt des Piezoelements.

Der Sensor kann zum Schutz vor Beschädigungen in einem Gehäuse angeordnet sein. Ein Gehäuse erleichtert nicht nur die Montage am zu untersuchenden Festkörper, es ermöglicht auch die Unterbringung eines Vorverstärkers oder anderer elektronischer Bauteile. In diesem Fall können die Endbereiche der Materialbrücke über die Umfangskontur des Gehäuses hinausragen, wodurch Erschütterungen des Gehäuses im Betrieb vermieden werden und definierte Kontaktflächen für den Sensor erhalten bleiben. Der Innenbereich des Gehäuses kann zur zusätzlichen Fixierung der Bauteile vergossen werden, was eine Dämpfung der Eigenschwingungen der Bauteile bewirkt.

Zur einfacheren Montage des Sensors und zugehöriger elektronischer Bauteile kann die Materialbrücke mit einer Halterung für elektronische Bauteile verbunden sein. Die Verbindung kann gelenkartig gelagert sein, so dass eine Dämpfung der akustischen Schwingungen in der Materialbrücke durch die Halterung für elektronische Bauteile vermieden wird.

Um die Haftung an der Oberfläche des Messobjekts und die Schwingungsübertragung zu verbessern, können die Endbereiche der Materialbrücke eine gerillte oder geriffelte Oberfläche besitzen.

Des Weiteren betrifft die Erfindung ein Verfahren mit den Merkmalen des unabhängigen Verfahrensanspruchs zur Befestigung eines Sensors zur Detektion von Körperschall an einer ferromagnetischen Fläche, wobei in dem Randbereich des Sensors zumindest ein Permanentmagnet vorgesehen ist, der zur vorübergehenden oder dauerhaften Fixierung des Sensors an einer ferromagnetischen Fläche dient.

Nachfolgend wird die vorliegende Erfindung rein beispielhaft anhand vorteilhafter Ausführungsformen und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:

1 einen Längsschnitt eines Sensors mit Gehäuse und elektronischen Bauteilen;

2 einen Querschnitt durch den Sensor von 1;

3 eine Draufsicht auf einen weiteren Sensor; und

4 einen Längsschnitt entlang der Achse IV-IV durch den Sensor von 3.

Die 1 und 2 zeigen eine erste Ausführungsform eines Sensors zur Detektion von Körperschall mit einem Piezoelement 12, das zur Detektion von Schallwellen in einem Festkörper dient. Bei dem dargestellten Ausführungsbeispiel besteht das Piezoelement 12 aus einem Stapel von aneinander befestigten Teilelementen, die miteinander stapelförmig verbunden sind. Ein derartiges Piezoelement besitzt eine große Kapazität und hat somit den Vorteil geringerer Störempfindlichkeit. Zu beiden Seiten des Piezoelementes 12 sind Isolierelemente 11 angeordnet, die beispielsweise aus Aluminiumoxid oder Piezomaterial gebildet sein können.

Wie 1 ferner zeigt, ist das Piezoelement 12 in eine Materialbrücke 13 integriert, die beim dargestellten Ausführungsbeispiel zwei gleichartige Schenkel 14 aufweist, die einen Winkel von etwa 150° einschließen. Die beiden Schenkel 14 der Materialbrücke 13 sind über eine zug- und biegeelastische Materialverbindung 18 miteinander verbunden, die einstückig mit jeweils einem Endbereich 15 der Schenkel 14 verbunden ist. Mit anderen Worten bilden die beiden Schenkel 14 und die Materialverbindung 18 ein einstückiges Bauteil, das beim dargestellten Ausführungsbeispiel aus Stahl hergestellt ist.

Wie 1 ferner zeigt, erstreckt sich die zug- und biegeelastische Materialverbindung 18 unterhalb des Piezoelementes 12 zwischen den beiden Endbereichen 15 der Schenkel 14, wobei die Materialverbindung 18 als wellenförmiger Steg ausgebildet ist, der annähernd eine Doppel-S-Form bildet.

Jeder der beiden Schenkel 14 der Materialbrücke 13 weist an seinem inneren Ende eine plane Kontaktfläche für das Piezoelement 12 bzw. die Isolierelemente 11 auf, wobei die Kontaktflächen der beiden Schenkel 14 zueinander planparallel sind. In ihren äußeren Endbereichen 15 sind die beiden Schenkel 14 mit jeweils einer Befestigungsfläche 19 versehen, die zur Befestigung der Materialbrücke 13 an einer Montagefläche dient. Hierbei verlaufen die beiden Befestigungsflächen 19 koplanar und senkrecht zu den Kontaktflächen der Materialbrücke 13. 1 lässt dabei erkennen, dass die Kontaktbrücke 13 im Wesentlichen die Form eines gleichschenkligen Dreiecks bildet, wobei die Befestigungsflächen 19 im Bereich der Basis des Dreiecks angeordnet sind und das Piezoelement 12 der Basis des Dreiecks gegenüberliegt. Wie 2 zeigt, sind das Piezoelement 12 und die Schenkel 14 der Materialbrücke 13 symmetrisch zu einer Mittelebene M angeordnet, wobei der Querschnitt der Schenkel 14 etwa dreimal so groß ist wie der des Piezoelementes 12.

In den Endbereichen 15 der Materialbrücke 13 ist ferner jeweils eine Ausnehmung 17 vorgesehen, in der ein Permanentmagnet 16 vergossen ist. Hierbei bildet eine Teilfläche jedes Permanentmagneten 16 einen Teilabschnitt der Befestigungsfläche 19, d.h. jeder Permanentmagnet 16 erstreckt sich bis an die Oberfläche der Materialbrücke 13 im Bereich der Befestigungsflächen 19.

Die beiden Befestigungsflächen 19 der Materialbrücke 13 sind so bearbeitet, dass sie eine unregelmäßig geformte Oberfläche besitzen, die bei dem dargestellten Ausführungsbeispiel gerillt ausgebildet ist. Hierbei erstreckt sich die gerillte Ausbildung der Oberfläche sowohl über die Außenflächen der Permanentmagnete 16 wie auch über die benachbarten Oberflächenbereiche der Materialbrücke 13.

Wie die 1 und 2 ferner zeigen, ist an der Materialbrücke 13 eine Halterung 24 vorgesehen, um eine Platine 26 mit elektronischen Bauteilen 28 zu lagern. Die Halterungen 24 sind bei dem dargestellten Ausführungsbeispiel jeweils aus einer U-förmigen Halteklammer gebildet, die in eine Nut 29 eingesetzt ist, welche an der Oberseite der beiden Schenkel 14 vorgesehen ist. Die jeweils freien Enden der Halterungen 24 sind durch die Platine 26 gesteckt und mit dieser fixiert, wobei das Piezoelement 12 über elektrische Zuleitungen mit der Platine 26 verbunden ist, deren elektronische Bauteile 28 einen Vorverstärker bilden.

Der vorstehend beschriebene Sensor ist in ein einseitig offenes Gehäuse 10 eingesetzt, das eine Steckverbindung 27 zum Kontaktieren des Sensors aufweist. Wie hierbei die 1 und 2 verdeutlichen, ist der Sensor so in dem Gehäuse 10 angeordnet, dass die Endbereiche 15 der Materialbrücke 13 geringfügig, beim dargestellten Ausführungsbeispiel um etwa 0,5 mm, über die Umfangskontur des Gehäuses 10 hinausragen. Es ist auch erkennbar, dass sich noch ein Teil der Materialverbindung 18 außerhalb des Gehäuses 10 befindet.

Nachfolgend wird die Montage des in den 1 und 2 dargestellten Sensors beschrieben.

Zur Montage des vorstehend beschriebenen Sensors werden zunächst die Permanentmagneten 16 in die Ausnehmungen 17 der Materialbrücke 13 eingesetzt und in diesen dauerhaft vergossen. Danach werden die Befestigungsflächen 19 in den Endbereichen 15 der Schenkel 14 so bearbeitet, dass die gewünschte rillenförmige Oberflächenstruktur entsteht.

Anschließend kann das Piezoelement 12, das zu beiden Seiten mit den Isolierelementen 11 versehen ist, in den zwischen den Innenseiten der Schenkel liegenden Bereich eingebracht werden. Hierbei ist die Materialbrücke 13 so dimensioniert, dass das Piezoelement 12 mit den beiden Isolierelementen 11 unter mechanischer Vorspannung zwischen den Kontaktflächen der Schenkel 14 festgeklemmt ist, wobei diese Vorspannung durch die Materialverbindung 18 erzeugt wird. Um eine gute Befestigung des Piezoelementes 12 sicherzustellen, kann dieses zusätzlich zwischen den beiden Schenkeln 14 verklebt werden.

In einem weiteren Schritt wird nun die vollständig bestückte Platine 26 mit Hilfe der Halterungen 24 an der Materialbrücke 13 befestigt, woraufhin das Piezoelement 12 elektrisch mit der Platine 26 kontaktiert werden kann.

Nach dem Herstellen der elektrischen Verbindung zwischen der Platine 26 und der Steckverbindung 27 wird die aus Materialbrücke 13 und Platine 26 bestehende Einheit wie in den 1 und 2 dargestellt in das Innere des Gehäuses 10 eingesetzt, wobei mit Hilfe von Justiereinrichtungen sichergestellt ist, dass die Endbereiche 15 der Materialbrücke 13 um den gewünschten Abstand über die Umfangskontur des Gehäuses 10 hinausragen. Wenn diese Position erreicht ist, die der Darstellung der 1 und 2 entspricht, kann eine zuvor auf die Oberseite der Platine 26 aufgebrachte Klebemasse 20, beispielsweise in Form von Silikon, aushärten, wodurch die gewünschte Relativlage zwischen Materialbrücke 13 und Gehäuse 10 fixiert ist. Im Anschluss daran wird das Innere des Gehäuses 10 mit einer bei der Verarbeitung dünnflüssigen Vergussmasse 22 vollständig vergossen, die beispielsweise Polyurethan umfassen kann. Eine derartige Vergussmasse hat sich bewährt, da diese auch im ausgehärteten Zustand eine gewisse Restelastizität aufweist, die ein Verbiegen der Schenkel 14 der Materialbrücke 13 erlaubt.

Im praktischen Betrieb kann der vorstehend beschriebene Sensor auf einfache und vorteilhafte Weise an einer Montagefläche dauerhaft befestigt werden, ohne dass die Montagefläche hierzu bearbeitet werden muss oder gesonderte Befestigungsvorrichtungen erforderlich sind. Hierzu kann auf eine gewünschte Montagezone, die entweder auf den Endbereichen 15 und/oder auf der Montagefläche aus ferromagnetischem Material liegt, ein aushärtbares Klebemittel aufgebracht werden. Anschließend kann der Sensor an der ferromagnetischen Fläche im Bereich der Montagezone mit Hilfe der Permanentmagneten 17 befestigt werden, woraufhin das Klebemittel aushärten kann.

Nach dem Aushärten des Klebemittels ist der Sensor dauerhaft an der ferromagnetischen Oberfläche fixiert, d.h. die Permanentmagneten 17 dienen lediglich dazu, den Sensor während der Aushärtphase des Klebemittels zu fixieren.

Nach erfolgter Montage des Sensors an der Montagefläche ist sichergestellt, dass ein akustisches Spektrum, welches sich innerhalb des Festkörpers fortpflanzt, sich auch auf das Piezoelement 12 überträgt, da mit Hilfe der Materialbrücke 13 ein akustischer Nebenschluss erzeugt worden ist. Die aufgrund des Schalls im Festkörper vorhandenen Druckschwankungen werden von dem Piezoelement 12 direkt in elektrische Signale umgewandelt, wobei für akustische Wellenlängen, die größer als die Länge der Brücke sind, die Brücke 13 verbogen und das Piezoelement 12 gedehnt oder gestaucht wird. Bei einer konvexen Verformung der Oberfläche des Festkörpers entsteht im Bereich des Piezoelementes 12 eine Zugspannung, wohingegen bei eine konkaven Krümmung der Oberfläche des Festkörpers eine Druckspannung entsteht. Der erfindungsgemäße Sensor ist somit besonders sensitiv für Oberflächenschwingungen, deren Wellenlänge in der gleichen Größenordnung wie die Länge der Materialbrücke 13 liegt.

Die 3 und 4 zeigen eine weitere Ausführungsform eines Sensors, wobei für gleiche Elemente gleiche Bezugszeichen verwendet werden.

Der in den 3 und 4 dargestellte Sensor ist prinzipiell in gleicher Weise aufgebaut wie der Sensor der ersten Ausführungsform. Allerdings unterscheidet sich die Materialbrücke 13 des Sensors nach den 3 und 4 darin, dass die beiden Schenkel 14 in einer horizontalen Ebene angeordnet sind. Die beiden Innenseiten der Schenkel 14 sind über zwei zug- und biegeelastische Materialverbindungen 18 miteinander verbunden, wobei die beiden Schenkel 14 und die beiden zug- und biegeelastischen Materialverbindungen 18 in diesem Ausführungsbeispiel einstückig aus Stahl ausgebildet sind. Die beiden zug- und biegeelastischen Materialverbindungen 18 besitzen beide eine Doppel-S-Form und sind spiegelsymmetrisch zueinander angeordnet. Die beiden Schenkel 14 der Materialbrücke 13 verjüngen sich im Längsschnitt gesehen von der Innenseite nach außen, wobei der Querschnitt der Schenkel an den an das Piezoelement 12 angrenzenden Innenseiten etwa doppelt so groß wie an der Außenseite ist. Die Endbereiche 15 der Schenkel 14 besitzen eine glatte Oberfläche, welche im Betrieb auf dem zu untersuchenden Festkörper befestigt wird.

Das Piezoelement 12 ist zwischen den beiden Schenkeln 14 angeordnet und besteht auch hier aus einen Stapel formenden Teilelementen aus Piezokeramik. Die Schenkel 14 der Materialbrücke 13 besitzen an ihren Innenseiten einen etwa dreimal größeren Querschnitt als das Piezoelement 12. Das Piezoelement 12 ist beidseitig über Isolierelemente 11, die beispielsweise aus Aluminiumoxid bestehen können, mit den Innenseiten der Schenkel 14 der Materialbrücke 13 verbunden. Zusätzlich sind an zwei gegenüberliegenden Seiten des Piezoelementes 12 zwei elektrische Leitungen 25 an Lötstellen 21 befestigt. Die Leitungen 25 sind über eine Oberseite eines Schenkels 14 geführt und dort zum Schutz vor Zugbelastungen und Verknicken an Klebestellen 23 befestigt. Die Leitungen 25 führen zu hier nicht dargestellten elektronischen Bauteilen.

Der in den 3 und 4 dargestellte Sensor kann in ein Gehäuse eingebaut werden, kann aber auch ohne Gehäuse auf einen zu untersuchenden Festkörper montiert werden. Besonders bei kleinen Messobjekten ist die Montage ohne Gehäuse vorteilhaft, da Platz und Gewicht gespart werden.

Bei der Montage des Sensors wird zunächst das Piezoelement unter mechanischer Vorspannung zwischen den beiden Schenkeln 14 eingespannt. Zur besseren Fixierung kann es mit den beiden Isolierelementen 11 und den Schenkeln 14 der Materialbrücke 13 verklebt werden. Anschließend werden die Leitungen 25 am Piezoelement 12 an den Lötstellen 21 angelötet und zuletzt an der Oberseite eines Schenkels 14 an einer Klebestelle 23 verklebt.

Im Betrieb wird der Sensor an der Oberfläche eines zu untersuchenden Festkörpers befestigt, zum Beispiel aufgeklebt. Für die Funktionsweise des Sensors gilt dann das bereits anhand des ersten Ausführungsbeispiels Erklärte.

10Gehäuse 11Isolierelement 12Piezoelement 13Materialbrücke 14Schenkel 15Endbereich 16Permanentmagnet 17Ausnehmung 18zug- und biegelastische Materialverbindung 19Befestigungsfläche 20Klebemasse 21Lötstelle 22Vergussmasse 23Klebestelle 24Halterung 25elektrische Leitung 26Platine 28elektronische Bauteile 29Nut MMittelebene

Anspruch[de]
  1. Sensor zur Detektion von Körperschall mit einem Piezoelement (12), das zur Detektion von Schallwellen in einem Festkörper dient, dadurch gekennzeichnet, dass das Piezoelement (12) in eine Materialbrücke (13) integriert ist, die mindestens zwei Endbereiche (15) aufweist, die eine Befestigungsfläche (19) zur Befestigung der Materialbrücke (13) an einer Montagefläche aufweisen.
  2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass an den Endbereichen (15) der Materialbrücke (13) Magnete (17) zur Befestigung des Sensors an einer ferromagnetischen Oberfläche vorgesehen sind.
  3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Materialbrücke (13) mindestens zwei Schenkel (14) aufweist, zwischen denen das Piezoelement (12) angeordnet ist.
  4. Sensor nach Anspruch 3, dadurch gekennzeichnet, dass mindestens zwei Schenkel (14) der Materialbrücke (13) über mindestens eine zug- und biegeelastische Materialverbindung (18) verbunden sind.
  5. Sensor nach Anspruch 4, dadurch gekennzeichnet, dass das Piezoelement (12) unter einer durch die Materialverbindung (18) erzeugten Vorspannung zwischen den Schenkeln (14) der Materialbrücke (13) angeordnet ist.
  6. Sensor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die zug- und biegeelastische Materialverbindung (18) wellenförmig gebogen ist und/oder eine Feder aufweist.
  7. Sensor nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass Schenkel (14) und Materialverbindung (18) aus einem Stück gebildet sind.
  8. Sensor nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Schenkel (14) unter einem Winkel zueinander stehen, insbesondere unter Bildung eines gleichschenkligen Dreiecks, wobei das Piezoelement (12) der Basis des Dreiecks gegenüberliegend angebracht ist.
  9. Sensor nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Schenkel (14) und das Piezoelement (12) im Wesentlichen in einer Ebene liegen.
  10. Sensor nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass der Querschnitt der Schenkel (14) zumindest bereichsweise größer ist als der Querschnitt des Piezoelements (12), insbesondere mindestens doppelt so groß.
  11. Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Materialbrücke in einem Gehäuse (10) angeordnet ist.
  12. Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Materialbrücke in einem Gehäuse (10) angeordnet ist und der Innenraum des Gehäuses (10) vergossen ist.
  13. Sensor nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Endbereiche (15) der Materialbrücke (13) über die Umfangskontur des Gehäuses (10) hinaus ragen.
  14. Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Materialbrücke (13) mit einer Halterung (24) für elektronische Bauteile (28) verbunden ist, insbesondere durch eine gelenkartig gelagerte Verbindung.
  15. Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Endbereiche (15) der Materialbrücke (13) eine unregelmäßig geformte, insbesondere gerillte oder geriffelte Oberfläche besitzen.
  16. Verfahren zum Befestigen eines Sensors zur Detektion von Körperschall, insbesondere nach einem der vorstehenden Ansprüche, in dessen Randbereich zumindest ein Permanentmagnet (16) vorgesehen ist, der eine Befestigung des Sensors an einer ferromagnetischen Fläche ermöglicht, umfassend folgende Schritte:

    Aufbringen eines aushärtbaren Klebemittels auf eine Montagezone, die entweder auf einem Randbereich des Sensors oder auf der ferromagnetischen Fläche liegt,

    Befestigen des Sensors an der ferromagnetischen Fläche im Bereich der Montagezone mit Hilfe des Permanentmagneten,

    Aushärten lassen des Klebemittels, während der Sensor durch den Magneten an der ferromagnetischen Oberfläche fixiert ist.
Es folgen 2 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com