PatentDe  


Dokumentenidentifikation DE102004009104A1 22.09.2005
Titel Verfahren und Vorrichtung zum Nachweis ionisierender Strahlung
Anmelder Berthold Technologies GmbH & Co. KG, 75323 Bad Wildbad, DE
Erfinder Berthold, Fritz, Dr., 75173 Pforzheim, DE;
Reuter, Wilfried, Dr., 75334 Straubenhardt, DE;
Haefner, Peter, 75305 Neuenbürg, DE
Vertreter Mayer, Frank und Schön, 75173 Pforzheim
DE-Anmeldedatum 25.02.2004
DE-Aktenzeichen 102004009104
Offenlegungstag 22.09.2005
Veröffentlichungstag im Patentblatt 22.09.2005
IPC-Hauptklasse G01T 1/20
IPC-Nebenklasse G01T 1/02   
Zusammenfassung Ein Verfahren zum Nachweis ionisierender Strahlung mit Hilfe eines Szintillationszählers und eines Photovervielfachers verwendet einen anorganischen Feststoff-Szintillator, der mindestens eine Abklingzeitkomponente von über 100 ns aufweist, und misst die vom Szintillator emittierten Photonen mit einem schnellen Einzelphotonenzähler (40). Der Einzelphotonenzähler besteht aus einem schnellen Photovervielfacher mit hoher innerer Verstärkung, einer stabilisierten Hochspannungsversorgung und einem schnellen Verstärker/Diskriminator mit Normimpulsausgang.
Durch diese Kombination kann die Messung sämtlicher Strahlungsarten wie Alpha-, Beta-, Gamma- und Röntgenstrahlung durchgeführt werden, mit geringen Herstellungskosten des Detektors, hoher Sensitivität insbesondere bei kleinen Betaenergien, bei nur geringen Sensitivitätsänderungen in einem großen Temperaturbereich von -20 bis +50°C und mit guter Langzeitstabilität.

Beschreibung[de]
Technischer Hintergrund

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Szintillationszählung von ionisierender Strahlung.

In Radionuklidlaboren, in kerntechnischen Anlagen oder im allgemeinen Strahlenschutz werden regelmäßig Messungen z.B. zur Ermittlung von radioaktiven Kontaminationen oder der Dosisleistung sowie zur Aktivitätsmessung durchgeführt.

Auch in der Prozessmesstechnik, etwa zur Messung des Füllstandes, der Dichte oder des Flächengewichtes sind nukleare Messverfahren weit verbreitet. Als Detektoren werden vor allem Szintillationszähler, Zählrohre und Ionisationskammern verwendet.

Aus KNOLL „Radiation detection and measurement", 2nd edition (S.231 und 237 S) ist zu entnehmen, dass ZnS das Material der Wahl für den Nachweis von Alpha-Strahlung ist und hierfür eine hohe Lichtausbeute aufweist. Dagegen ist ZnS zum Nachweis anderer Strahlungsarten offenbar nicht geeignet.

Daher ist der bereits in der US-5,796,108 beschriebene Stand der Technik folgender:

Wird nur Alpha-Strahlung gemessen, so wird nur ZnS als Szintillator verwendet. Wird nur Beta-Strahlung gemessen, so wird ein Plastikszintillator verwendet. Soll jedoch Alpha- und Betastrahlung gleichzeitig und getrennt gemessen werden, so wird ein "Sandwich"-Szintillator benutzt. Dieser besteht aus einem flachen Plastikszintillator mit einer darauf aufgebrachten Schicht von ZnS, letztere der Probe zugewandt. Die Dicke der ZnS-Schicht wird so gewählt, dass möglichst alle Alpha-Teilchen gestoppt werden und dabei Licht erzeugen, was bei etwa 6 mg/cm2 Schichtdicke erreicht wird. In jeder Ausführungsform befindet sich über dem Szintillator ein lichtdichtes Strahlen-Eintrittsfenster, meist eine metallbedampfte Kunststofffolie.

Der Szintillator kann direkt auf dem Eintrittsfenster des Photovervielfachers montiert sein. Dies ist allerdings bei Oberflächen-Kontaminationsmonitoren nicht möglich, da die Szintillatoren Flächen von typisch 100–200 cm2 aufweisen, wogegen die Eintrittsfenster vorzugsweise verwendeter Photovervielfacher nur etwa 25 mm Durchmesser haben. Daher werden hier die Photonen aus dem Szintillator mit Hilfe eines Reflektors auf die Photokathode gebündelt.

Die Ausgangsimpulse des Photovervielfachers durchlaufen einen Linearverstärker mit Impulsformungszeiten von typisch 1–20 &mgr;s. Die Unterscheidung von Alpha-Strahlung einerseits, Beta/Gamma/Röntgenstrahlung andererseits erfolgt beim bekannten Verfahren mit Sandwich-Szintillatoren an Hand der Amplituden, die durch Impulshöhen-Diskriminatoren in die entsprechenden Kanäle sortiert werden.

Dieses Verfahren hat eine Reihe von Nachteilen:

Die Empfindlichkeit ist für niederenergetische Beta-Strahlung gering, da diese zunächst die ZnS-Schicht durchdringen müssen und dort kein mit herkömmlichen Methoden messbares Signal erzeugen, bevor sie mit ihrer Restenergie den Plastikszintillator erreichen. Man erhält in diesem Falle auch kein erkennbares Plateau mehr, d.h. keinen stabilen Arbeitspunkt in der Abhängigkeit der Impulsrate als Funktion der Hochspannung.

Plastikszintillatoren mit ZnS-Beschichtung erfordern außerdem einen speziellen und komplexen Herstellungsprozess und damit hohe Kosten für den Detektor und damit das Messsystem.

Darstellung der Erfindung

Aufgabe der Erfindung ist die Konzeption eines Messsystems mit geringen Herstellungskosten des Detektors, mit dem Ziel einer Erhöhung der Sensitivität des Messsystems insbesondere bei kleinen Betaenergien, bei nur geringen Sensitivitätsänderungen in einem großen Temperaturbereich von –20 bis + 50 Grad C, sowie mit guter Langzeitstabilität.

Diese Aufgabe wird gemäß den Merkmalen des Patentanspruchs 1 gelöst.

Überraschender Weise erlaubt die Kombination eines einzigen Szintillators, der Abklingzeitkomponenten von über 100 ns erhält und somit eine zeitliche Auflösung der Einzelphotonenimpulse ermöglicht, mit einem Einzelphotonenzähler die Messung sämtlicher Strahlungsarten wie Alpha-, Beta-, Gamma- und Röntgenstrahlung. Als Einzelphotonenzähler (photon counter) bezeichnet man einen Detektor für Photonen, vorzugsweise im sichtbaren Bereich oder im nahen Ultraviolett oder Infrarot. Er besteht aus einem schnellen Photovervielfacher mit hoher innerer Verstärkung, die u.A. mit einer hohen Zahl von Dynoden (z. B. 10) erreicht wird, einer stabilisierten Hochspannungsversorgung und einem schnellen Verstärker/Diskriminator mit Normimpulsausgang. Ein Einzelphotonenzähler kann anstelle eines Photovervielfachers auch ein Halbleiterbauelement mit innerer Verstärkung, z.B. eine Avalanche Photodiode, verwenden.

Durch die dem Einzelphotonenzähler nachgeschalteten Auswerteschaltungen können die einzelnen Strahlungsarten voneinander unterschieden und damit getrennt und gleichzeitig oder auch einzeln oder gemeinsam gemessen werden.

Es ist auch möglich, das erfindungsgemäße Verfahren mit herkömmlichen zu kombinieren, z.B. das erfindungsgemäße Verfahren für die Messung von Beta- und Gamma-Strahlung zu benutzen, dagegen Alpha-Strahlung in konventioneller Weise mit einer langsamen Verstärker-Diskriminatorschaltung zu messen.

Ein Szintillator mit obigen Eigenschaften kann relativ leicht entweder durch Sedimentation mit einer geeigneten Lösung oder durch Auftragen mit einer Spritzpistole hergestellt werden, was die Herstellkosten des Detektors und damit des Messsystems entscheidend reduziert.

Vorteilhafte Ausgestaltungen der technischen Lehre des Patentanspruchs 1 betreffen hauptsächlich die Auswerteschaltung. Durch geeignete Ausgestaltungen der Auswerteschaltung ausschließlich zur Grundauswertung im Rahmen der Einzelphotonenmessung oder durch zusätzliche Schaltungsbestandteile lässt sich das erfindungsgemäße Messsystem für Messungen im Rahmen einer Vielzahl von Anwendungsbereichen auslegen; so sind insbesondere Einzelmessungen einer vorgegebenen Strahlungsart, aber auch gleichzeitige Messungen mehrerer Strahlungsarten, etwa für den Einsatz im Strahlenschutz, bei radiometrischen Messverfahren, oder für die Verwendung in der Dosimetrie, realisierbar.

Die Rate der Ausgangsimpulse des Einzelphotonenzählers kann direkt als Maß für die Intensität der ionisierenden Strahlung verwendet werden. Es ist jedoch auch möglich, durch eine Korrelationsschaltung in der nachfolgenden Auswerteschaltung, diese Ausgangsimpulse zu analysieren, um damit ein gutes Signalrauschverhältnis zu erhalten, oder um verschiedene Strahlungsarten voneinander zu trennen.

Eine solche Korrelationsschaltung erkennt aus der zeitlichen Abfolge der Norm-Impulse des Einzelphotonenzählers typische, aus der Wechselwirkung der ionisierenden Strahlung mit dem Szintillator stammende Abfolgen, durch die sich sowohl die unvermeidlichen Rauschimpulse von den interessierenden ionisierenden Strahlungsereignissen trennen lassen, als auch die ionisierende Strahlung ihrer Art nach (Alphastrahlung einerseits und Beta/Gamma/Röntgenstrahlung andererseits) identifizieren lässt. Eine hierfür ausgelegte Korrelationsschaltung kann derart konzipiert sein, dass ein Impuls des Einzelphotonenzählers ein Gate für eine vorgebbare Gatedauer öffnet, innerhalb der eventuell weitere Impulse gezählt werden. Abhängig von der Anzahl N dieser weiteren Impulse und der Gatedauer kann durch Vergleich mit einem für eine Strahlungsart vorgebbaren typischen Wert eine Entscheidung getroffen werden, ob die während der Gatedauer eingetroffenen Impulse Folge eines ionisierenden Strahlungsereignisses dieser Art sind.

Eine Fortentwicklung einer solchen Korrelationsschaltung erlaubt durch die Vorgabe von zwei typischen Werten für die ionisierenden Strahlungsereignisse dann auch eine Unterscheidung dieser Strahlungsarten auf der Basis der Anzahl N der während des Gatefensters eingetroffenen Impulse.

Diese Art der Korrelationsmessung der Ausgangsimpulse des Einzelphotonenzählers wird im folgenden kurz als "Bursterkennung" bezeichnet.

Bei der Bursterkennung können Einzelphotonenereignisse auf Grund der thermischen Elektronenemission aus der Photokathode wegen ihrer statistischen Verteilung nur über zufällige Koinzidenzen beitragen. Deshalb kann im Bereich des Nulleffektes dieser Beitrag zur Zählrate vernachlässigt werden, auch wenn bei höheren Temperaturen die thermische Elektronenemission ansteigt.

Da der Arbeitspunkt, d.h. die Hochspannung des Photovervielfachers, so gewählt wird, dass man sich im Einzelphotonen-Plateau befindet, erhält man auch für die Burstimpulsrate unabhängig von der Energie der ionisierenden Strahlung ein gutes Plateau.

Durch die dem Einzelphotonenzähler nachfolgende Bursterkennung ist sowohl eine Einzelmessung (Vorgabe des typischen N-Werts der nachzuweisenden Strahlung), als auch eine gleichzeitige oder parallele Messung mehrerer Arten von Strahlungen möglich, in dem aus der Anzahl der im Gatefenster gezählten Impulse auf die Art des nachgewiesenen Strahlungsereignisses geschlossen wird.

Für die gleichzeitige Messung verschiedener Strahlungsarten kann die Auswerteschaltung ausschliesslich mit der Einzelphotonenmessung in Verbindung mit der Bursterkennung arbeiten, aber auch gemäß einer Ausgestaltung des erfindungsgemäßen Messsystems einen separaten Kanal vorgesehen, der zum Nachweis von Alphateilchen nach der bekannten Methode mit einem ladungsempfindlichen Vorverstärker mit einer nachfolgenden Pulsformung von ca. 1 &mgr;s und einem Integraldiskriminator arbeitet, und der im folgenden kurz als "Alphakanal" bezeichnet wird.

Mit einem solchen Alphakanal sind voneinander zeitlich unabhängige Zählungen möglich; sollten während der Messung von ionisierenden Ereignissen durch die Bursterkennung gleichzeitig im Alphakanal Alphaimpulse oder Impulse aus der Höhenstrahlung registriert werden, welche auf Grund der sehr intensiven Wechselwirkung mit dem Szintillator große Lichtblitze und unerwünschtes Nachleuchten (Phosphoreszenz) und damit Einzelphotonensignale erzeugen, auf die auch die Bursterkennung anspricht, so wird über ein vom Alphakanal erzeugtes Vetosignal die Bursterkennung deaktiviert, um Artefakte einschließlich der Störimpulse aus dem Nachleuchten des Szintillators zu vermeiden.

Weitere vorteilhafte Ausgestaltungen sind weiteren Unteransprüchen zu entnehmen.

Kurze Beschreibung der Zeichnungen

Ausführungsbeispiele von Vorrichtungen zur Durchführung des erfindungsgemäßen Verfahrens werden im folgenden anhand von Zeichnungen erläutert, es zeigen:

1: Ein Blockschaltbild einer bevorzugten Anordnung zur Durchführung des erfindungsgemäßen Verfahrens,

2A–C: die bei der Anordnung gemäß 1 gemessenen Zählraten und deren Amplituden,

3: ein Blockschaltbild einer Anordnung zur Messung eines Strahlungstyps mittels Bursterkennung,

4: ein erstes Blockschaltbild einer Anordnung zur Unterscheidung von Strahlungsarten mittels Bursterkennung,

5: ein zweites Blockschaltbild einer Anordnung zur Unterscheidung von Strahlungsarten mittels Bursterkennung und Alpha-Kanal,

6: eine Darstellung einer ersten Ausführung des Detektors,

7: eine Darstellung einer zweiten Ausführung des Detektors,

8: eine Darstellung einer dritten Ausführung des Detektors,

9: eine Darstellung einer vierten Ausführung des Detektors,

10: eine Darstellung einer fünften Ausführung des Detektors, und

11: eine Darstellung einer sechsten Ausführung des Detektors.

Beschreibung der Ausführungsbeisgiele

1 zeigt eine Anordnung zur Durchführung des erfindungsgemäßen Verfahrens in seiner grundsätzlichen Ausgestaltung.

Einem Photovervielfacher 30 ist ein Szintillator 10 als Bestandteil eines Detektors zugeordnet, dessen erfindungsgemäßer Aufbau im einzelnen anhand von Ausführungsbeispielen unter den 611 näher beschrieben wird.

Die im Szintillator 10 aufgrund der eingangs beschriebenen Wechselwirkungen erzeugten Photonen werden im nachgeschalteten Photovervielfacher 30 registriert, verstärkt, und die Ausgangsimpulse des Photovervielfachers 30 werden einem schnellen Einzelphotonenverstärker 22 mit Diskriminatorstufe zugeführt.

Diese in 1 gestrichelt umrandete Anordnung aus Photovervielfacher 30 und Einzelphotonenverstärker 22 wird im folgenden als Einzelphotonenzähler 40 bezeichnet.

Dem Einzelphotonenzähler 40 ist eine Auswerteschaltung 20 nachgeschaltet, die in verschiedener Weise ausgestaltet sein kann, wie dies im folgenden erläutert wird.

Die Auswerteschaltung dient zur Lieferung von Zählimpulsen aufgrund eines seiner Art nach identifizierten ionisierenden Strahlungsereignisses an eine Mikroprozessoreinheit 24. Die Bewertung und Umsetzung der normierten Ausgangsimpulse des Einzelphotonenzählers 40 in solche Zählimpulse für die Mikroprozessoreinheit ist somit Aufgabe der Auswerteschaltung 20.

Zur Hochspannungsversorgung des Photovervielfachers 30 dient eine Versorgungseinheit 21, die auch von der Mikroprozessoreinheit 24 angesteuert wird.

Aus der Photokathode werden durch auftreffende Photonen entsprechend der Quantenausbeute einzelne Photoelektronen ausgelöst. Diese werden in der Dynodenkette vervielfacht und erzeugen an der Anode sehr schnelle Ausgangssignale mit einer Breite von typisch 10 ns, wie in 2C dargestellt.

Obwohl jedes Signal von einem einzelnen Photoelektron herrührt, stellt sich die Impulshöhenverteilung (2B) wegen der statistischen Natur der Sekundär-Elektronenvervielfachung als ein breiter Peak dar. Außerdem zeigt die Impulshöhenverteilung einen steilen Anstieg bei kleinen Amplituden, der von photoelektrischen Effekten aus Dynoden, elektronischem Rauschen, etc. herrührt.

Einen stabilen Arbeitspunkt bekommt man, wenn die Diskriminatorschwelle im „Tal" zwischen den beiden Bereichen auf die mit DS bezeichnete Position eingestellt wird. Verändert man nun die Hochspannung, so erhält man am Ausgang des Diskriminators die in 2A dargestellte Funktion der Impulsrate. Sie zeigt ein sog. Plateau, d. h. einen Bereich bei dem sich die Zählrate als Funktion der Hochspannung nur geringfügig ändert.

Die Hochspannung wird so eingestellt, dass sie im Plateau liegt (Arbeitspunkt AP). Dadurch wirken sich Drifts der Dynodenverstärkung, der Hochspannung, der elektronischen Verstärkung, etc. nur wenig auf das Ergebnis aus. Daher zeichnen sich Einzelphotonenzähler neben höchster Empfindlichkeit durch hervorragende Langzeitstabilität aus.

Es muss noch erwähnt werden, dass Elektronen nicht nur durch Photonen, sondern auch spontan aus der Photokathode ausgelöst werden und damit einen unerwünschten Nulleffekt, der stark temperaturabhängig ist, auslösen. Die Ausschaltung dieser Störung wird ebenfalls durch die Erfindung erreicht.

Mittels eines Displays 24A wird das Auswerteergebnis visualisiert.

In einer einfachen ersten bevorzugten Ausführung arbeitet die Auswerteschaltung als Zählratenuntersetzer. Da bei einem einzigen radioaktiven Ereignis in der Regel mehrere Einzelphotonen erzeugt werden, die vom Einzelphotonenzähler 40 registriert werden, wird in der Auswerteschaltung 20 eine geeignete Zählratenuntersetzung festgelegt (z.B. 20), um beispielsweise jeweils 20 Ausgangsimpulsen (Burst) des Einzelphotonenzählers 40 einen Zählratenimpuls repräsentativ für ein ionisierendes Ereignis zuordnen zu können. Eine Erkennung einer bestimmten Strahlungsart ist hiermit nicht beabsichtigt.

2B zeigt ein typisches Impulshöhenspektrum eines für Einzelphotonenzählung geeigneten Photovervielfachers 30.

Der Anstieg bei geringen Amplituden rührt von thermischen Elektronen aus Dynoden und elektrischem Rauschen her, das nachfolgende Maximum bei höheren Amplituden in dieser Impulshöhenverteilung entspricht Einzelelektronen aus der Photokathode, die durch Lichtquanten ausgelöste Photoelektronen oder thermische Elektronen aus der Photokathode sein können.

Die Diskriminatorschwelle DS wird in das Minimum zwischen Einzelelektronen-maximum und Rauschen gelegt, um damit das oben erwähnte Einzelphotonen-Plateau EP (2A) zu erhalten.

2C zeigt einen typischen Einzelphotonenpuls mit einer Halbwertbreite von etwa 10 ns.

Im folgenden werden nun weitere Ausgestaltungen der Vorrichtung zur Umsetzung weiterer vorteilhafter Varianten des erfindungsgemäßen Verfahrens beschrieben, die im wesentlichen eine Weiterentwicklung und Ergänzung der Auswerteschaltung 20 darstellen.

Beim Ausführungsbeispiel der Vorrichtung gemäß 3 beinhaltet die Auswerteschaltung 20 eine Korrelationsschaltung, mit der die eingangs erläuterte Bursterkennung mit einstellbarer Gatedauer TG und vorwählbarer Pulsanzahl N1 durchgeführt werden kann.

Die Funktionsweise dieser Schaltung ist derart, dass das erste diskriminierte Ausgangssignal (Normimpuls) des Einzelphotonenzählers 40 einen Gateimpuls für eine bestimmte Zeit TG (Gatedauer) öffnet, vorzugsweise 2–30 &mgr;s.

Die innerhalb der Gatedauer TG eintreffenden Normimpulse werden gezählt. Ist die Anzahl N der eingetroffenen Normimpulse mindestens gleich der vorgegebenen Impulsanzahl N1, so wird dies als Nachweis eines für den Wert N1 typischen ionisierenden Ereignisses gewertet, d.h., dann wird von der Korrelationsschaltung ein Zählimpuls an die Mikroprozessorelektronik 24 geleitet.

Diese Variante eignet sich besonders zur Messung eines durch die Wahl von TG und N1 hinsichtlich seiner Art vorgebbaren ionisierenden Ereignisses, also entweder von Alphastrahlung oder Beta/Gamma/Röntgen-Strahlung. Die Zahl der der Mikroprozessoreinheit 24 zugeleiteten Zählimpulse der Auswerteschaltung 20 repräsentiert folglich die Intensität dieser ausgewählten Strahlung.

Die Schaltung kann insofern dynamisch gestaltet werden, als dass bereits bei Erreichen der vorgegebenen Anzahl N1 (N = N1) das Gatefenster geschlossen wird (T < TG) und die Bursterkennung somit wieder zur Registrierung eines neuen ionisierenden Ereignisses bereit ist.

4 zeigt ein erstes Blockschaltbild einer Vorrichtung, bei dem die Auswerteschaltung 20 derart ausgestaltet ist, dass auch gleichzeitig (d.h. parallel) Beta-Gamma-Röntgenstrahlung einerseits und Alphateilchen andererseits ausschließlich durch eine Bursterkennung gemessen werden können, und zwar dergestalt, dass die Impulsanzahl N1, die zur Bewertung eines ionisierenden Ereignisses als Betateilchen "erforderlich" ist, beispielsweise zwischen 1 und 20 gewählt wird und eine zweite Impulsanzahl N2 beispielsweise zwischen 5 und 50 zur Bewertung eines ionisierenden Ereignisses als Alphateilchen vorgegeben wird, wobei N2 größer als N1 gewählt sein muss.

Bei der Wertung der in das vorgegebene Gatefenster mit der Gatebreite TG gefallenen N Impulse in der Auswerteschaltung 20 sind bei diesem Konzept drei zu unterscheidende Fälle möglich:

  • a) N < N1 (< N2):

    Das registrierte Ereignis ist weder als Alpha, noch als Beta/Gamma/Röntgenstrahlung zu werten.
  • b) N1 ≤ N < N2:

    Es handelt sich um ein Beta/Gamma/Röntgensignal.
  • c) N2 ≤ N:

    Es handelt sich um ein Alphasignal.

Die Auswerteschaltung 20 und der Alphakanal 50 sind bei dieser Ausgestaltung dahingehend konzipiert, dass sie die getrennte Erfassung derartiger Strahlungsereignisse ermöglichen und bei Erfüllen der Bedingung b) oder c) einen separaten "Alphazähler" 24A bzw. "Betazähler" 24B in der Mikroprozessorauswerteeinheit 24 ansteuern.

In 5 ist ein zweites Blockschaltbild einer Vorrichtung dargestellt, deren wesentliche Ausgestaltung darin besteht, dass die Bursterkennung in der Auswerteschaltung 20 ausschließlich zum Nachweis von Betateilchen dient, wogegen parallel ein "Alphakanal" 50 in herkömmlicher Schaltungsweise ausschließlich zum Alphanachweis betrieben wird. Für letzteren sind ein ladungsempfindlicher Vorverstärker 25 mit einer nachfolgenden Pulsformung von ca. 1–20 &mgr;s und zwei Integraldiskriminatoren 26 und 27 vorgesehen. Der Vorverstärker erhält das Ausgangssignal des Photovervielfachers 30, der bei dieser Variante insofern eine Doppelfunktion hat, nämlich als Signallieferant für den Alphakanal und als Teil des Einzelphotonenzählers zur Ansteuerung der Auswerteschaltung 20, die hier mit einem schnellen Impulsverstärker 28 mit einer Doppelpulsauflösung von 30 bis 40 ns mit einem schnellen Integralkomparator ausgelegt ist.

Mit dieser Anordnung ist es somit ebenfalls möglich, Betaimpulse und Alphateilchen separat durch Auswahl der Auswertungsmethode (Bursterkennung oder konventioneller Alphakanal), oder aber auch gleichzeitig/parallel zu messen (Bursterkennung und Alphakanal), da die Ausgangsimpulse des Photomultipliers 30 sowohl zur Bursterkennung als auch im Alphakanal 50 ausgewertet werden.

Hierbei ist zu beachten, dass aufgrund der sehr intensiven Wechselwirkung von Alphaimpulsen oder Impulsen aus der Höhenstrahlung mit dem Szintillator große Lichtblitze und somit ein erhebliches Nachleuchten (Phosphoreszenz) und damit Einzelphotonensignale erzeugt werden, die ohne eine zusätzliche Maßnahme (auch) von der Bursterkennung als ionisierende Ereignisse erfasst würden.

Um dies zu verhindern, wird bei Registrierung von Alphaimpulsen oder Impulsen aus der Höhenstrahlung eine gleichzeitige Bursterkennung für eine bestimmte Zeitdauer, beispielsweise 1 bis 10 &mgr;s, deaktiviert.

Dies wird dadurch erreicht, dass die Öffnung des Gates zur Bursterkennung während der Dauer des Alphateilchen-Nachweises unterbunden wird ("Veto-Signal").

Vorteilhafterweise sind für die diese Betriebsweise zwei Diskriminatorschwellen D1 zur Blockierung der Bursterkennung durch das Vetosignal und D2 zum Beginn der Auswertung im Alphakanal D2 vorgesehen, wobei D2 größer als D1 gewählt ist, so dass bereits bei erkennbarem Beginn eines Alphateilchennachweises (Erreichen der ersten Diskriminatorschwelle D1) durch das Vetosignal ein Gateimpuls für den Start der Bursterkennung unterbunden wird, die Zählung der Ausgangsimpulse für die "Alpha"-Wertung aber erst bei Überschreiten der zweiten Diskriminatorschwelle D2 beginnt.

Während die erläuterten 1 bis 5 die erfindungsgemäße Auswertung der Ausgangsimpulse des Photovervielfachers 30 zum Gegenstand haben, beschäftigen sich die folgenden 6 bis 11 mit der Erzeugung der vom ionisierenden Ereignis hervorgerufenen Lichtblitze im Szintillator und der Einkopplung in das Eintrittsfenster des Photovervielfachers.

In allen Fällen wird erfindungsgemäß als strahlungsempfindlicher Detektor eine transparente Szintillatorschicht 12 mit einer Abklingzeitkomponente von mindestens 100 ns eingesetzt, vorzugsweise ZnS und als dünne Schicht auf einer lichtundurchlässigen und sehr dünnen metallisierten Kunststofffolie oder einer lichttransparenten Trägerplatte vorzugsweise aus Plexiglas oder Glas aufgebracht. Aufgrund dieses wesentlichen Merkmals der Erfindung wird kein weiterer Plastikszintillator mehr benötigt.

Die Schichtdicke des Szintillatormaterials 12 wird so gewählt, dass die Alphateilchen aller interessierenden Radionuklide gestoppt werden (Massenbelegung größer als 6 mg/cm2) und die Selbstabsorption des Lichtes im Szintillatormaterial noch vernachlässigt werden kann (Massenbelegung unter 100 mg/cm2).

Das einfachste Ausführungsbeispiel zeigt 6:

Auf einem dünnen Lichtleiter 14, der mit der Photokathode 30B des Photovervielfachers 30 verbunden ist, ist die Szintillatorschicht 12 aufgebracht. Die gesamte Anordnung wird mechanisch und mit einer sehr dünnen Folie 11 als Eintrittsfenster für die Strahlung lichtdicht verschlossen. Das nach einem ionisierenden Ereignis auftretende elektrische Ausgangssignal wird von der Anode 30B ausgekoppelt, und, wie oben beschrieben, dem Einzelphotonenverstärker 22 und ggf. dem Alphakanal 20A zugeführt.

Alternativ hierzu (7) kann die Sammlung der Lichtimpulse der Szintillatorschicht 12 auch über einen Reflektor 15 durchgeführt werden, der das Licht auf die Anode 30A des Photovervielfachers 30 mit ebener oder sphärischer Photokathode bündelt. Trägerplatte 13 und Szintillatorschicht 12 befinden sich auch hier unterhalb einer lichtdichten Folie 11.

Beim Ausführungsbeispiel nach der 8 ist die Szintillatorschicht 12 direkt auf der dem Photovervielfacher 30 zugewandten Seite der lichtdichten Folie 11 aufgebracht; hier wird keine lichtdurchlässige Trägerplatte mehr benötigt.

9 zeigt die Ausgestaltung des Szintillators als Stabdetektor, bei dem auf die Außenwand eines zylindrisch geformten Lichtleiters 14 die Szintillatorschicht 12 aufgebracht wird, die eine Stirnseite mit dem Photovervielfacher 30 und die andere Stirnseite mit einem Spiegel 16 verbunden wird. Die gesamte Anordnung wird zusammen mit einer der eingangs erläuterten Vorrichtungen lichtdicht in ein Rohr 17 mit dünner Wandung eingebaut.

Eine ähnliche Anordnung zeigt die 10, wobei dieser Detektor als Dosimeter für Gammastrahlung ausgelegt ist. Um die Dosisleistung energieunabhängig messen zu können, ist ein zusätzliches Energiefilter 18 um den Detektor herum angebracht. Hier ist das lichtdichte Rohr 17 sehr dünn gewählt, damit auch die Dosisleistung von kleinen Gammaenergien noch gemessen werden kann.

Anstelle eines Stabes können auch dünne optische Lichtleiter mit einer Szintillatorschicht 12 beschichtet und ggf. gebündelt werden, wodurch eine besonders hohe Empfindlichkeit erreicht wird. 11 zeigt eine derartige Ausführung im Querschnitt.

Ist die Fläche des Szintillators wesentlich grösser als die Kathodenfläche des im Einzelphotonenzähler verwendeten Photomultipliers, so kann die Verwendung mehrerer Einzelphotonenzähler vorteilhaft sein. Damit erreicht man eine höhere Empfindlichkeit und, bei geeigneter Positionierung der Einzelphotonenzähler, eine besserer Homogenität der Ortsempfindlichkeit. Für die Weiterverarbeitung der Ausgangsimpulse der Einzelphotonenzähler gibt es verschiedene Möglichkeiten. So kann jeder der Einzelphotonenzähler mit einer eigenen Auswerteschaltung versehen sein. Es ist aber auch vorteilhaft, mit nur einer Auswerteschaltung zu arbeiten, wobei die Ausgangsimpulse der einzelnen Einzelphotonenzähler parallel auf die Eingangsstufe der Auswerteschaltung geschaltet werden.

Im letzteren Fall wird das oben beschriebene Gate durch einen von einem der Einzelphotonenzähler kommenden Impuls geöffnet und die während der Öffnungszeit eintreffenden Impulse sämtlicher Einzelphotonenzähler werden gezählt.

10Szintillator 12Szintillatorschicht 13Trägerplatte 14Lichtleiter 11Folie 15Reflektor 16Spiegel 17Rohr 18Energiefilter 20Auswerteschaltung 21Versorgungseinheit 22Verstärker mit Diskriminator 24Mikroprozessoreinheit 25Vorverstärker 26,27Integraldiskriminatoren 28Impulsverstärker 30Photovervielfacher 30APhotokathode 30BAnode 40Einzelphotonenzähler 50Alphakanal

Anspruch[de]
  1. Verfahren zum Nachweis ionisierender Strahlung mit Hilfe eines Szintillators und eines Photovervielfachers, dadurch gekennzeichnet, dass ein Feststoffszintillator verwendet wird, der mindestens eine Abklingzeitkomponente von über 100 ns aufweist, und dass die vom Szintillator emittierten Photonen mit einem schnellen Einzelphotonenzähler (40) gemessen werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Rate der Ausgangssignale des Einzelphotonenzählers (40) unmittelbar oder mittels eines vorgebbaren Untersetzungsverhältnisses als Maß für die Intensität der ionisierenden Strahlung verarbeitet wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine zeitliche Korrelation der Folge der Ausgangsimpulse des Einzelphotonenzählers (40) festgestellt (durchgeführt) wird, aus deren Ergebnis Zählimpulse als Maß für die Intensität der ionisierenden Strahlung gewonnen werden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass zur Bestimmung von Korrelationen eine Gateschaltung verwendet wird, wobei ein eintreffender Impuls das Gate für eine bestimmte Zeit TG öffnet und ein Ausgangssignal als Mass für ein ionisierendes Ereignis erzeugt wird, sobald während der Öffnungszeit des Gates eine bestimmet Zahl N weiterer Impulse vom Einzelphotonenzähler registriert werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zur Unterscheidung oder Auswahl einer bestimmten Art (Alpha, Beta, Gamma-Röntgen) der ionisierenden Strahlung (Einzelmessung) Werte von N und TG gewählt werden, die für eine bestimmte Art der Strahlung charakteristisch sind.
  6. Verfahren nach Anspruch 4 und 5, dadurch gekennzeichnet, dass zur Unterscheidung von mindestens zwei gleichzeitig erfassten Arten einer ionisierenden Strahlung (Parallelmessung) zwei für die Art der Strahlung typische Vorgabewerte der Anzahl (N1,N2) gewählt werden, und dass zur Zuordnung zur gemessenen Strahlungsart ein Zählratenimpuls zur Registrierung derjenigen Strahlungsart erzeugt wird, deren Anzahl (N) Ausgangsimpulse innerhalb des Zeitfensters (TG) in vorgebbarer Relation zu beiden Vorgabewerten (N1,N2) liegt.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zur Zuordnung des Zählratenimpulses zu Beta-, Gamma- oder Röntgenstrahlung die vorgebbare Anzahl (N1) zwischen 1 und 20 gewählt ist.
  8. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zur Zuordnung des Zählratenimpulses zu Alpha-Strahlung die vorgebbare Anzahl (N2) zwischen 5 und 50 gewählt ist.
  9. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass parallel zur Bursterkennung eine unabhängige Messung von Alpha-Strahlung mittels Impulsformung der Ausgangssignale des Photovervielfachers (30) erfolgt (Alphakanal).
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass bei Nachweis eines Alphateilchens im Alphakanal (50) der Beginn einer Bursterkennung für eine vorgebbare Veto-Zeit unterbunden wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Veto-Zeit zwischen 1 und 10 ms liegt.
  12. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Dauer (TG) des Zeitfensters zwischen 1 und 20&mgr;s liegt.
  13. Verfahren nach Anspruch 9 und 10, dadurch gekennzeichnet, dass zur Wertung der Ausgangsimpulse des Photomultipliers (30) als Alphateilchen im Alphakanal (50) eine erste Amplitudenschwelle (D1) gesetzt ist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass unterhalb der ersten Amplitudenschwelle (D1) eine zweite Amplitudenschwelle (D2) zu Beginn der Zählung im Alphakanal (50) gesetzt ist, so dass die Blockierung der Bursterkennung vor der Aktivierung des Alphakanals (50) erfolgt.
  15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Szintillator Zinksulfid (ZnS) verwendet wird.
  16. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Szintillator ZnS (Ag) verwendet wird.
  17. Anordnung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass der Szintillator als Scheibe ausgeführt ist, die mit einer Szintillatorschicht (12) beschichtet ist, die unmittelbar auf die Photokathode (30A) des Photomultipliers (30) aufgesetzt ist.
  18. Anordnung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass die Szintillatorschicht (12) auf eine transparente Trägerplatte (13) aufgebracht ist, deren Fläche wesentlich über der Fläche des Eintrittsfensters des Photomultipliers (30) liegt.
  19. Anordnung nach Anspruch 18, dadurch gekennzeichnet, dass die Trägerplatte (13) mittels eines Reflektors (15) auf der Photokathode (30A) von dieser beabstandet aufsitzt.
  20. Anordnung nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass der Detektor durch eine lichtdichten Folie (11) von Aussenlicht abgeschirmt ist.
  21. Anordnung nach Anspruch 20, dadurch gekennzeichnet, dass die Szintillatorschicht (12) auf eine dem Photomultiplier (30) zugewandte Seite der lichtdichten Folie (11) aufgebracht ist.
  22. Verfahren nach den Ansprüchen 1 und 18–20, gekennzeichnet durch seine Anwendung zur Oberflächen-Kontaminationsmessung.
  23. Anordnung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass die Wandung mindestens eines transparenten Körpers (14) mit einer Szintillatorschicht (12) beschichtet ist.
  24. Anordnung nach Anspruch 23, dadurch gekennzeichnet, dass der Körper ein transparenter Stab (17) ist.
  25. Anordnung nach Anspruch 24, dadurch gekennzeichnet, dass die Länge des Stabes (17) bis zu 10 m beträgt.
  26. Anordnung nach Anspruch 24, dadurch gekennzeichnet, dass der Stab (17) mit dünner Folie oder einem dünnwandigen Rohr (17) lichtdicht abgeschlossen ist.
  27. Anordnung nach Anspruch 24, dadurch gekennzeichnet, dass der Stab (17) mit geeigneten Filtern (18) umschlossen ist.
  28. Verfahren nach den Ansprüchen 1, 26 und 27, gekennzeichnet durch seine Anwendung zum Strahlenschutz, insbesondere zur Dosimetrie und Messung niederenergetischer Röntgenstrahlung.
  29. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Dicke der Szintillatorschicht (12) so gewählt ist, dass die von der nachzuweisenden Strahlung im Mittel abgegebene Energie maximiert und die Absorption des erzeugten Lichts minimiert ist.
  30. Anordnung nach Anspruch 15 und 29, dadurch gekennzeichnet, dass die Massenbelegung der ZnS-Szintillatorschicht (12) zwischen 6 und 100 mg/cm2 beträgt.
  31. Anordnung nach Anspruch 23, dadurch gekennzeichnet, dass der transparente Körper aus mindestens einem optischen Lichtleiter oder Wellenlängenshifter (14) besteht, der mit der Szintillatorschicht (12) beschichtet ist.
  32. Anordnung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass einem Szintillator mehrere Einzelphotonenzähler zugeordnet sind.
Es folgen 4 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com