PatentDe  


Dokumentenidentifikation EP1364807 12.01.2006
EP-Veröffentlichungsnummer 0001364807
Titel Gelbdonorelement für Übertragung durch Wärme
Anmelder Eastman Kodak Company, Rochester, N.Y., US
Erfinder Wang, Ruizheng, Rochester, New York 14650-2201, US;
Kaszczuk, Linda A, Rochester, New York 14650-2201, US;
Carroll-Lee, Ann L., Rochester, New York 14650-2201, US;
Chapman, Derek D., Rochester, New York 14650-2201, US;
Weidner, Charles H., Rochester, New York 14650-2201, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60302606
Vertragsstaaten DE, GB
Sprache des Dokument EN
EP-Anmeldetag 12.05.2003
EP-Aktenzeichen 030764062
EP-Offenlegungsdatum 26.11.2003
EP date of grant 07.12.2005
Veröffentlichungstag im Patentblatt 12.01.2006
IPC-Hauptklasse B41M 5/38(2000.01)A, F, I, ,  ,  ,   
IPC-Nebenklasse C09B 67/00(2006.01)A, L, I, ,  ,  ,      G03F 3/10(2006.01)A, L, I, ,  ,  ,      

Beschreibung[en]

This invention relates to the use of a yellow dye in generating a color image which has good dye light stability and colorimetry and to a thermal dye transfer element useful therewith.

In order to approximate the appearance of continuous tone (photographic) images via ink-on-paper printing, the commercial printing industry relies on the process known as halftone printing. In halftone printing, color density gradations are produced by printing patterns of dots or areas of varying sizes, but of the same color density, instead of varying the color density continuously as is done in photographic printing.

There is an important commercial need to obtain a color proof image before a printing press run is made. It is desired that the color proof will accurately represent at least the details and color tone scale of the prints obtained from the printing press. In many cases, it is also desirable that the color proof accurately represent the image quality and halftone pattern of the prints obtained on the printing press. In the sequence of operations necessary to produce an ink-printed, full color picture, a proof is also required to check the accuracy of the color separation data from which the final three or more printing plates or cylinders are made. Traditionally, such color separations proofs have involved silver halide light-sensitive systems which require many exposure and processing steps before a final, full color picture is assembled.

Colorants that are used in the printing industry are insoluble pigments. By virtue of their pigment character, the spectrophotometric curves of the printing inks are often unusually sharp on either the bathochromic or hypsochromic side. This can cause problems in color proofing systems in which dyes, as opposed to pigments, are being used. It is very difficult to match the hue of a given ink using a single dye.

One way to thermally obtain a print using the electronic signals described above is to use a laser instead of a thermal-printing head. In such a system, the donor sheet includes a material, which strongly absorbs at the wavelength of the laser. When the donor is irradiated, this absorbing material converts light energy to thermal energy and transfers the heat to the dye in the immediate vicinity, thereby heating the dye to its vaporization temperature for transfer to the receiver. The absorbing material may be present in a layer beneath the dye and/or it may be admixed with the dye. The laser beam is modulated by electronic signals which are representative of the shape and color of the original image, so that each dye is heated to cause volatilization only in those areas in which its presence is required on the receiver to reconstruct the color of the original object. Further details of this process are found in GB 2,083,726A.

In US 5,126,760, a process is also described for producing a direct digital, halftone color proof of an original image on a dye-receiving element. The proof can then be used to represent a printed color image obtained from a printing press. The process described therein comprises:

  • a) generating a set of electrical signals which is representative of the shape and color scale of an original image;
  • b) contacting a dye-donor element comprising a support having thereon a dye layer and an infrared-absorbing material with a first dye-receiving element comprising a support having thereon a polymeric, dye image-receiving layer;
  • c) using the signals to image-wise heat by means of a diode laser the dye-donor element, thereby transferring a dye image to the first dye-receiving element; and
  • d) retransferring the dye image to a second dye image-receiving element which has the same substrate as the printed color image. In the above process, multiple dye-donors are used to obtain a complete range of colors in the proof. For example, for a full color proof, four colors-cyan, magenta, yellow and black are normally used.

By using the above process, the image dye is transferred by heating the dye-donor containing the infrared-absorbing material with the diode laser to volatilize the dye, the diode laser beam being modulated by the set of signals which is representative of the shape and color of the original image, so that the dye is heated to cause volatilization only in those areas in which its presence is required on the dye-receiving layer to reconstruct the original image.

Similarly, a thermal transfer proof can be generated by using a thermal print head in place of a diode laser as described in US 4,923,846. Commonly available thermal heads are not capable of generating halftone images of adequate resolution, but can produce high quality continuous tone proof images, which are satisfactory in many instances.. US 4,923,846 also discloses the choice of mixtures of dyes for use in thermal imaging proofing systems. Inkjet is also used as a low cost proofing method as described in US 6,022,440. Likewise, an inkjet proof can be generated using combinations of either dispersed dyes in an aqueous fluid or dissolved dyes in a solvent based system. US 6,352,330 discloses methods for accomplishing this. Ink jet printers can also produce high quality continuous tone proof images, which by virtue of their cost, are satisfactory in many instances. The dyes are selected on the basis of values for hue error and turbidity. The Graphic Arts Technical Foundation Research Report No. 38, "Color Material" (58-(5) 293-301, 1985) gives an account of this method.

An alternative and more precise method for color measurement and analysis uses the concept of uniform color space known as CIELAB, in which a sample is analyzed mathematically in terms of its spectrophotometric curve, the nature of the illuminant under which it is viewed, and the color vision of a standard observer. For a discussion of CIELAB and color measurement, seePrinciples of Color Technology, 2nd Edition, F.W. Billmeyer, pp.25-110, Wiley Interscience and Optical Radiation Measurements, Volume 2, F. Grum, pp. 33-145, Academic Press.

In using CIELAB, colors can be expressed in terms of three parameters: L*, a*, and b*, where L* is a lightness function, and a* and b* define a point in color space. Thus, a plot of a* vs b* values for a color sample can be used to accurately show where that sample lies in color space, i.e., what its hue is. This allows different samples to be compared for hue if they have similar density and L* values.

In color proofing in the printing industry, it is important to be able to match the proofing ink references provided by the International Prepress Proofing Association. In the United States, these ink references are density patches made with standard 4-color process inks and are known as SWOP® (Specifications Web Offset Publications) color aims. In 1995, ANSI CGATS TR 001-1995 was published which is becoming the standard in the United States printing industry. For additional information on color measurement of inks for web offset proofing, see "Advances in Printing Science and Technology", Proceedings of the 19th International Conference of Printing Research Institutes, Eisenstadt, Austria, June 1987, J.T Ling and R. Warner, p.55.

It is also equally important for dye(s) to have adequate stability to light in order for the color image or proof to be stable when viewed.

A problem has existed with the use of certain dyes in dye-donor elements for thermal dye transfer printing. Some of the dyes proposed for use have proper spectroscopic properties, however, they do not have adequate light stability. It, therefore, would be desirable to provide dyes which not only have proper spectroscopy properties in order to match the standard ink references, but also have good light stability.

In order to better match the yellow proofing ink reference standardized by ANSI CGATS TR 001-1995, it is desired to use a short yellow dye with λ, max at 410 nm along with three other yellow dyes as the yellow donor element. U.S. Pat. Nos. 5,081,101, 4,701,439 and 4,833,123 relate to cyanovinyldialkylaniline dyes similar to those used in the invention. They, however, either lack adequate stability to light or lack proper spectroscopy property for good color match, and have no teaching on how to make them more light stable while maintaining good color. For example, a class of yellow dyes disclosed in U.S. Patent 5,081,101 has the desired hue with λmax at 410nm. This class of dyes, however, is lacking in desired light stability. Another class of dyes of cyanovinyldialkylanilines disclosed in U.S. Patents 5,081,101, 4,701,439 and 4,833,123 do have adequate light stability, but they all have λmax at greater than 420nm which is too long for yellow color proofing.

It is a problem to be solved to provide a yellow dye for imaging that provides the desired hue less than 420 nm with satisfactory stability.

The invention provides a thermal dye transfer yellow donor element containing the combination of dyes useful for forming a light stable yellow image comprising a yellow dye having the formula:

wherein:
  • R1 and R2 each independently represents an alkyl group of from 1 to 10 carbons atoms or a cycloalkyl group of from 5 to 7 carbon atoms;
  • R3 and R4 each independently represents hydrogen, or an unsubstituted lower alkyl group of 1 to 4 carbon atoms;
  • each Y independently represents halogen, or a lower alkyl or alkoxy group of 1 to 4 carbon atoms; and
  • m is 0 to 4.
Such a dye combination and element provides improved stability with desirable hue, especially for proofing.

The invention is generally as described above. Compounds included within the scope of the invention include, but are not limited to, the following:

It will be shown by comparative tests hereinafter that the compounds described above in this invention show an improved combination of light stability while having the desired λmax below 420 and typically at 410 nm, and thereby provide good colorimetry when used in a mixture with other yellow dyes described below. Suitably, a second yellow dye is employed having the formula:

wherein:
  • R8 represents an alkyl group of from 1 to 10 carbon atoms, a cycloalkyl group of from 5 to 7 carbon atoms, an allyl group; all such as those listed for R1, or an aryl group having from 6 to 10 carbon atoms, such as phenyl, naphthyl, p-tolyl, m-chlorophenyl, p- methoxyphenyl,m-bromophenyl, or o-tolyl;
  • R9 represents an alkoxy group having from 1 to 10 carbon atoms, such as methoxy, ethoxy, methoxyethoxy or 2-cyanoethoxy; an aryloxy group having from 6 to 10 carbon atoms, such as phenoxy, m-chlorophenoxy, or naphthoxy; NHR10; NR10R11 or the atoms necessary to complete a 6-membered ring fused to the benzene ring;
  • R5 and R6 each represents any of the groups for R8; provided R5 and R6 can be joined together to form, along with the nitrogen to which they are attached, a 5-or 6-membered heterocyclic ring, such as a pyrrolidine or morpholine ring, or either or both of R5 and R6 can be joined to the carbon atom of the benzene ring at a position ortho to the position of attachment of the anilino nitrogen to form a 5- or 6-membered ring apolycyclic system such as 1,2,3,4-tetrahydroquinoline, julolidine,2,3-dihydroindole, or benzomorpholine;
  • R7 represents hydrogen; an alkyl group of from 1 to 10 carbon atoms, a cycloalkyl group of from 5 to 7 carbon atoms, an allyl group, halogen, carbamoyl such as N,N- dimethylcarbamoyl, or alkoxycarbonyl group such as ethoxycarbonyl or methoxyethoxycarbonyl;
  • R10 and R11 each independently represents any of the groups for R8; or R10 and R11 may be joined together to form, along with the nitrogen to which they are attached, a 5- or 6- membered heterocyclic ring such as a pyrrolidine or morpholine ring;

    n is from 1 to 3; and
  • G represents hydrogen, an alkyl or alkoxy group of from 1 to 10 carbon atoms, halogen, or an aryloxy group, or represents the atoms necessary to complete a 5- or 6-membered ring, thus forming a fused ring system, such as naphthalene, quinoline, isoquinoline or benzothiazole.

The following are examples of useful dyes having formula II:. Dye R9 R8 R5 R6 IIa OC2H5 C6H5 C2H5 C2H5 IIb OC2H5 C6H5 CH2C6H5 CH2C6H5 IIc OC2H5 C6H5 CH2C6H5 C2H5 IId N(CH3)2 C6H5 C2H5 C2H5 IIe N(CH3)2 C6H5 CH2C6H5 CH2C6H5 IIf N(C2H5)2 C6H5 C2H5 C2H5 IIg CH3 C6H5 C2H5 C2H5 IIh C(O)CH3 C6H5 C2H5 C2H5 IIj C(O)OCH3 C6H5 C2H5 C2H5 IIk N(CH3)2 4-ClC6H4 C2H5 C2H5

In a specific embodiment of the invention, the second yellow dye is employed having the following structure (Dye 13 or IId):

In a further embodiment of the invention, a third yellow dye is employed having formula III:

  • R12 is an alkyl or allyl group of from 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, pentyl, allyl, but-2-en-1-yl, 1,1-dichloropropen-3-yl, or such alkyl or allyl groups substituted with hydroxy, acyloxy, alkoxy, aryl, carboxy, carbalkoxy, cyano, acylamido, halogen, or phenyl;
  • R13 is any of the groups as described for R12, or represents the atoms which when taken together with R14 forms a 5- or 6-membered ring;
  • R14 is an alkyl group or an alkoxy group of from 1 to 6 carbon atoms, or represents the atoms which when taken together with R13 forms a 5- or 6-membered ring; and
  • R15 and R16 are each independently an alkyl group of from 1 to 6 carbon atoms or an aryl group of from 6 to 10 carbon atoms, such as phenyl, naphthyl, p-tolyl, m-chlorophenyl, p-methoxyphenyl, m-bromophenyl, and o-tolyl.

The following are useful dyes of formula III: Dye R12 R13 R14 R15 R16 IIIa C2H5 C2H5 H C6H5 C2H5 IIIb C2H5 -C(CH3)2CH2CH(CH3)- C6H5 C2H5 IIIc CH3 CH3 2-CH3 C6H5 C2H5 IIId CH2C6H5 CH2C6H5 H C6H5 C2H5 IIIe C2H5 C2H5 H C6H5 C4H9 IIIf C2H5 C2H5 H C6H5 CH2CH=CH2 IIIg C2H5 C2H5 H C6H5 CH2CH2C(O)OCH3 IIIh C2H5 C2H5 H C6H5 CH2C(O)OCH2CH3

In a specific embodiment of the invention, the third yellow dye is employed having the following structure (Dye 14 or IIIg):

In another embodiment of the invention, a fourth yellow dye is employed having formula IV:

wherein:
  • R17 is an alkyl or allyl group of from 1 to 10 carbons atoms, such as methyl, ethyl, propyl, isopropyl, butyl, pentyl, or hexyl, a cycloalkyl group of from 5 to 7 carbon atoms, such as cyclopentyl or cyclohexyl, or an aryl group having from 6 to 10 carbons atoms;
  • R18 is any of the groups as described for R17 or substituted with hydroxy, acyloxy, alkoxy, aryl, carboxy, carbalkoxy, cyano, acylamido, halogen, or phenyl, or represents the atoms which when taken together with R19 forms a 5-or 6-membered ring, provided that R17 and R18 are not both acetate at the same time;
  • R19 is an alkyl group of from 1 to 10 carbons, an alkoxy group of from 1 to 6 carbon atoms, or represents the atoms which when taken together with R18 forms a 5- or 6-membered ring.
Dye R17 R18 R19 IVa C2H5 C2H5 H IVb C2H5 C2H5 2-CH3 IVc CH2C6H5 CH2C6H5 H IVd C2H5 CH2C(O)OC2H5 H IVe C2H5 CH2C6H5 Cl IVIf C2H5 CH2C6H5 H IVg CH2C6H5 CH2C(O)OC2H5 H IVh CH2C(O)OC2H5 CH2C6H5 2-CH3 IVi C2H5 CH2C6H5 2-CH3 IVj C2H5 CH2C(O)OC2H5 H

In a more specific embodiment of the invention, the fourth yellow dye is employed having the following structure (Dye15):

In a thermal dye transfer element of the laser type, the element suitably also contains an IR sensitive dye such as one of formula V:

wherein:
  • R20, R21, and R22 each independently represents hydrogen, halogen, cyano, alkoxy, aryloxy, acyloxy, aryloxycarbonyl, alkoxycarbonyl, sulfonyl, carbamoyl, acyl, acylamido, alkylamino, arylamino, alkyl, aryl, or a heteroaryl group; or any two of said R20, R21, and R22 groups may be joined together or with an adjacent aromatic ring to complete a 5- to 7-membered carbocyclic or heterocyclic ring group;
  • R23, R24, R25, and R26 each independently represents hydrogen, an alkyl or cycloalkyl group having from 1 to 6 carbon atoms or an aryl or heteroaryl group having from 5 to 10 atoms;
  • or R23, R24, R25, and R26 may be joined together to form a 5- to 7-membered heterocyclic ring;
  • or R23, R24, R25, and R26 may be joined to the carbon atom of the adjacent aromatic ring at a position ortho to the position of attachment of the anilino nitrogen to form, along with the nitrogen to which they are attached, a 5- or 6-membered heterocyclic ring group;
  • n is 1 to 5;
  • X is a monovalent anion;
  • Z1 and Z2 each independently represents R20 or the atoms necessary to complete a 5- to 7-membered fused carbocyclic or heterocyclic ring.

Unless otherwise specifically stated, use of the term "group", "substituted" or "substituent" means any group or radical other than hydrogen. Additionally, when reference is made in this application to a compound or group that contains a substitutable hydrogen, it is also intended to encompass not only the unsubstituted form, but also its form further substituted with any substituent group or groups as herein mentioned, so long as the substituent does not destroy properties necessary for the intended utility. Suitably, a substituent group may be halogen or may be bonded to the remainder of the molecule by an atom of carbon, silicon, oxygen, nitrogen, phosphorous, or sulfur. The substituent may be, for example, halogen, such as chloro, bromo or fluoro; nitro; hydroxyl; cyano; carboxyl; or groups which may be further substituted, such as alkyl, including straight or branched chain or cyclic alkyl, such as methyl, trifluoromethyl, ethyl, t-butyl, 3-(2,4-di-t-pentylphenoxy) propyl, cyclohexyl, and tetradecyl; alkenyl, such as ethylene, 2-butene; alkoxy, such as methoxy, ethoxy, propoxy, butoxy, 2-methoxyethoxy,sec-butoxy, hexyloxy, 2-ethylhexyloxy, tetradecyloxy, 2-(2,4-dit-pentylphenoxy)ethoxy, and 2-dodecyloxyethoxy; aryl such as phenyl, 4-t-butylphenyl, 2,4,6-trimethylphenyl, naphthyl; aryloxy, such as phenoxy, 2-methylphenoxy, alpha- or beta-naphthyloxy, and 4-tolyloxy; carbonamido, such as acetamido, benzamido, butyramido, tetradecanamido, alpha-(2,4-di-t-pentylphenoxy)acetamido, alpha-(2,4-di-t-pentylphenoxy)butyramido, alpha-(3-pentadecylphenoxy)-hexanamido, alpha-(4-hydroxy-3-t-butylphenoxy)-tetradecanamido, 2-oxo-pyrrolidin-1-yl, 2-oxo-5-tetradecylpyrrolin-1-yl, N-methyltetradecanamido, N-succinimido, N-phthalimido, 2,5-dioxo-1-oxazolidinyl, 3-dodecyl-2,5-dioxo-1-imidazolyl, and N-acetyl-N-dodecylamino, ethoxycarbonylamino, phenoxycarbonylamino, benzyloxycarbonylamino, hexadecyloxycarbonylamino, 2,4-di-t-butylphenoxycarbonylamino, phenylcarbonylamino, 2,5-(di-t-pentylphenyl)carbonylamino, p-dodecylphenylcarbonylamino,p-tolylcarbonylamino, N-methylureido, N,N-dimethylureido, N-methyl-N-dodecylureido, N-hexadecylureido, N,N-dioctadecylureido, N,N-dioctyl-N'-ethylureido, N-phenylureido, N,N-diphenylureido, N-phenyl-N-p-tolylureido, N-(m-hexadecylphenyl)ureido, N,N-(2,5-di-t-pentylphenyl)-N'-ethylureido, and t-butylcarbonamido; sulfonamido, such as methylsulfonamido, benzenesulfonamido, p-tolylsulfonamido, p-dodecylbenzenesulfonamido, N-methyltetradecylsulfonamido, N,N-dipropylsulfamoylamino, and hexadecylsulfonamido; sulfamoyl, such as N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dipropylsulfamoyl, N-hexadecylsulfamoyl, N,N-dimethylsulfamoyl; N-[3-(dodecyloxy)propyl]sulfamoyl, N-[4-(2,4-di-t-pentylphenoxy)butyl]sulfamoyl, N-methyl-N-tetradecylsulfamoyl, and N-dodecylsulfamoyl; carbamoyl, such as N-methylcarbamoyl, N,N-dibutylcarbamoyl, N-octadecylcarbamoyl, N-[4-(2,4-di-t-pentylphenoxy)butyl]carbamoyl, N-methyl-N-tetradecylcarbamoyl, and N,N-dioctylcarbamoyl; acyl, such as acetyl, (2,4-di-t-amylphenoxy)acetyl, phenoxycarbonyl, p-dodecyloxyphenoxycarbonyl methoxycarbonyl, butoxycarbonyl, tetradecyloxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, 3-pentadecyloxycarbonyl, and dodecyloxycarbonyl; sulfonyl, such as methoxysulfonyl, octyloxysulfonyl, tetradecyloxysulfonyl, 2-ethylhexyloxysulfonyl, phenoxysulfonyl, 2,4-di-t-pentylphenoxysulfonyl, methylsulfonyl, octylsulfonyl, 2-ethylhexylsulfonyl, dodecylsulfonyl, hexadecylsulfonyl, phenylsulfonyl, 4-nonylphenylsulfonyl, and p-tolylsulfonyl; sulfonyloxy, such as dodecylsulfonyloxy, and hexadecylsulfonyloxy; sulfinyl, such as methylsulfinyl, octylsulfinyl, 2-ethylhexylsulfinyl, dodecylsulfinyl, hexadecylsulfinyl, phenylsulfinyl, 4-nonylphenylsulfinyl, and p-tolylsulfinyl; thio, such as ethylthio, octylthio, benzylthio, tetradecylthio, 2-(2,4-di-t-pentylphenoxy)ethylthio, phenylthio, 2-butoxy-5-t-octylphenylthio, and p-tolylthio; acyloxy, such as acetyloxy, benzoyloxy, octadecanoyloxy, p-dodecylamidobenzoyloxy, N-phenylcarbamoyloxy, N-ethylcarbamoyloxy, and cyclohexylcarbonyloxy; amine, such as phenylanilino, 2-chloroanilino, diethylamine, dodecylamine; imino, such as 1 (N-phenylimido)ethyl, N-succinimido or 3-benzylhydantoinyl; phosphate, such as dimethylphosphate and ethylbutylphosphate; phosphite, such as diethyl and dihexylphosphite; a heterocyclic group, a heterocyclic oxy group or a heterocyclic thio group, each of which may be substituted and which contain a 3 to 7 membered heterocyclic ring composed of carbon atoms and at least one hetero atom selected from the group consisting of oxygen, nitrogen and sulfur, such as 2-furyl, 2-thienyl, 2-benzimidazolyloxy or 2-benzothiazolyl; quaternary ammonium, such as triethylammonium; and silyloxy, such as trimethylsilyloxy.

If desired, the substituents may themselves be further substituted one or more times with the described substituent groups. The particular substituents used may be selected by those skilled in the art to attain the desired desirable properties for a specific application and can include, for example, hydrophobic groups, solubilizing groups, blocking groups, and releasing or releasable groups. When a molecule may have two or more substituents, the substituents may be joined together to form a ring such as a fused ring unless otherwise provided. Generally, the above groups and substituents thereof may include those having up to 48 carbon atoms, typically 1 to 36 carbon atoms and usually less than 24 carbon atoms, but greater numbers are possible depending on the particular substituents selected.

Examples

The following comparative compounds have been used in order to demonstrate the invention. Controls 1, 2, 3, and 4 employed in comparative examples have been described in the specification of U.S. Pat. No. 5,081,101. Controls 5, 6, and 7 have been disclosed in the specification of U.S. Patent No. 4,833,123.

Example 1

In order to compare the light stability of the various yellow dyes, individual yellow dye image elements were prepared by coating on a 100 µm poly(ethylene terephthalate) support a dye layer containing a mixture of an inventive or comparative yellow dye in combination with Dye13 at 0.010 g/m2, Dye 14 at 0.029 g/m2, Dye 15 at 0.013 g/m2 in a polyvinylbutyral binder (Butvar B-76 from Solutia) at 1.076 g/m2. The following Table 1 lists the amounts of inventive or comparative yellow dyes used in the coatings to keep them at similar molar levels. Yellow Dye g/m2 Dye 1 0.054 Dye 2 0.054 Dye 3 0.059 Control-1 0.058 Control-2 0.048 Control-3 0.048 Control-4 0.055 Control-7 0.045

The colored layers were cut into 3 sets of R" strips and read at 1 nm intervals from 400 nm to 900 nm with a Perkin Elmer Lambda 12 uv-vis spectrophotometer, using an uncoated 100 µm poly(ethylene terephthalate) support as the reference. One set was maintained for dark keeping for 5 days, a second set was placed inside a D5000 viewbooth for 5 days which was illuminated with a color temperature of 5000 which was measured to have 2.2 Klux of light, and the 3rd set was put inside 5.4 Klux daylight exposure for 48 hours. The light fading results are summarized in Table 2 below: Dye Dark keep (%) 5 days Dye Density* loss at D5000( %) 5 days Dye density loss at 5.4 klux (%) 2 days Dye- 2 0.26 2.12 3.71 Control 1 0.38 13.60 14.99
* Density loss between 400 and 450nm

The data shows a much greater dye loss for the control vs. the inventive dye.

A similar experiment was run with a larger set of inventive and control samples. Once again, one set was maintained for dark keep this time only 48 hours, a second set was placed inside a D5000 view booth for also only 48 hours which was illuminated with a color temperature of 5000 which was measured to have 2.2 Klux of light. The light fading results are summarized in Table 3 below: Dye Dark keeping (%) Dye Density* loss 2 days Dye Density* loss at D5000( %) 2 days Dye- 1 0.17 0.40 Dye- 3 0.59 0.71 Control 1 0.33 6.93 Control 2 0.30 1.13 Control 3 0.37 0.49 Control 4 0.26 0.93 Control 7 0.67 1.17
* Density loss between 400 and 450nm

Use of the compounds described in the invention showed much improved light stability as compared to control dye 1 with similar spectroscopic properties. On the other hand, the compounds described in the invention provided the desired spectroscopic properties at around λ = 410 nm, and therefore have better color match with the printing ink as compared to controls 2-7 (Their λ max values are summarized in Table 4 below) with similar structures, even though they show similar light stability. Dye λ max in acetone (nm) Dye- 1 411 Dye-2 411 Dye- 3 408 Control 1 410 Control 2 430 Control 3 423 Control 4 431 Control 5 436 Control 6 438 Control 7 439

Example 2

Individual yellow dye-donor elements were prepared by coating on a 100µm poly(ethylene terephthalate) support a dye layer containing a mixture of a yellow dyes, the infrared-absorbing bis(aminoaryl)polymethine dye (Z shown below) as described in US 4,950,639 (column 2 lines 3-68 and column 3 lines 1-3) at 0.046 g/m2 in a polyvinylbutyral binder (Butvar B-72 from Solutia) at 0.38 g/m2. The following experimental ratios shown in Table 5 were used in laydowns as listed:

Yellow Donor Featured dye Featured dye (wt%) Dye 15 Yellow Dye (wt%) Dye 14 Yellow Dye (wt%) Dye 13 Yellow Dye (wt%) Dry Coverage (g/m2) Y-1 Dye-1 31.91% 20.21% 39.36% 8.51% 0.3027 Ctrl-1 Control 1 45.27% 13.75% 31.81% 3.20% 0.3748

An intermediate dye-receiving element, Kodak Approval® Intermediate Color Proofing Film, CAT# 1067560, was used with the above dye-donor elements to print an image. For the monochrome yellow images, the power to the laser array was modulated to produce a continuous tone image of uniform exposure steps of varying density as described in US 4,876,235. After the exposure, the intermediate receiver was laminated to 60# TextWeb paper (Deferient Paper Company) which had been previously laminated with Kodak Approval® Prelaminate, P02.

All measurements of the yellow images were made using Gretag SPM100 portable spectrophotometer set for D50 illuminant and 2° observer angle. Readings were made with black backing behind the samples.

The CIELAB L* a* b* coordinates reported are interpolated to a Status T density of 0.98 for comparison with a SWOP certified press sheet (00-15-162), and at a 1.0 Status T density for comparison against the publication ANSI-CGATS TR 001 - 1995. The color differences between the samples can be expressed as ΔE, where ΔE is the vector difference in CIELAB color space between the laser thermal generated image and the SWOP aim. ΔE= √((L*e-L*s)2 + (a*e -a*s)2 +(b*e -b*s)2) Hue angle=360-arctan b*/a* for negative values of b* =arctan b*/a* for positive values of b*    wherein subscript e represents the measurements from the experimental materials and subscript s represents the measurements from the SWOP™ aim.

Table 6 summarizes the results obtained. Yellow Dye-Donor L* a* b* ΔE Hue Angle ΔHue Angle ΔE between Y-1& Ctrl-1 SWOP Certified Press Sheet 00-15-162 84.06 -5.29 82.73 - 93.66 - - Y-1 84.80 -5.27 82.60 0.75 93.65 -0.01 0.84 Ctrl-1 85.07 -4.83 83.20 1.23 93.32 -0.34 ANSI CGATS TR001 1995 84.26 -5.79 84.33 - 93.93 - Y-1 84.72 -5.14 84.06 0.96 93.50 -0.43 0.74 Ctrl-1 85.01 -4.74 84.62 1.32 93.21 -0.72

As can be seen by comparison of the inventive donor and the control in Table 6, the resultant color of the yellow images are virtually indistinguishable as is demonstrated by the small ΔE between Y1 and Control-1. (A ΔE of 1 is a just noticeable difference). The L* a* b* color match is maintained.


Anspruch[de]
  1. Gelbes Geberelement für die thermische Farbstoffübertragung mit einer Kombination aus Farbstoffen, die zur Ausbildung eines lichtbeständigen gelben Bildes geeignet sind, mit einem Gelbfarbstoff folgender Formel:
    wobei:
    • R1 und R2 jeweils unabhängig voneinander für eine Alkylgruppe aus 1 bis 10 Kohlenstoffatomen oder eine Cycloalkylgruppe aus 5 bis 7 Kohlenstoffatomen stehen;
    • R3 und R4 jeweils unabhängig voneinander für Wasserstoff oder eine unsubstituierte niedere Alkylgruppe aus 1 bis 4 Kohlenstoffatomen stehen;
    • Y jeweils unabhängig für Halogen oder eine niedere Alkyl- oder Alkoxygruppe aus 1 bis 4 Kohlenstoffatomen steht; und
    • m zwischen 0 und 4 ist.
  2. Element nach Anspruch 1, worin m gleich 0 ist.
  3. Element nach Anspruch 1, worin R3 und R4 unabhängig für Wasserstoff oder eine Methylgruppe stehen.
  4. Element nach Anspruch 1, worin Y eine Chlor- oder eine Methylgruppe und m 1 oder 2 ist.
  5. Element nach Anspruch 1, worin R1 und R2 unabhängig für eine Alkylgruppe aus 1 bis 4 Kohlenstoffatomen stehen.
  6. Element nach Anspruch 1-5 mit zudem einem zweiten gelben Farbstoff folgender Formel II:
    wobei:
    • R8 für eine Alkylgruppe aus 1 bis 10 Kohlenstoffatomen, eine Cycloalkylgruppe aus 5 bis 7 Kohlenstoffatomen, eine Allylgruppe oder eine Arylgruppe aus 6 bis 10 Kohlenstoffatomen steht;
    • R9 für eine Alkoxygruppe aus 1 bis 10 Kohlenstoffatomen, eine Aryloxygruppe aus 6 bis 10 Kohlenstoffatomen, NHR10; NR10R11 oder die Atome steht, die notwendig sind, um einen 6-gliedrigen Ring zu bilden, der mit dem Benzolring kondensiert ist;
    • R5 und R6 jeweils für eine der Gruppen für R8 stehen, vorausgesetzt, R5 und R6 können zusammentreten, um mit dem Stickstoff, an den sie gebunden sind, einen 5- oder 6-gliedrigen heterozyklischen Ring zu bilden, oder entweder R5 oder R6 können mit dem Kohlenstoffatom des Benzolrings an der Ortho-Position zur Bindungsstelle des Anilinstickstoffs zusammentreten, um einen 5- oder 6-gliedrigen Ring zu bilden;
    • R7 für Wasserstoff, eine Alkylgruppe aus 1 bis 10 Kohlenstoffatomen, eine Cycloalkylgruppe aus 5 bis 7 Kohlenstoffatomen, eine Allylgruppe, Halogen, Carbamoyl oder eine Alkoxycarbonylgruppe steht;
    • R10 und R11 jeweils unabhängig für eine der Gruppen für R8 stehen;
    • oder worin R10 und R11 zusammentreten und gemeinsam mit dem Stickstoff, an den sie gebunden sind, einen 5- oder 6-gliedrigen heterozyklischen Ring bilden;
    • n für eine positive ganze Zahl von 1 bis 3 steht; und
    • G für Wasserstoff, eine Alkyl- oder Alkoxygruppe aus 1 bis 10 Kohlenstoffatomen, Halogen oder eine Aryloxygruppe oder für die Atome steht, die notwendig sind, um einen 5- oder 6-gliedrigen Ring zu bilden, um somit ein kondensiertes Ringsystem zu bilden.
  7. Element nach Anspruch 6 mit zudem einem dritten gelben Farbstoff folgender Formel III:
    wobei:
    • R12 für eine Alkyl- oder Allylgruppe aus 1 bis 6 Kohlenstoffatomen steht;
    • R13 für eine der für R12 beschriebenen Gruppen steht oder für die Atome steht, die zusammen mit R14 einen 5- oder 6-gliedrigen Ring bilden;
    • R14 für eine Alkylgruppe oder eine Alkoxygruppe aus 1 bis 6 Kohlenstoffatomen oder für die Atome steht, die mit R13 zusammengenommen einen 5- oder 6-gliedrigen Ring bilden;
    • R15 und R16 jeweils unabhängig voneinander für eine Alkylgruppe aus 1 bis 6 Kohlenstoffatomen oder eine Arylgruppe aus 6 bis 10 Kohlenstoffatomen steht.
  8. Element nach Anspruch 9 mit zudem einem vierten gelben Farbstoff folgender Formel IV:
    wobei:
    • R17 für eine Alkyl- oder Allylgruppe aus 1 bis 10 Kohlenstoffatomen, eine Cycloalkylgruppe aus 5 bis 7 Kohlenstoffatomen oder eine Arylgruppe aus 6 bis 10 Kohlenstoffatomen steht;
    • R18 für eine der für R17 beschriebenen Gruppen oder für die Atome steht, die zusammen mit R19 einen 5- oder 6-gliedrigen Ring bilden, vorausgesetzt, R17 und R18 sind nicht gleichzeitig Acetat;
    • R19 für eine Alkylgruppe aus 1 bis 10 Kohlenstoffatomen, eine Alkoxygruppe aus 1 bis 6 Kohlenstoffatomen oder für die Atome steht, die mit R18 zusammengenommen einen 5- oder 6-gliedrigen Ring bilden;
  9. Element nach Anspruch 1-8 mit zudem einem IR-Farbstoff, worin der IR-Farbstoff folgende Formel V aufweist:
    wobei:
    • R20, R21 und R22 jeweils unabhängig für Wasserstoff, Halogen, Cyan, Alkoxy, Aryloxy, Acyloxy, Aryloxycarbonyl, Alkoxycarbonyl, Sulfonyl, Carbamoyl, Acyl, Acylamid, Alkylamin, Arylamin, Alkyl, Aryl oder eine Heteroarylgruppe stehen oder wobei zwei der Gruppen aus R20, R21 und R22 zusammentreten können oder mit einem benachbarten aromatischen Ring eine 5- bis 7-gliedrige karbozyklische oder heterozyklische Ringgruppe bilden können;
    • R23, R24, R25 und R26 jeweils unabhängig für Wasserstoff, eine Alkyl- oder Cycloalkylgruppe aus 1 bis 6 Kohlenstoffatomen oder einer Aryl- oder Heteroarylgruppe aus 5 bis 10 Atomen stehen;
    • oder R23, R24, R25 und R26 zusammentreten können, um einen 5- bis 7-gliedrigen heterozyklischen Ring zu bilden;
    • oder R23, R24, R25 und R26 an das Kohlenstoffatom des benachbarten aromatischen Rings an einer Ortho-Position zur Position der Bindung des Anilino-Stickstoffs gebunden sein können, und zwar zusammen mit dem Stickstoff, an den sie gebunden sind, um eine 5- oder 6-gliedrige Ringgruppe zu bilden;
    • n 1 bis 5 ist;
    • X für ein einwertiges Anion steht;
    • Z1 und Z2 jeweils unabhängig für R20 oder für die Atome stehen, die zur Vervollständigung eines 5- bis 7-gliedrigen kondensierten karbozyklischen oder heterozyklischen Rings notwendig sind.
  10. Element nach Anspruch 1, worin der Farbstoff der Formel I eine der folgenden Formeln aufweist:
Anspruch[en]
  1. A thermal dye transfer yellow donor element containing a combination of dyes useful for forming a light stable yellow image comprising a yellow dye having the formula:
    wherein:
    • R1 and R2 each independently represents an alkyl group of from 1 to 10 carbons atoms or a cycloalkyl group of from 5 to 7 carbon atoms;
    • R3 and R4 each independently represents hydrogen, or an unsubstituted lower alkyl group of 1 to 4 carbon atoms;
    • each Y independently represents halogen, or a lower alkyl or alkoxy group of 1 to 4 carbon atoms; and
    • m is 0 to 4.
  2. The element of claim 1 wherein m is 0.
  3. The element of claim 1 wherein R3 and R4 are independently hydrogen or a methyl group.
  4. The element of claim 1 wherein Y is chloro or a methyl group and m is 1 or 2.
  5. The element of claim 1 wherein R1 and R2 each independently represents an alkyl group of 1 to 4 carbon atoms.
  6. The element of claim 1-5 further comprising a second yellow dye having formula II:
    wherein:
    • R8 represents an alkyl group of from 1 to 10 carbon atoms, a cycloalkyl group of from 5 to 7 carbon atoms, an allyl group; or an aryl group having from 6 to 10 carbon atoms,
    • R9 represents an alkoxy group having from 1 to 10 carbon atoms; an aryloxy group having from 6 to 10 carbon atoms; NHR10; NR10R11 or the atoms necessary to complete a 6-membered ring fused to the benzene ring;
    • R5 and R6 each represents any of the groups for R8; provided R5 and R6 can be joined together to form, along with the nitrogen to which they are attached, a 5-or 6-membered heterocyclic ring or either or both of R5 and R6 can be joined to the carbon atom of the benzene ring at a position ortho to the position of attachment of the anilino nitrogen to form a 5- or 6-membered ring;
    • R7 represents hydrogen; an alkyl group of from 1 to 10 carbon atoms, a cycloalkyl group of from 5 to 7 carbon atoms, an allyl group, halogen, carbamoyl, or alkoxycarbonyl group;
    • R10 and R11 each independently represents any of the groups for R8; or R10 and R11 may be joined together to form, along with the nitrogen to which they are attached, a 5- or 6- membered heterocyclic ring; n is a positive integer from 1 to 3; and
    • G represents hydrogen, an alkyl or alkoxy group of from 1 to 10 carbon atoms, halogen, or an aryloxy group, or represents the atoms necessary to complete a 5- or 6-membered ring, thus forming a fused ring system.
  7. The element of claim 6 further comprising a third yellow dye having formula III:
    wherein:
    • R12 is an alkyl or allyl group of from 1 to 6 carbon atoms;
    • R13 is any of the groups as described for R12, or represents the atoms which when taken together with R14 forms a 5- or 6-membered ring;
    • R14 is an alkyl group or an alkoxy group of from 1 to 6 carbon atoms, or represents the atoms which when taken together with R13 forms a 5- or 6-membered ring; and
    • R15 and R16 are each independently an alkyl group of from 1 to 6 carbon atoms or an aryl group of from 6 to 10 carbon atoms.
  8. The element of claim 9 further comprising a forth yellow dye having formula IV:
    wherein:
    • R17 is an alkyl or allyl group of from 1 to 10 carbons atoms, a cycloalkyl group of from 5 to 7 carbon atoms, or an aryl group having from 6 to 10 carbons atoms;
    • R18 is any of the groups as described for R17, or represents the atoms which when taken together with R19 forms a 5- or 6-membered ring, provided that R17 and R18 are not both acetate at the same time;
    • R19 is an alkyl group of from 1 to 10 carbons, an alkoxy group of from 1 to 6 carbon atoms, or represents the atoms which when taken together with R18 forms a 5- or 6-membered ring.
  9. The element of claim 1-8 further comprising an IR dye wherein the IR dye has formula V
    wherein:
    • R20, R21, and R22 each independently represents hydrogen, halogen, cyano, alkoxy, aryloxy, acyloxy, aryloxycarbonyl, alkoxycarbonyl, sulfonyl, carbamoyl, acyl, acylamido, alkylamino, arylamino, alkyl, aryl, or a heteroaryl group; or any two of said R20, R21, and R22 groups may be joined together or with an adjacent aromatic ring to complete a 5- to 7-membered carbocyclic or heterocyclic ring group;
    • R23, R24, R25, and R26 each independently represents hydrogen, an alkyl or cycloalkyl group having from 1 to 6 carbon atoms or an aryl or heteroaryl group having from 5 to 10 atoms;
    • or R23, R24, R25, and R26 may be joined together to form a 5- to 7-membered heterocyclic ring;
    • or R23, R24, R25, and R26 may be joined to the carbon atom of the adjacent aromatic ring at a position ortho to the position of attachment of the anilino nitrogen to form, along with the nitrogen to which they are attached, a 5- or 6-membered heterocyclic ring group;
    • n is 1 to 5;
    • X is a monovalent anion;
    • Z1 and Z2 each independently represents R20 or the atoms necessary to complete a 5- to 7-membered fused carbocyclic or heterocyclic ring.
  10. The element of claim 1 wherein the dye of formula I has one of the following formulas.
Anspruch[fr]
  1. Elément donneur de colorant jaune par transfert thermique de colorant contenant une combinaison de colorants utilisée pour former une image jaune stable à la lumière comprenant un colorant jaune répondant à la formule :
    où :
    • R1 et R2 représentent chacun indépendamment un groupe alkyle de 1 à 10 atomes de carbone ou un groupe cycloalkyle de 5 à 7 atomes de carbone ;
    • R3 et R4 représentent chacun indépendamment l'hydrogène ou un groupe alkyle inférieur non substitué de 1 à 4 atomes de carbone ;
    • chaque groupe Y représente indépendamment l'halogène ou un groupe alkyle ou alcoxy inférieur de 1 à 4 atomes de carbone ; et
    • m est de 0 à 4.
  2. Elément selon la revendication 1, dans lequel m est 0.
  3. Elément selon la revendication 1, dans lequel R3 et R4 sont indépendamment l'hydrogène ou un groupe méthyle.
  4. Elément selon la revendication 1, dans lequel Y est un groupe chloro ou méthyle et m est 1 ou 2.
  5. Elément selon la revendication 1, dans lequel R1 et R2 représentent chacun indépendamment un groupe alkyle de 1 à 4 atomes de carbone.
  6. Elément selon les revendications 1 à 5 comprenant en outre un second colorant jaune répondant à la formule :
    où :
    • R8 représente un groupe alkyle de 1 à 10 atomes de carbone, un groupe cycloalkyle de 5 à 7 atomes de carbone, un groupe allyle ; ou un groupe aryle de 6 à 10 atomes de carbone,
    • R9 représente un groupe alcoxy de 1 à 10 atomes de carbone ; un groupe aryloxy de 6 à 10 atomes de carbone ; un groupe NHR10; NR10R11 ou les atomes nécessaires pour compléter un cycle à 6 membres condensé sur le cycle benzène ;
    • R5 et R6 représentent chacun n'importe lequel des groupes mentionnés pour R8; à la condition que R5 et R6 puissent être joints ensemble pour former, avec l'atome d'azote auquel ils sont rattachés, un hétérocycle à 5 ou 6 membres ou l'un ou l'autre ou les deux groupes R5 et R6 peuvent être rattachés à l'atome de carbone du cycle benzène en une position ortho par rapport à la position de rattachement de l'atome d'azote du cycle anilino pour former un cycle à 5 ou 6 membres ;
    • R7 représente l'hydrogène ; un groupe alkyle de 1 à 10 atomes de carbone, un groupe cycloalkyle de 5 à 7 atomes de carbone, un groupe allyle, l'halogène, un groupe carbamoyle ou un groupe alcoxycarbonyle ;
    • R10 et R11 représentent chacun indépendamment n'importe lequel des groupes mentionnés pour R8 ; ou R10 et R11 peuvent être joints ensemble pour former, avec l'atome d'azote auquel ils sont rattachés, un hétérocycle à 5 ou 6 membres ;
    • n est un entier positif de 1 à 3; et
    • G représente l'hydrogène, un groupe alkyle ou alcoxy de 1 à 10 atomes de carbone, l'halogène ou un groupe aryloxy ou représente les atomes nécessaires pour compléter un cycle à 5 ou 6 membres, formant ainsi un système cyclique condensé.
  7. Elément selon la revendication 6 comprenant en outre un troisième colorant jaune répondant à la formule :
    où :
    • R12 est un groupe alkyle ou allyle de 1 à 6 atomes de carbone ;
    • R13 est l'un quelconque des groupes tels que décrits pour R12, ou représente les atomes qui, lorsqu'ils sont pris ensemble avec R14, forment un cycle à 5 ou 6 membres ;
    • R14 est un groupe alkyle ou un groupe alcoxy de 1 à 6 atomes de carbone ou représente les atomes qui, lorsqu'ils sont pris ensemble avec R13, forment un cycle à 5 ou 6 membres ; et
    • R15 et R16 sont chacun indépendamment un groupe alkyle de 1 à 6 atomes de carbone ou un groupe aryle de 6 à 10 atomes de carbone.
  8. Elément selon la revendication 9 comprenant en outre un quatrième colorant jaune répondant à la formule :
    où :
    • R17 est un groupe alkyle ou allyle de 1 à 10 atomes de carbone, un groupe cycloalkyle de 5 à 7 atomes de carbone ou un groupe aryle de 6 à 10 atomes de carbone ;
    • R18 est l'un quelconque des groupes tels que décrits pour R17 ou représente les atomes qui, lorsqu'ils sont pris ensemble avec R19, forment un cycle à 5 ou 6 membres, à la condition que R17 et R18 ne soient pas tous deux simultanément un groupe acétate ;
    • R19 est un groupe alkyle de 1 à 10 atomes de carbone, un groupe alcoxy de 1 à 6 atomes de carbone ou représente les atomes qui, lorsqu'ils sont pris ensemble avec R18, forment un cycle à 5 ou 6 membres.
  9. Elément selon les revendications 1 à 8 comprenant en outre un colorant IR, dans lequel le colorant IR répond à la formule V :
    où:
    • R20, R21, et R22 représentent chacun indépendamment l'hydrogène, l'halogène, un groupe cyano, alcoxy, aryloxy, acyloxy, aryloxycarbonyle, alcoxycarbonyle, sulfonyle, carbamoyle, acyle, acylamido, alkylamino, arylamino, alkyle, aryle ou un groupe hétéroaryle ; ou deux quelconques desdits groupes R20, R21, et R22 peuvent être joints ensemble ou avec un cycle aromatique adjacent pour compléter un groupe hétérocyclique ou carbocyclique de 5 à 7 membres ;
    • R23, R24, R25, et R26 représentent chacun indépendamment l'hydrogène, un groupe alkyle ou cycloalkyle de 1 à 6 atomes de carbone ou un groupe aryle ou hétéroaryle de 5 à 10 atomes ;
    • ou R23, R24, R25, et R26 peuvent être joints ensemble pour former un hétérocycle de 5 à 7 membres ;
    • ou R23, R24, R25, et R26 peuvent être rattachés à l'atome de carbone du cycle aromatique adjacent en une position ortho par rapport à la position de rattachement de l'atome d'azote du cycle anilino pour former, avec l'atome d'azote auquel ils sont rattachés, un groupe hétérocyclique à 5 ou 6 membres ;
    • nestde 1 à5;
    • X est un anion monovalent ;
    • Z1 et Z2 représentent chacun indépendamment un groupe R20 ou les atomes nécessaires pour compléter un hétérocycle ou un carbocycle condensé de 5 à 7 membres.
  10. Elément selon la revendication 1, dans lequel le colorant de formule I est représenté par l'une des formules suivantes :






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com