PatentDe  


Dokumentenidentifikation DE69733776T2 05.01.2006
EP-Veröffentlichungsnummer 0000991363
Titel WIEDERVERWENDBARE, NEUTRALE KAPAZITÄTSELEKTRODE FÜR DIE ELEKTROCHIRURGIE
Anmelder Megadyne Medical Products, Inc., Draper, Utah, US
Erfinder FLEENOR, P., Richard, Englewood, US
Vertreter Samson & Partner, Patentanwälte, 80538 München
DE-Aktenzeichen 69733776
Vertragsstaaten AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 14.10.1997
EP-Aktenzeichen 979100922
WO-Anmeldetag 14.10.1997
PCT-Aktenzeichen PCT/US97/18448
WO-Veröffentlichungsnummer 0098018395
WO-Veröffentlichungsdatum 07.05.1998
EP-Offenlegungsdatum 12.04.2000
EP date of grant 20.07.2005
Veröffentlichungstag im Patentblatt 05.01.2006
IPC-Hauptklasse A61B 18/16(2006.01)A, F, I, ,  ,  ,   

Beschreibung[de]

Die vorliegende Erfindung betrifft die Elektrochirurgie und spezieller wiederverwendbare Rückführ- bzw. neutrale Elektroden, die ausgelegt sind, um eine effektive und sichere Rückführung bzw. Neutralisierung elektrochirurgischer Energie ohne leitende oder dielektrische Gele oder Polymere, vorzusehen.

HINTERGRUND DER ERFINDUNG

Wie dies für den Durchschnittsfachmann bekannt ist, wird bei modernen chirurgischen Techniken typischerweise eine auf Radiofrequenz (RF) basierende Kaustizierung vorgenommen, um Gewebe zu schneiden und Blutungen zu koagulieren, die bei der Durchführung chirurgischer Vorgänge auftreten. In Bezug auf historische Perspektiven und Details derartiger Techniken wird Bezug genommen auf das US-Patent 4,936,842.

Wie für den Durchschnittsfachmann in der Medizintechnik wohl bekannt, wird Elektrochirurgie weit verbreitet verwendet und liefert viele Vorteile, einschließlich der Verwendung eines einzelnen chirurgischen Geräts sowohl für das Schneiden wie auch das Koagulieren. Jedes elektrochirurgische Generatorsystem muß, um vollständig genutzt werden zu können, eine aktive Elektrode haben, die durch den Chirurgen an dem Patienten an dem Ort des Eingriffs angesetzt wird, um einen chirurgischen Eingriff vorzunehmen, sowie eine Rückführbahn von dem Patienten zurück zu dem Generator. An der Kontaktstelle mit dem Patienten muß die aktive Elektrode klein bemessen sein, um eine hohe Stromdichte zu erzeugen, wodurch ein chirurgischer Effekt des Schneidens oder Koagulierens von Gewebe erzielt werden kann. Die Rückführelektrode, welche den gleichen Strom wie die aktive Elektrode führt, muß im effektiven Oberflächenbereich an der Stelle der Verbindung mit dem Patienten derart groß genug sein, daß ein Strom niederer Dichte von dem Patienten zu der Rückführelektrode fließt. Falls an der Rückführelektrode eine relativ hohe Stromdichte erzeugt wird, so steigt die Temperatur der Haut und des Gewebes des Patienten in diesem Bereich an und kann zu einer unerwünschten Verbrennung des Patienten führen.

Im Jahre 1985 veröffentlichte das Emergency Care Research Institute, ein sehr wohl bekannter medizinischer Prüfverein, die Resultate von Tests, die sie in Bezug auf Verbrennungsstellen durch elektrochirurgische Rückführelektroden durchführten und gaben an, daß die Erwärmung des Körpergewebes bis hin zum Schwellwert für eine Nekrose erreicht wird, wenn die Stromdichte 100 Milliampere pro Quadratzentimeter überschreitet.

Die Association for the Advancement of Medical Instrumentation hat Standards veröffentlicht, die es erforderlich machen, daß die maximale Temperatur des Oberflächengewebes eines Patienten, das an einer elektrochirurgischen Rückführelektrode angrenzt, sich nicht auf mehr als 6 Grad Celsius unter angegebenen Testbedingungen erhöhen sollte.

Während der vergangenen zwanzig Jahren hat die Industrie in Reaktion auf das medizinische Erfordernis für eine sicherer Rückführelektrode Produkte in zwei Hauptarten entwickelt: zuerst gingen sie von einer kleinen, etwa 30,48 × 17,78 cm (12 × 7 Inch) flachen Platte aus rostfreiem Stahl aus, die mit einem leitenden Gel beschichtet war und die unter dem Gesäß, Schenkeln, Schultern oder jeglicher Stelle des Patienten plaziert wurde, bei welcher die Schwerkraft einen geeigneten Kontaktbereich mit einer elastischen, schaumgetragenen Elektrode sicherstellt. Diese elastischen Elektroden, die etwa die gleiche Größe haben wie die Platten aus rostfreiem Stahl, sind mit einem leitenden oder dielektrischen Polymer beschichtet und haben einen Haftrand daran, derart, daß sie an dem Patienten angebracht verbleiben ohne gravitationsmäßige Unterstützung und werden nach dem Gebrauch entsorgt. In den frühen 1980er Jahren haben die meisten Krankenhäuser in den Vereinigten Staaten auf die Verwendung dieser Art Rückführelektrode umgeschaltet. Diese Rückführelektroden sind eine Verbesserung gegenüber den alten Stahlplatten und führten zu weniger Verbrennungen der Patienten durch die Rückführelektrode, resultierten jedoch in zusätzlichen Kosten für die Chirurgie in den Vereinigten Staaten von mehreren zehn Millionen Dollar jedes Jahr. Selbst mit dieser Verbesserung stellten Krankenhäuser immer noch Verbrennungen bei Patienten fest, die bewirkt wurden durch Elektroden, die während des chirurgischen Eingriffs zufällig von dem Patienten abgefallen sind.

Darauffolgend wurde eine weitere Verbesserung vorgeschlagen, nämlich ein Electrode Contact Quality Monitoring System, das den Kontaktbereich der Elektrode aufzeichnet bzw. überwacht, der in Kontakt mit dem Patienten ist und das den elektrochirurgischen Generator abschaltet, wann immer ein nicht ausreichender Kontaktbereich besteht. Derartige Schaltkreise sind beispielsweise in dem US-Patent 4,231,372 gezeigt. Dieses System führte zu einer viel größeren Reduzierung von Verbrennungen des Patienten durch Rückführelektroden, erfordert jedoch eine speziell entsorgbare Elektrode und einen zusätzlichen Schaltkreis in dem Generator, was die Kosten pro Eingriff noch höher schraubte. Heute, d.h. fünfzehn Jahre nach der ersten Einführung dieses Systems, wird bei weniger als 40% aller in den USA durchgeführten chirurgischen Eingriffe dieser Sicherheitsstandard aufgrund der hohen Kosten hierfür verwendet.

Die GB 2052269 sieht eine Patientenplatte für eine elektrochirurgische Einheit vor, die eine Schicht umfaßt, welche aus elektrischen Leitern gebildet ist, die zwischenliegend angeordnet sind zwischen weichen Folien aus einem Isolator über dem Gesamtbereich des elektrischen Leiters und angeformt sind an dem Bereich eines Operationstisches, auf dem der Patient liegen wird. Die GB 2052269 führt aus, daß die Erfindung die Gefahr ausschaltet, daß eine Verbrennung an dem Körper eines Patienten bewirkt wird aufgrund der Konzentration des elektrischen Stroms an einem eingegrenzten Teil, da der Plattenstrom zwischen der Schneidkante der elektrochirurgischen Einheit und dem elektrischen Leiter durch den gesamten Körper des Patienten strömen kann.

KURZE ZUSAMMENFASSUNG DER ERFINDUNG

Die vorliegende Erfindung überwindet die Probleme des Standes der Technik und liefert eine wiederverwendbare Rückführ- bzw. neutrale Elektrode, welche Verbrennungen des Patienten ausschließt, ohne daß die Notwendigkeit für teure, entsorgbare Elektroden und Überwachungsschaltkreise in speziellen RF-Generatoren besteht.

Kurz gesagt hat die verbesserte Rückführelektrode gemäß der Erfindung eine effektive Oberfläche, die viel größer ist als die jeglicher andere Rückführelektrode, die zuvor offenbart oder in der Chirurgie Verwendung fand. Sie ist so groß und derart angepaßt für eine Positionierung relativ zu dem Körper eines Patienten, daß sie eine Verwendung leitender oder dielektrischer Gele oder Polymere ausschließt. Überdies ist die freigelegte Oberfläche aus einem Material, das leicht waschbar und/oder sterilisierbar ist, um eine leichte und schnelle Konditionierung zwecks wiederholter Wiederverwendung zu vereinfachen. Sie verwendet Geometrien und Materialien, deren resistiven und kapazitiven Reaktanz(Impedanz)-Charakteristiken bei typischerweise verwendeten, elektrochirurgischen Frequenzen derart sind, daß sie selbstbegrenzend ist zur Begrenzung von Stromdichten (und entsprechenden Temperaturerhöhungen) auf sichere Schwellwerte, sollte der effektive Bereich der Arbeitsoberfläche der Elektrode unterhalb ansonsten erwünschte Niveaus reduziert werden. Dadurch ist die Notwendigkeit für die vorstehenden, teuren Aufzeichnungsschaltkreise in speziellen RF-Generatoren vermieden.

Die vorliegende Erfindung liefert eine wiederverwendbare elektrochirurgische Rückführelektrode zur Verwendung mit einem Operationstisch oder einem Stuhl, wobei die Elektrode umfaßt

  • (a) eine erste Schicht aus elektrisch leitendem Material, wobei die erste Schicht eine Hauptoberfläche hat, sowie Verbindungsmittel zur Herstellung einer elektrischen Verbindung mit der ersten Schicht;
  • (b) eine zweite Schicht aus elektrisch isolierendem, dielektrischem Material, welche im wesentlichen die gesamte Hauptoberfläche der ersten Schicht kontaktiert und überlagert, um dabei ein Sandwich aus ersten und zweiten Schichten zu bilden, wobei die zweite Schicht eine äußere obere Hauptoberfläche hat mit einer äußeren Arbeitsoberfläche, die ausgelegt ist zur Anordnung unmittelbar angrenzend an zumindest einem Hauptteil des Rumpfbereichs eines zum Zwecke der Elektrochirurgie positionierten Patienten, wobei der Bereich der äußeren, oberen Hauptoberfläche größer ist als der projizierte Bereich des gesamten Körpers des Patienten und kleiner als eine gesamte Oberfläche des Operationstisches, so daß die Arbeitsoberfläche kleiner ist als 9677,40 Quadratzentimeter und die zweite Schicht eine effektive, kapazitive Reaktanz liefert, um dabei die Dichte des elektrochirurgischen Stromes auf ein Schwellwertniveau von 100 Milliampere pro Quadratzentimeter zu beschränken, oberhalb dem der zu dem Patienten fließende Strom eine Verletzung des Patienten bewirken würde, wobei die vorliegende, effektive kapazitive Reaktanz umgekehrt proportional ist zu dem effektiven Abschnitt der äußeren oberen Hauptoberfläche, die in Kontakt mit dem Patienten steht.

KURZBESCHREIBUNG DER ZEICHNUNGEN

1 ist ein vereinfachtes elektrisches schematisches Diagramm in Darstellung typischer Impedanzen, die beinhaltet sind in der operativen Bahn des Flusses an radiofrequentem Strom, wie er einem elektrochirurgischen Generator während eines operativen Vorgangs präsentiert wird;

2A ist eine Draufsicht auf eine in einem weiten Bereich verteilte, elektrochirurgische Rückführelektrode unter Darstellung der Prinzipien der Erfindung.

2B ist eine Vergrößerung eines Segments der elektrochirurgischen Rückführelektrode der 2A;

2C ist ein Querschnitt entlang der Schnittlinien 2C-2C der 2B und unter Darstellung der effektiven Schaltkreisimpedanz bzw. des Spaltscheinwiderstands eines Kreises, wiedergegeben durch das Segment von 2B;

3 ist ein Diagramm unter Darstellung in graphischer Form der Beziehungen zwischen dem effektiven Oberflächenbereich der Rückführelektrode und dem effektiven Oberflächenbereich der Rückführelektrode und der effektiven Dichte des radiofrequenten Stroms, die sich an der Elektrode entwikkelt;

4 ist eine perspektivische Ansicht in Darstellung eines Operationstischs, wobei die elektrochirurgische Rückführelektrode nach der Erfindung auf dessen oberer Oberfläche angeordnet ist;

5 ist eine Vorderansicht in Darstellung eines chirurgischen Stuhls, wobei eine elektrochirurgische Rückführelektrode gemäß der Erfindung an der Oberfläche seines Sitzes angeordnet ist;

6 ist eine Draufsicht auf eine elektrochirurgische Rückführelektrode gemäß der Erfindung;

7 ist ein Schnitt entlang der Linien 7-7 der 6;

8 ist ein Schnitt ähnlich dem der 7, jedoch unter Darstellung eines anderen, mehrschichtigen Ausführungsbeispiels gemäß der Erfindung;

9 ist eine perspektivische Ansicht einer Abdeckung, die ausgelegt ist zum Umhüllen jedes der Ausführungsbeispiele der 6-8;

10 ist eine Ansicht in Darstellung eines der Ausführungsbeispiele der 6-8, wie es in der Abdeckung der 9 eingehüllt ist; und

11 ist eine weggeschnittene Ansicht in Darstellung eines bevorzugten Ausführungsbeispiels mit vier Schichten aus sandwichartig angeordneten Materialien.

BESCHREIBUNG EINES BEVORZUGTEN AUSFÜHRUNGSBEISPIELS

Nun bezugnehmend auf die Zeichnung und spezieller auf deren 1, ist dort ein vereinfachtes elektrisches, schematisches Diagramm gezeigt unter Darstellung typischer Impedanzen, die effektiv bzw. wirkend beinhaltet sind in der operativen Bahn des Flusses an radiofrequentem Strom, wie er einem elektrochirurgischen Generator während eines operativen Vorgangs bzw. einer Operation präsentiert wird. Dort ist ein herkömmlicher Generator 10 für radiofrequente elektrische Energie erkennbar, an dem zwei herkömmliche elektrische Leiter 11 und 12 angeschlossen sind, die jeweils den Generator mit dem Arbeitsgerät eines Chirurgen, wiedergegeben durch die Impedanz z1 und einer elektrochirurgischen Rückführelektrode, wiedergegeben durch die Impedanz z3, verbinden. Die Impedanz z2 ist vorgesehen, um die Impedanz wiederzugeben, die durch das Gewebe des Patienten präsentiert wird, das zwischen dem Operationsort und der Rückführelektrode liegt.

Obgleich das Diagramm der 1 vereinfacht ist und allgemein Schaltungselemente in Form von Hauptwiderständen und -reaktanzen betrachtet, die durch das chirurgische Instrument, dem Körper des Patienten und die Rückführelektrode erzeugt wurden (um klar und kurz die Prinzipien der Erfindung darzustellen), sollte dies so verstanden werden, daß in der Realität gewisse andere Parameter auftreten, nämlich Parameter wie beispielsweise die verteilte Induktanz, die zu Zwecken der klaren Darstellung ihrer Prinzipien, relativ klein sind und daher nicht in dieser Beschreibung beinhaltet sind. Wenn eine isolierende Umkleidung zwischen der Elektrode und dem Körper eines Patienten angeordnet ist, kann zudem und wie unten wiedergegeben wird, ein signifikantes, zusätzliches Elemente kapazitiver Reaktanz bzw. kapazitiven Blindwiderstand in der Impedanz z3 beinhaltet sein.

Das ursprüngliche Ausführungsbeispiel hier ist das einer Elektrode, die in einem kombinierten resistiven bzw. ohmschen und im wesentlichen kapazitiven Modus betrieben wird. Werden die relativ kleinen kapazitiven und induktiven Streureaktanzen nicht berücksichtigt, so ist demgemäß die gesamte effektive Impedanz des Kreises gleich der Vektorsumme der individuellen Impedanzen z1, z2 und z3; und da im wesentlichen der gleiche Strom durch alle drei gelangen wird, wird die von dem RF-Generator 10 erzeugte Spannung über die Impedanzen z1, z2 und z3 im Verhältnis ihrer jeweiligen Werte verteilt. Überdies wird die in jedem dieser hauptresistiven Komponenten freigesetzte Energie direkt zu ihren Werten proportional sein. Da es gewünscht ist, daß die entwickelte bzw. entstandene Energie in dem Bereich konzentriert wird, wo das Arbeitsgerät des Chirurgen das Gewebe des Patienten kontaktiert, ist es wünschenswert, wenn die resistive Komponente der durch z1 wiedergegebenen Impedanz wesentlich ist und daß dort hindurch gelangender Strom (und folglich freigegebene Energie) auf einen sehr kleinen Bereich konzentriert wird. Letzteres wird dadurch bewerkstelligt, daß der Kontaktbereich mit dem Patienten an der Operationsstelle sehr klein gehalten ist.

Es ist bekannt, daß im Gegensatz zu der vorstehenden Reihenschaltung, Komponenten kombinierten Widerstands und Kapazität bei Parallelschaltung eine gesamte effektive Impedanz liefern, die wiedergegeben ist durch die Formel:

Werden daher 100 gleiche Impedanzen von jeweils 100 Ohm parallel geschaltet, wäre die effektive Impedanz Zeff gleich ein Ohm. Falls die Hälfte dieser Impedanzen effektiv abgetrennt wären, so wäre die verbleibende effektive Impedanz 2 Ohm und falls lediglich eine der Impedanzen in der Schaltung aktiv wäre, so wäre die verbleibende effektive Impedanz 100 Ohm. Die Signifikanz dieser Überlegungen und ihre Anwendung, derart, daß jede Elektrode selbstregulierend und fehlerlos wird, wird aus der folgenden Beschreibung der in den 2A, 2B, 2C und 3 dargestellten Elemente offensichtlich.

Bezugnehmend nun auf 2A ist dort eine Draufsicht auf eine über einen breiten Bereich verteilte, elektrochirurgische Rückführelektrode 20 erkennbar in Darstellung der Prinzipien der Erfindung. An der rechten Seite der Figur ist ein elektrischer Anschluß 22 gezeigt zwecks Vereinfachung des Anschlusses an eine Leitung wie beispielsweise Leitung 12 der 1.

Die Oberfläche 20A der Rückführelektrode 20 ist vorzugsweise glatthomogen und in Übereinstimmung mit diesem Ausführungsbeispiel, weist sie eine dünne dielektrische Schicht 21a auf (2C). Zum Zwecke dieser Beschreibung kann die Elektrode 20 als mehrere gleichförmig große Bereiche oder Segmente aufweisend angesehen werden, wie diese wiedergegeben sind durch die Bereiche 21, 21a, 21b, 21c...21n. Der Bereich/das Segment 21 ist in 2B größer gezeigt, um größenordnungsmäßig gleich zu sein mit der resistiven Impedanz z3', die sie wiedergibt. Es ist dadurch nun offensichtlich, daß jedes der Segmente der Elektrode 20, das den Segmenten 21...21n entspricht, die Fähigkeit innewohnend hat, eine Impedanz zu präsentieren, die ähnlich derjenigen der Impedanz z3, ist. Die Anzahl derartiger Segmente, die effektiv parallel aktiv innerhalb der Schaltung sind, ist jedoch eine Funktion des Oberflächenbereichs des Patienten, welcher der Elektrode überlagert ist. Daher werden in dem Fall, in dem ein großer, auf dem Rücken liegender Patient, dessen Körper sich in effektiver Überdeckung mit 50% der oberen Oberfläche der Elektrode befindet, 50% der den Segmenten 21-21n entsprechenden Segmente effektiv parallel in der Schaltung sein, um eine Impedanz zu bilden, die wiedergegeben ist durch die Impedanz z3 der 1; wenn die Elektrode 20 100 Segmente von jeweils 100 Ohm beinhaltet, wäre die effektive Impedanz, die operativ durch die 50% der Elektrodenelemente wiedergegeben wird, demgemäß 2 Ohm. Da 2 Ohm sehr klein sind verglichen mit der durch die Elemente z1 und z2 wiedergegebene Impedanz, wird sehr wenig Energie an dem Kontaktbereich zwischen dem Patienten und der Elektrode verbraucht bzw. abgegeben und aufgrund des relativ großen effektiven Arbeitsbereichs der Elektrode, werden auch die Stromdichte und Temperaturerhöhung unterhalb der oben erwähnten, gefährlichen Schwellwerte gehalten.

Wenn nun aus irgendeinem Grunde der effektive Kontaktbereich zwischen dem Patienten und der Elektrode auf die Oberfläche lediglich eines der Segmente 21-21n reduziert werden sollte, so würde sich dann die effektive Impedanz (kombinierte kapazitive Reaktanz und Widerstand in dem betrachteten Beispiel) auf 100 Ohm erhöhen; und an einer gewissen Stelle der Reduzierung des Kontaktbereichs, würde die effektive Impedanz ansteigen auf ein Niveau (relativ zu der an dem Ort des Instruments des Chirurgen wiedergegebenen Impedanz), um eine effektive Verwendung des Instruments durch den Chirurgen zu verhindern, wodurch dem Chirurgen angezeigt wird, daß der Patient repositioniert werden sollte, um einen größeren Oberflächenbereich in Kontakt mit der Rückführelektrode zu liefern. Zur gleichen Zeit würde die gesamte Kreisimpedanz bzw. der Spaltscheinwiderstand (des Kreises) erhöht, so daß der Gesamtstrom, der fließen würde, falls der Chirurg versuchen würde, sein Instrument zu verwenden, ohne den Patienten repositioniert zu haben, auf einen Wert reduziert würde unterhalb demjenigen, der eine unerwünschte Verletzung des Patienten bewirken würde. Demgemäß ist ein selbstbegrenzendes Merkmal vorgesehen, das die Sicherheit im Gebrauch erhöht, ohne daß die Notwendigkeit für die zuvor erwähnte, separate Schaltungsüberwachung, sowie Steuerschaltkreise besteht.

2C ist ein Querschnitt entlang der Schnittlinien 2C-2C der 2B und stellt die effektive Schaltkreisimpedanz z3' dar, wiedergegeben durch das Segment 21 von 2B. In 2c ist ein kleines Segment 21 erkennbar, wobei dessen obere, dem Patienten kontaktierende Oberfläche 24 elektrisch wiedergegeben ist durch den Anschluß 23 und dessen untere Oberfläche 25 wiedergegeben ist durch den elektrischen Anschluß 22A. Zum Zwecke der vorliegenden Beschreibung (und zur klaren Darstellung der diesem Ausführungsbeispiel zugrunde liegenden Prinzipien) kann die Impedanz z3' so angesehen werden, daß sie zwischen den Anschlüssen 23 und 22A existiert. Natürlich ist es für den Durchschnittsfachmann selbstverständlich, daß bei einem Ausführungsbeispiel, bei dem eine dünne, jedoch hoch leitende Schicht entlang der unteren Oberfläche der Elektrode 20, wie unten beschrieben, beinhaltet ist, jede der Impedanzen, wiedergegeben durch die verbleibenden Segmente, an ihren unteren Extremitäten parallel zu dem Anschluß 22 verbunden sind, während bei Abwesenheit einer derart hoch leitenden Schicht, dann zusätzlich zu der Impedanz, die durch das Material wiedergegeben ist, das zwischen den oberen und unteren Bereichen jedes Segments liegt, eine zusätzliche Impedanz (nicht gezeigt) existieren wird, die wiedergegeben ist durch das Material, durch das der Strom quer hindurch gelangen muß oder seitlich durch die Elektrode, um zu dem Anschluß 22 zu gelangen.

Es dürfte nun offensichtlich sein, daß im Falle der Minimierung der seitlichen Impedanz durch Vorsehen der zuvor erwähnten dünnen, leitenden Schicht oder andernfalls bei Erhöhen der effektiven Leitfähigkeit an dem unteren Teil des Materials des Bereichs 21, die effektive Impedanz, wiedergegeben durch die Rückführelektrode, umgekehrt proportional zu der effektiven oberen Oberfläche der Elektrode sein wird, die in Kontakt mit einem Patienten steht.

3 ist ein Diagramm, das allgemein in graphischer Form die Beziehungen zwischen dem effektiven Oberflächenbereich der Rückführelektrode und den effektiven, sich an der Elektrode entwickelnden, radiofrequenten Stromdichten, darstellt. Bevor jedoch zu einer Betrachtung des Diagramms fortgeschritten wird, sei festgehalten, daß das Diagramm vereinfacht ist, um die der Erfindung zugrunde liegende Prinzipien darzustellen und es gibt keine tatsächlichen Daten wieder, die wesentlich variieren können. In 3 ist ein Graph von RF-Dichte gegen effektiven Oberflächenbereich der Elektrode erkennbar, wobei der letztere (wie dies nun für den Durchschnittsfachmann ersichtlich sein dürfte) der Teil der Oberfläche der Rückführelektrode ist, der eine effektive elektrische Zwischenwirkung mit dem Körper eines Patienten herstellt. Wie aus der vorstehenden Diskussion zu erwarten wäre, ist bei großem effektivem Bereich die Spannung am Arbeitsgerät des Chirurgen hoch (gestrichelt gezeichnete Linie 30) und die entsprechende Stromdichte über der Rückführelektrode sehr gering (durchgezogen gezeichnete Linie 31). Dies ist selbstverständlich der gewünschte Zustand bei der Durchführung des chirurgischen Eingriffs. Wenn sich jedoch der effektive Oberflächenbereich verringert, so erhöht sich die Stromdichte über der Rückführelektrode und es ergibt sich eine entsprechende Abnahme des Stroms am Arbeitsgerät des Chirurgen, bis der effektive Oberflächenbereich bis hin zu einem vorbestimmten Punkt abnimmt, wo nicht mehr ausreichend Strom am Instrument des Chirurgen vorliegt, um einen chirurgischen Eingriff durchzuführen. Die für die Materialien gewählten Parameter und die Elektrodenabmessungen sind derart gewählt, daß die Stromdichte und entsprechende Temperaturerhöhung des an der Rückführelektrode angrenzenden Gewebes nicht die in der Einführung hier erwähnten Grenzen überschreiten. Es wird nun erkennbar, daß durch geeignete Wahl derartiger Parameter die Rückführelektrode selbstbegrenzend hergestellt wird, wodurch die Notwendigkeit für zusätzliche Aufzeichnungskreise vermieden wird, auf die oben Bezug genommen wird.

Bei der Beschreibung der der Erfindung zugrunde liegenden Prinzipien wurden die vorstehend im Zusammenhang mit Impedanzen beschrieben, deren Hauptkomponenten sowohl Widerstände wie auch kapazitive Reaktanzen sind. Wie in der oben erwähnten, korrespondierenden Anmeldung angegeben, sind nichtsdestotrotz die Prinzipien der Erfindung auch anwendbar auf Ausführungsbeispiele, bei denen die Impedanzen hauptsächlich resistiv bzw. vom ohmschen Typ sind.

Die Erfindung hier wird nun weiter beschrieben im Zusammenhang mit Anwendungen, bei denen eine effektive dielektrische Schicht wiedergegeben wird durch eine physikalische dielektrische Schicht auf der oberen Oberfläche der Elektrode, durch das Material der chirurgischen Bekleidung des Patienten, durch das Material einer an der Elektrode angebrachten Umkleidung oder einer Kombination deren.

Bezugnehmend nun auf 4 ist perspektivisch ein Operationstisch 40 dargestellt mit einer elektrochirurgischen Rückführelektrode 41 nach der Erfindung, die auf dessen oberen Oberfläche angeordnet ist, wobei eine seiner Kanten durch das Bezugszeichen 42 angegeben ist. Der Operationstisch ist derart gezeigt, daß er herkömmliche Beine 44a-44d hat, an denen Räder oder Rollen angebracht sein können, wie dies gezeigt ist.

Obgleich in 4 die gesamte obere Oberfläche des Tisches so dargestellt ist, daß sie von der Rückführelektrode 41 abgedeckt ist, ist es selbstverständlich, daß die gesamte Abdeckung nicht zur Ausführung der Prinzipien der Erfindung erforderlich ist. Wenn daher eine Verwendung mit herkömmlichen elektrochirurgischen Generatoren stattfindet, so muß die Rückführelektrode lediglich einen effektiven Arbeitsoberflächenbereich liefern, der ausreicht, um eine adäquate resistive/kapazitive Kopplung bei den typischerweise verwendeten RF-Frequenzen zu liefern, um nicht die Möglichkeiten eines Chirurgen bei der Durchführung eines chirurgischen Eingriffs zu stören, während gleichzeitig eine unerwünschte Schädigung des Gewebes vermieden werden soll. Es wurde herausgefunden, daß bei herkömmlichen elektrochirurgischen Generatorfrequenzen lediglich eine effektive Arbeitsoberfläche erforderlich ist von nicht mehr als der projizierten Außenlinie einer Hälfte des Torsos eines erwachsenen Patienten, der auf einem Operationstisch liegt oder der Gesäßteile eines Patienten, der in einem Stuhl sitzt, wie dies in 5 dargestellt ist. Mit einigen Materialien und bei einigen geometrischen Konfigurationen jedoch können die hier vorliegenden Prinzipien erfolgreich Anwendung finden, wenn der effektive Arbeitsoberflächenbereich der Rückführelektrode bis zu 11 Inch2 klein ist. Obgleich die in den 6-8 gezeigten Rückführelektroden mit rechteckiger Form gezeigt sind, ist es überdies offensichtlich, daß sie oval sein können oder beispielsweise derart konturiert, daß sie der Silhouette des Torsos oder eines anderen Hauptteils des Körpers eines Patienten folgen können. Wie aus dem Vorstehenden offensichtlich wird, ist es wichtig, daß die Elektrode von ausreichender Größe ist, so daß, wenn sie sich in Gebrauch befindet: (1) die Rückführstromdichte an der Oberfläche des Patienten ausreichend niedrig ist; (2) die elektrische Impedanz zwischen ihr und dem Patienten ausreichend niedrig ist, so daß eine nicht ausreichende elektrische Energie konzentriert wird, um die Haut des Patienten an jeder Stelle in der elektrischen Rückführbahn um nicht mehr als sechs (6) Grad Celsius zu erwärmen; und (3) die Charakteristiken der Materialien und Geometrien derart sind, daß wenn der effektive Bereich der Elektrode unterhalb ein ausgewähltes Schwellwertniveau reduziert wird, nicht ausreichend Energie am Arbeitsgerät des Chirurgen verbraucht wird, um das Arbeitsgerät effektiv in dessen elektrochirurgischen Modus zu verwenden.

Wie es für den Durchschnittsfachmann bekannt ist, ist in einem Wechselstromkreis (beispielsweise derartigen, wie sie in der Elektrochirurgie verwendet werden) die kapazitive Reaktanz einer Impedanz eine Funktion sowohl der Kapazität wie auch der Frequenz des elektrischen Wechselstromsignals, das der Reaktanz präsentiert wird. Daher ist die Formel für die kapazitive Reaktanz (in Ohm):

wobei Xc die kapazitive Reaktanz in Ohm, 3,14159 ist, f die Frequenz in Hertz und C die Kapazität in Farad.

Die Formel für die Kapazität in einem Parallelplattenkondensator ist:

wobei C die Kapazität in Farad, K die Dielektrizitätskonstante des zwischen den effektiven Platten des Kondensators liegenden Materials ist, A der Bereich der kleinsten der effektiven Platten des Kondensators in Quadratmetern ist, D der Abstand der Oberflächen der effektiven Platten in Metern ist und n gleich der Anzahl effektiver Platten ist. Dadurch ist erkennbar, daß, um den vorstehenden, maximal zulässigen Temperaturerhöhungskriterien bei einem Ausführungsbeispiel beizukommen, bei dem die Elektrodenkapazität wesentlich ist, unterschiedliche minimale Größen an Elektroden erforderlich sind in Abhängigkeit von der Frequenz der elektrischen Generatorquelle, des Abstands des Körpers des Patienten von der Elektrode und dem Material, das zwischen dem effektiven leitenden Bereich der Elektrode und der angrenzenden Körperoberfläche liegt.

Obgleich die Prinzipien der Erfindung anwendbar sind auf einen weiten Frequenzbereich elektrochirurgischer Energie, sehen die Betrachtungen, die hier für minimale Größe von Rückführkissen vorgegeben werden, insbesondere Frequenzen vor, die typischerweise bei herkömmlichen elektrochirurgischen Generatoren für Energie verwendet werden.

Der Durchschnittsfachmann weiß, daß mit den gegenwärtig verwendeten, entsorgbaren Rückführelektroden, eine Reduzierung der effektiven Größe der Elektrode auf 19,35 cm2 (3 Inch2) keine Reduzierung des RF-Stromflusses auf ein Niveau stattfindet, bei dem die Möglichkeiten des Chirurgen behindert wird, um einen chirurgischen Eingriff durchzuführen, noch wird der Strom auf ein Niveau konzentriert, daß er eine Verletzung des Patienten bewirkt. Um jedoch eine gewisse Beabstandung der Elektrode von dem Körper des Patienten vorzusehen, würde eine entsprechende Rückführelektrode nach der Erfindung einen effektiven Bereich von 116,19 cm2 (18 Inch2) mit einem relativ kleinen Abstand von der Haut des Patienten erfordern, derart, wie dies beispielsweise durch eine chirurgische Bekleidung oder ohne zwischenliegende Bekleidung überhaupt, vorsehbar ist. Ein derartiger, effektiver Bereich ist leicht erzielbar, wenn der Patient auf einer Elektrode positioniert wird mit der Größe des oberen Torsos oder größer.

Die Charakteristiken des gewünschten Dielektrikums sind ausreichend vergleichbar mit denjenigen ausgewählter Gummis, Kunststoffen und anderen verwandten Materialien, wobei die letzteren in zufriedenstellender Weise als Materialien für die Rückführelektrode verwendet werden können. Wird der Patient derart positioniert, daß ein nicht ausreichender Anteil der Rückführelektrode sich in unmittelbarer Nähe des Patienten befindet, was zu einer so niedrig wie erforderlichen Impedanz führt, so wären bei einer Rückführelektrode, wie oben erwähnt, die Ergebnisse, daß der Stromfluß von dem elektrochirurgischen Generator auf ein Niveau reduziert würde, das es dem Chirurgen schwer gestaltet, den chirurgischen Eingriff durchzuführen. Daher werden bei dem vorliegenden Ausführungsbeispiel trotz des Zwischenliegens einer gewissen zusätzlichen Kapazität über eine chirurgische Bekleidung, die oben beschriebenen Merkmale weiterhin auftreten.

Wie oben erwähnt, ist 5 eine Vorderansicht in Darstellung eines chirurgischen Stuhles 50 mit einer elektrochirurgischen Rückführelektrode 51 nach der Erfindung, die auf der oberen Oberfläche seines Sitzes angeordnet ist. Sitzt ein Patient in dem Stuhl, so überlagern das Gesäß und der obere Teil der Schenkel die und sind in ausreichend unmittelbarer Nähe zu der Rückführelektrode, so daß die kapazitive Kopplung dazwischen eine Impedanz liefert, die den vorstehenden Kriterien genügt; die elektrische Impedanz zwischen ihr und dem Patienten ist nämlich ausreichend gering, um es dem Chirurgen zu erlauben, den Eingriff durchzuführen, während eine ausreichend geringe Stromdichte vorausgesetzt wird und eine nicht ausreichende elektrische Energie entsteht über der Rückführimpedanz, um die Haut des Patienten an jeder Stelle in der elektrischen Rückführbahn bzw. dem Rückweg um mehr als sechs (6) Grad Celsius zu erwärmen.

6 ist eine Draufsicht auf eine andere elektrochirurgische Rückführelektrode gemäß der Erfindung. Es ist erkennbar, daß die obere, freigelegte oder Arbeitsoberfläche der Elektrode wieder ausgedehnt ist, um den vorstehenden Kriterien in Bezug auf eine niedrige Impedanz zu genügen. Obgleich es nicht erforderlich ist, daß die Elektrode die gesamte Oberfläche eines Operationstisches oder die gesamte Sitzoberfläche eines Dental- oder anderen Patientenstuhls abdeckt, stellte es sich in manchen Fällen als vorteilhaft heraus, einen größeren Oberflächenbereich als denjenigen des projizierten Bereiches des Gesäßes oder des Torsos eines Patienten vorzusehen, so daß, wenn sich ein Patient während des Verlaufs eines Eingriffs stellungsmäßig verändert, ein ausreichender Abschnitt des Umrisses des Patienten in Überdeckung mit der Elektrodenoberfläche verbleiben wird, so daß die vorstehende Impedanz geringer als das oben beschriebene Niveau bleiben wird.

An dieser Stelle kann es hilfreich sein, Charakteristiken der verbesserten Elektrode nach der Erfindung zu betonen, die insbesondere relevant beim Verständnis ihres erfinderischen Charakters erachtet werden. Wie oben erwähnt, muß erstens die Elektrode weder direkt noch über zwischenliegendes, leitendes oder nicht leitendes Gel in Kontakt mit einem Patienten sein. Zudem besteht aufgrund ihrer ausgedehnten Größe keine Notwendigkeit dafür, die Elektrode so maßzuschneidern, daß sie den physikalischen Konturen eines Patienten angepaßt ist. In diesem Zusammenhang hat sich herausgestellt, daß trotz ausgewählter Materialien und Geometrien, selbstkorrigierende, selbstbegrenzende Prinzipien erreicht werden können bei einer Elektrode mit einem Arbeitsoberflächenbereich von bis zu 45,16 cm2 (7 Inch2), wobei der bevorzugte Bereich des freigelegten, oberen Arbeitsoberflächenbereichs der Elektrode im Bereich von etwa 70,97 bis 9677,4 cm2 (11-1500 Inch2) liegt. Wird jedoch der Arbeitsoberflächenbereich der Elektrode um ein Vielfaches größer gestaltet (typischerweise wenigstens eine Größenordnung größer) als bei den früheren Vorschlägen, so ist die Notwendigkeit für eine physikalische Befestigung oder über Gele nicht gegeben.

Die in 6 dargestellte, erfindungsgemäße Elektrode kann leitenden Kunststoff, Gummi oder anderes elastisches Material aufweisen. Es wurde herausgefunden, daß Silizium oder Butyl-Kautschuk besonders geeignete Materialien sind, da sie elastisch, wie aber auch leicht waschbar und sterilisierbar sind. Der Hauptkörper der Rückführelektrode kann aus innerlich relativ hochohmig- bzw. widerstandsfähigem, elastischem Material hergestellt sein, das geändert ist, um die erforderliche Leitfähigkeit zu liefern. Ein bevorzugtes Beispiel des letzteren ist das Silikon-Kautschuk-Material, in das leitende Fasern imprägniert sind, wie solche aus Kohlenstoff oder in das Anteile an anderen leitenden Substanzen verteilt sind, wie beispielsweise Ruß, Anteile an Gold, Silber, Nickel, Kupfer, Stahl, Eisen, rostfreiem Stahl, Messing, Aluminium oder andere Leiter.

Eine weitere Bezugnahme auf 6 läßt die Anwesenheit eines herkömmlichen elektrischen Anschlusses 54 erkennen, der an der Elektrode 41 befestigt ist, um einen herkömmlichen elektrischen Rückweg zu der elektrochirurgischen Radiofrequenz-Energiequelle (nicht gezeigt) zu liefern.

Wie oben erwähnt, ist 7 ein Schnitt entlang der Linien 7-7 der 6. Dort ist eine Elektrode ähnlich der Elektrode 20 der 2A-2C erkennbar, mit der Ausnahme, daß die Elektrode der 7 eine dünne, hochleitende untere Schicht 46c aufweist, um die Leitung des Stroms auswärts, zum Anschluß 54 zu vereinfachen. Bei einer bevorzugten Ausführungsform liegt die Dicke der Elektrode in einem Bereich von etwa 0,375 cm bis 0,635 cm (1/32tel bis 1/4tel eines Inches), was, bei dem zuvor erwähnten Widerstand des Hauptkörpers des Materials und der Kapazität der oberen dielektrischen Schicht 47a die erforderliche Impedanz liefert, zusammen mit der gewünschten physikalischen Flexibilität zwecks einfacher Verwendung und Handhabung.

8 ist ein Schnitt, ähnlich dem der 7, jedoch in Darstellung eines Ausführungsbeispiels mit einer größeren Anzahl an Schichten gemäß der Erfindung. Dort sind in 8 eine Schicht 46a (vorzugsweise gleich der Schicht 46 der 7) gezeigt, wobei die überlagernde, isolierende dielektrische Schicht 47a ausreichend dick ist, um sicherzustellen, daß sie dem Niveau bzw. der Stärke der radiofrequenten Spannung darüber widersteht und umfaßt vorzugsweise ein Material wie beispielsweise Kunststoff, Silizium-Kautschuk oder Teflon. Es dürfte klar sein, daß zusätzlich zu einem Aufbau, ähnlich der Elektrode der 6 bis 7, eine hoch leitende Schicht 47c der 8 eine Folie oder ein Gewebe aus Gold, Messing, Aluminium, Kupfer, Silber, Nickel, Stahl, rostfreiem Stahl, leitendem Kohlenstoff oder ähnlichem, umfassen kann. Daher weist gemäß dem Aufbau der 8 eine dielektrische Schicht 47a eine obere Arbeitsoberfläche 47b auf, die sich entweder direkt oder über eine chirurgische Bekleidung oder ähnlichem einem Hauptteil präsentiert, beispielsweise wenigstens der Hälfte des Rumpfabschnitts oder des Gesäßes und oberer Schenkelbereiche eines Patienten. Eine weitere Bezugnahme auf 8 läßt eine andere dielektrische Schicht 47b erkennen, welche die unteren Oberflächen der Schicht 46a abdeckt.

9 ist eine perspektivische Ansicht einer Umkleidung 50, die ausgelegt ist, um jedes der Ausführungsbeispiele der 6 bis 8 einzuhüllen. Daher wird wahlweise eine Vorkehrung getroffen zum Einhüllen der vorstehenden, kissenartigen Rückführelektroden innerhalb von Schutzumschlägen in Situationen, bei denen es wünschenswert ist, ein Reinigen der Elektrode selbst auszuschließen, indem sie geschützt wird gegenüber einer Verunreinigung aufgrund der Verwendung einer Umkleidung aus undurchlässigem Material, aus dem die Elektrode nach dem Gebrauch nur herausgezogen werden muß und die Umkleidung entsorgt wird. Wie für den Durchschnittsfachmann offensichtlich, kann eine derartige Umkleidung vorzugsweise hergestellt werden aus einer Vielzahl bekannter Materialien wie beispielsweise aus Vinylkunststoffen, Polyester oder Polyethylen.

10 ist eine Ansicht in Darstellung eines der Ausführungsbeispiele der 6 bis 8, wie es innerhalb der Umkleidung der 9 eingehüllt ist. Dort ist die äußere Oberfläche 50a der Umkleidung 50 erkennbar und innerhalb der Umkleidung 50 ist aus illustrativen Zwecken die Elektrode 41 der 6 eingehüllt gezeigt.

Wie oben erwähnt, ist 11 eine weggeschnittene Ansicht unter Darstellung eines Ausführungsbeispiels mit vier Schichten sandwichartig angeordneter Materialien. Oben auf der Oberfläche 60 mit großem Bereich befindet sich eine dünne dielektrische Vinylschicht 61, die eine hoch leitende, metallische Folienschicht 62 überlagert, die wiederum eine dünne Papierschicht 63 überlagert, die eine zweite dünne Vinylschicht 64 überlagert. Mit Ausnahme der Papierschicht 63, entsprechen die Schichten 61, 62 und 64 Schichten, die hier zuvor beschrieben wurden, wobei die Papierschicht optional und dazu vorgesehen ist, eine Kopplung mit Metalltischen zu mindern, auf denen die Elektrode verwendet werden kann. Eine elektrische Verbindung 65 ist vorgesehen, um eine Verbindung zu einem Rückführleiter 66 von der elektrochirurgischen Energiequelle zu schaffen.

Es ist nun erkennbar, daß hier eine verbesserte, elektrochirurgische Rückführelektrode beschrieben wurde, die gekennzeichnet ist durch eine im allgemeinen Kissenform und die Merkmale heraushebt, selbstbeschränkend zu sein, während sie wiederverwendbar ist, leicht reinigbar und die Notwendigkeit vermeidet für die Verwendung von leitenden Gelen oder zusätzlichem Schaltkreisüberwachungsgerät.


Anspruch[de]
  1. wiederverwendbare elektrochirurgische Rückführelektrode zur Verwendung in einem elektrochirurgischen System, wobei die Rückführelektrode umfaßt:

    ein unitäres Schichtfolienprodukt (41) mit einer Schicht aus elektrisch leitendem Material (46), einem elektrischen Anschluß (54), der mit der leitenden Schicht verbunden ist und einer Schicht aus Dielektrikum (47a), welche die leitende Schicht überlagert, wobei das Folienprodukt (41) einen Oberflächenbereich von zwischen 71,0 cm2 (11 Inch2) und 9677,4 cm2 (1500 Inch2) hat und wobei die elektrische Impedanzcharakteristik des Folienprodukts (41) derart ist, daß im Gebrauch die von dem Folienprodukt (41) vorgesehene, effektive Impedanz, wenn es mit einer elektrochirurgischen Energiequelle innerhalb des elektrochirurgischen Systems gekoppelt ist, in umgekehrtem Verhältnis zu dem effektiven Oberflächenbereich des Folienprodukts (41) in Kontakt mit dem Körper eines Patienten, variiert.
  2. Elektrochirurgische Elektrode nach Anspruch 1, bei welcher die effektive Impedanz operativ ist, um die Dichte des elektrochirurgischen Stroms, der durch die Elektrode fließt, auf weniger als 100 Milliampere pro Quadratzentimeter des Oberflächenbereichs des Folienprodukts zu begrenzen.
  3. Elektrochirurgische Elektrode nach Anspruch 1 oder 2, bei welcher eine kapazitive Reaktanz, welche die dielektrische Schicht (47a) zeigt, in einem Bereich von 6,45 Ohm bis 1612,9 Ohm für jeden Quadratzentimeter (1 Ohm bis 250 Ohm pro Inch2) des Oberflächenbereichs der dielektrischen Schicht (47a) liegt.
  4. Elektrochirurgische Elektrode nach einem der vorstehenden Ansprüche, bei welcher das Folienprodukt derart konturiert ist, daß es einer Silhouette eines Torsos oder anderen Hauptteils eines Patienten folgt.
  5. Elektrochirurgische Elektrode nach einem der vorstehenden Ansprüche, des weiteren umfassend eine isolierende Umkleidung (50).
  6. Elektrochirurgisches System, umfassend:

    eine elektrochirurgische Energiequelle;

    ein elektrochirurgisches Instrument und

    eine elektrochirurgische Rückführelektrode nach einem der vorstehenden Ansprüche.
  7. Elektrochirurgisches System nach Anspruch 6, bei welchem im Gebrauch die effektive Impedanz des Folienprodukts innerhalb des elektrochirurgischen Systems, wenn der effektive Oberflächenbereich unterhalb ein Schwellwertniveau reduziert wird, auf ein Niveau ansteigt, bei dem die von dem elektrochirurgischen Instrument verbrauchte Energie nicht ausreichend ist für die Weiterführung des Gebrauchs des Instruments in einem elektrochirurgischen Modus.
Es folgen 6 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com