PatentDe  


Dokumentenidentifikation EP1137543 26.01.2006
EP-Veröffentlichungsnummer 0001137543
Titel BILDTRÄGER MIT ERHÖHTER DICHTE UND VERFAHREN ZU SEINER HERSTELLUNG
Anmelder Technology Innovations, LLC, W. Henrietta, N.Y., US
Erfinder SULLIVAN, William A., Rochester, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69929084
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 22.09.1999
EP-Aktenzeichen 999694607
WO-Anmeldetag 22.09.1999
PCT-Aktenzeichen PCT/US99/21762
WO-Veröffentlichungsnummer 0000017448
WO-Veröffentlichungsdatum 30.03.2000
EP-Offenlegungsdatum 04.10.2001
EP date of grant 21.12.2005
Veröffentlichungstag im Patentblatt 26.01.2006
IPC-Hauptklasse B41M 7/00(2006.01)A, F, I, ,  ,  ,   

Beschreibung[en]
Field of the Invention

The present invention relates to a method for decreasing the volume of paper after it has been through an image transferring process.

Background of the Invention

Books and other bound paper items are a substantial part of many businesses, homes and institutions of learning. These printed materials are generally formed of multiple sheets or layers of paper. Although each sheet may not have a great individual thickness, the cumulative total of these pages requires significant linear shelf space.

Many facilities for retaining these publications have a fixed storage volume. Thus, many materials are either sent off site or destroyed. The destruction of materials presents numerous negative implications. However, even off site storage requires cataloging transport and maintenance of the materials, thereby adding to the overall cost.

While publishers of books and other bound paper items recognize the shelf space problem, the publishers are limited to the thickness of paper they can employ. Most printing devices require the paper to have a minimum thickness, resistance to curl and other parameters that permit rapid processing of the paper. Therefore, the paper must have a certain thickness to print and the resulting publication has a corresponding thickness. This results in increased shelf space requirements of the publications. In addition, binding costs go up when the volume of material to be bound goes up.

One solution to this problem is to use thinner paper. However, thinner paper often jams in copiers and other image transfer machines.

In the 1970s, the Xerox Corporation introduced a paper known as micro-spheres that was made up of paper or plastic miniature spheres for the purpose of reducing the overall weight of the paper for reduction in mailing costs. This paper had the normal thickness of copier paper and worked well in copiers and printers without jamming, and further had the benefit of reduced mailing costs by virtue of its light weight. This paper is no longer used or manufactured today, but the technology exists for making it.

Therefore, the need exists for a method of forming an imaged paper, wherein the imaged paper has a reduced thickness.

EP-A-0343794 discloses a method and an apparatus for producing printed matter having a high degree of gloss, rub-resistance, water-resistance and resistance to contamination. Web-fed printed matter or a web-fed printing paper is coated with a coating agent for roll press working and subjected to hot roll press working while in the state of a web

U.S. Patent No. 3,933,547 discloses a method of forming a thermoplastic resin article having a pattern durably described on a surface thereof which comprises impressing a pattern with inks or colors on the surface of a thermoplsatic resin article, said surface having a fine interconnected open-cell structure and heating under pressure the pattern-bearing surface to a temperature above the melting point of said thermoplastic resin so as to cover the pattern-bearing surface with a thin film layer of resin formed from the original surface layer resin of the article.

Summary of the Invention

The present invention relates to methods of increasing the density and decreasing the thickness of a collapsible paper substrate after it acquires an image, as defined in the accompanying claims. The image may be acquired by any of a variety of mechanisms such as a printer. The imaged substrate is then subjected to a sufficient compressive force to decrease the thickness of the substrate without altering the image.

Brief Description of the Drawings

  • Figure 1 is a schematic view of an apparatus for reducing the thickness of a substrate.
  • Figure 2 a schematic view of an alternative apparatus for reducing the thickness of a substrate cross-sectional view of a sheet of collapsible paper.
  • Figure 3 is a cross sectional view of a substrate with an image forming material in an imaging state.
  • Figure 4 is a cross sectional view of the substrate of Figure 3 in a compressed state.
  • Figure 5 is a cross sectional view of an alternative substrate with an image forming material in an imaging state.
  • Figure 6 is a cross sectional view of the substrate of Figure 5 in a compressed state.

Detailed Description of the Preferred Embodiment

Referring to Figure 1, the present invention may operate in conjunction with a printer 10 and be located downstream of the printer. That is, the printer 10 forms an image on a substrate 20 and the substrate then passes to the present invention.

The substrate 20 has a given thickness for processing such as imaging. The substrate 20 may have any of a variety of widths and lengths depending upon the intended use and the imaging processing. That is, some imaging of the substrate 20 employs a continuous web, while other imaging processes on a sheet by sheet basis.

As shown in Figures 3-6, the substrate 20 has an imaging state 20' and a compressed state 20". In the imaging state 20' the substrate has a first thickness and in the compressed state 20" the substrate has a second lesser thickness. The substrate 20 may be transformed from the imaging state to the compressed state by the application of a compressive force. The transformation of the substrate 20 from the imaging state 20' to the compressed state 20" is a one way process without secondary processing. That is, upon the substrate 20 being rendered to the compressed state 20", the substrate does not substantially migrate or creep back towards the thickness of the imaging state. The thickness in the compressed state 20" is between 30 percent to 90 percent of the thickness in the imaging state 20', with a desired thickness of less than 70 percent of the imaging thickness. However, it is understood the thickness in the compressed state may be 30 percent or less, than the thickness of the substrate in the imaging state.

Preferably, the substrate 20 has a threshold compression pressure sufficient to permit the desired imaging of the substrate without reducing its volume or transforming the substrate to the compressed state. That is, in the imaging state 20' the substrate has structural and performance characteristics and parameters sufficient to permit imaging through simplex or duplex operations including copiers, printers, facsimiles or the like. The structural characteristics of the substrate 20 in the imaging state are selected to permit the substrate to be used interchangeably with traditional substrates, such as paper.

Preferably, the substrate 20 can be compressed without changing the image. That is, the substrate 20 does not significantly distort, warp, or curl upon compression, and hence any image on the substrate is not degraded.

The substrate 20 may be formed of a variety of constructions such as a multiplicity of collapsible voids 21. The voids 21 may be formed by microstructures embedded in the substrate 20, as well as voids in the material of the substrate itself. The voids 21 may be formed by dispersing a multiplicity of micro capsules or spheres throughout the substrate 20 when the substrate is manufactured. Thus deformable embedded structures are located throughout the substrate 20. The deformable structures are selected such that upon application of the compressive force, the structures are sufficiently ruptured or collapsed to substantially preclude un aided return to the imaging configuration. Alternatively, the substrate 20 may include spacings sandwiched between layers. Other possible methods of constructing such substrates as laminates having a micro-thin layer of Styrofoam (or other highly compressible material) between two very thin layers of paper. The laminate has a sufficiently high tensile strength in the imaging state to permit use in imaging processes, yet yields to the compressive force to substantially reduce the thickness without distorting or degrading the image. A further construction of the substrate 20 contemplates the inclusion of a multiplicity of fibrous or puffy particles. Alternatively, the substrate 20 may include a corrugated layer that is irreversibly compacted upon exposure to the compressing force. However, any such compressible, collapsible paper will work well with this method.

The manufacture of such a paper substrate is known technology. Specifically, U.S. Pat. No. 3,293,114 issued Dec. 20, 1966 discloses papers useful in packaging, printing, preparation of containers and the like wherein hollow expanded spherical particles are incorporated into the paper pulp by admixture with the wet pulp prior to deposition on the screen. These papers demonstrate increase stiffness and increase caliper.

U.S. Pat. No. 3,556,934 represents a method of making papers similar to that described in U.S. Pat. No. 3,293,114, mentioned above, with the exception that this patent teaches the incorporation of the microspheres in an unexpanded state to the aqueous suspension and during the drying of the paper subjecting it to temperatures sufficient to cause the particles to expand within the paper sheet.

U.S. Pat. No. 3,779,951 issued Dec. 18, 1973 relates to an improved method for the expansion of expandable microspheres in the presence of water.

U.S. Pat. No. 3,941,634 issued Mar. 2, 1976 discloses a method for the preparation of paper containing plastic particles by forming two-spaced apart dewatered webs of cellulose fibers introducing expandable thermoplastic beads between the dewatered webs pressing the spaced apart partially dewatered webs together and subjecting this product to heat to at least partially dry the fibers and at least expand a portion of the beads.

U.S. Pat. No. 4,133,688 issued Jan. 9, 1979 discloses a photographic paper coated with a polyolefin on both sides wherein in the preparation of the paper, either non-inflated microspheres which are subsequently inflated during the drying of the paper or inflated microspheres are added to the pulp during preparation of the paper.

U.S. Pat. No. 4,268,615 issued May 19, 1981 relates to a method of producing a relief by forming a layer of a pattern on the surface of a sheet made of a material having the property of increasing in volume when heated, the pattern being made of the material having a stronger ability to absorb light than the aforesaid material, and then radiating a strong light uniformly on the entire surface of the sheet to selectively heat the portion of the sheet adjacent the undersurface of the pattern layer whereby the pattern layer is raised from the sheet surface. The sheet is prepared by mixing microcapsules and a binder such as vinyl acetate polymers.

The image may be formed on the substrate 20 by any of a variety of mechanisms including, but not limited to xerographic transfer, ink jet, laser, facsimile, offset printing. It is understood the image may be formed on either, or both sides of the substrate 20.

The compressive force may be applied by any of a variety of compressing mechanisms, including but not limited to rollers, calendaring, and presses. The compressive force acts to compress the substrate 20 so that the thickness of the substrate is reduced. In addition, it is believed under certain conditions that the compressive force urges the particles forming the image into the substrate 20. Thus, the image particles may not project as far from the substrate 20 in the compressed state as in the imaging state.

The entire surface of the substrate is exposed to the compressive force. The compressive force may be simultaneously applied to the entire surface area or sequentially applied to sections of the substrate 20 to encompass the entire area of the substrate.

In the roller configuration, a single roller may be employed to apply the pressure. Alternatively, a pair of opposing rollers 32, 34 may be used. The hardness and surface finish of the roller is at least partially determined by the anticipated processing volume, the substrate 20, the image and the desired finish to the substrate. The compressed substrates 20' may be compressed to exhibit a glossy, smooth, shiny, antiqued or matte finish. It is anticipated that at least some processing will seek to achieve a resulting finish that closely matches the imaged and uncompressed finish.

If rollers are used in the compressing process, fuser oil or toner residue may build up on these rollers. If so, a rubber squeegee, blade or knife may be used to remove or reduce accumulated oil or toner.

In the stacked substrate 20 configuration, a press plate acts over the surface area of the substrate. Although the press plate may have a variety of configurations for applying the compressive force such a piston, cam or a roller acting on a back of the press plate. A vacuum support plate may be used in cooperation with the press plate to assist in compressing those substrates having trapped or retained gases.

The sheet of collapsible paper is sent through a printer such as a copier or other imaging system. The page (substrate) is imaged on one or both sides. The page is then moved towards a compaction system 30 that may be connected to or integral with the imaging system 10 or it may be a separate element (Figure 1). The compaction system then applies the compressive force to the major planes of the substrate (page). A simple manner of accomplishing compaction is to run the sheet of paper between two rollers or between a roller and a relatively hard surface. The substrate in the compressed state then moves to an output device or to be used.

The compressing mechanism 30 may be cooperatively engaged with current high speed printers having a bypass transport. The bypass transport distributes the printed sheets (substrates) 30 directly out of the printer into secondary processing equipment. Thus, the compressing mechanism 30 would be operably located as the secondary processing equipment.

Alternatively, the compressing mechanism 30 can be readily attached to the printer 10 and apply the necessary compressive force to reduce the paper thickness to the desired dimension as an intermediate step between the printer and subsequent secondary processing equipment.

Alternatively the pages of the substrate 20 can be loaded into a press that applies a predetermined amount of pressure on the pages resulting in compaction of the pages and the toner surface. The compressed pages may then be removed from the press. The loading and unloading may be done by hand, or it may be done through automated means. For example, in the case of a printer with a bypass transport, the press may be a simple bin where imaged pages are collected and then pressed before being extracted and sent on to the secondary processing equipment.

Thus, the compressing mechanism exerts the compressing force over the entire surface area of the substrate 20. In contrast to devices which may locally compact a section of a substrate, such as a seal, the present invention applies the compressive force over the entire area of the substrate 20.

In cooperation with the compressing mechanism 30, a heating mechanism 40 can be employed to assist in the reduction of the substrate thickness. The heating mechanism 40 may be any of a variety of configurations including radiant, convective or conductive heat. In one configuration, the compressing roller 32 or 34 may include a resistive heater such that the surface of the roller transfers heat tot he substrate being compressed. Alternatively, a separate heating roller may be employed upstream of the compressing roller. It is contemplated that radiative heaters, such as heat lamps, could be used to heat the substrate prior to exerting the compressive force. The substrate 20 may thus be heated above an ambient temperature, and if necessary to a higher temperature that is below a degradation temperature of the substrate.

In a reference example, as shown in Figures 3 and 4, a Xerox 4024 Bond paper was used as the substrate. the thickness of the substrate and image forming toner on two side of the substrate was 112 µm (0.0044 inches). This substrate 20 has an imaging thickness of 102 µm (0.004 inches). Upon the application of the compressing force between 71 to 285 kg per linear cm (400 to 1600 pound per linear inch), the substrate had a thickness of 94 µm (0.0037 inches) in the compressed state. The combined thickness of the substrate and the image forming toner on two sides of the substrate in the compressed state was 104 µm (0.0041 inches). Thus, the resulting imaged substrate has a thickness of approximately 93 percent of original thickness paper. Thus, even substrates that do not include compressible or collapsible microstructures, can be compressed by over 5 percent.

In a further example, as shown in Figures 5 and 6, the substrate 20 was formed with collapsible micro capsules. The imaged substrate in the imaged state had a thickness of 102 µm (0.004 inches) with a combined substrate and image forming toner on two sides of the substrate thickness of 112 µm (0.0044 inches). After a compressive force of between 2760 to 11,000 kPa (400 to 1600 pound per square inch), the substrate in the compressed state retained a thickness of 66 µm (0.0026 inches) with a with a combined substrate and image forming toner on two sides of the substrate thickness of 7 µm (0.0028 inches). Thus, the substrate 20 in the compressed state had a thickness that was 65 percent of the original thickness. That is, the substrate 20 had been compressed by 35 percent.


Anspruch[de]
  1. Verfahren zum Vermindern einer Dicke eines komprimierbaren Substrats, das ein Bild hervorbringt, wobei das Substrat eine Anfangsdicke hat, umfassend:
    • (a) Anwenden einer Kompressionskraft auf das abgebildete Substrat mit Bild, um das Substrat zu komprimieren auf eine komprimierte Dicke kleiner als die Anfangsdicke, wobei die Kompressionskraft gewählt ist, um das Substrat vom Zurückkehren auf die Anfangsdicke zu hindern nach Entfernen der Kompressionskraft von dem Substrat, wobei das Substrat ein zusammenfaltbares Papier ist und die komprimierte Dicke kleiner oder gleich 90% der Anfangsdicke ist.
  2. Verfahren nach Anspruch 1, worin die Kompressionskraft angewendet wird durch Führen des Substrats durch einen Walzenspaft zwischen einem Rollenpaar.
  3. Verfahren nach Anspruch 1, wobei die Kompressionskraft zwischen annähernd 2760 bis 11000 Kpa (400 bis 1600 Pfund pro Quadrat-Inch) ist.
  4. Verfahren nach Anspruch 1. welches weiterhin das Erhitzen des Substrats über Umgebungstemperatur vor Anwenden der Kompressionskraft umfasst.
  5. Verfahren nach Anspruch 1, worin das Anwenden der Kompressionskraft unterhalb einer Schwellenkraft ist, die das Bild auf dem Substrat schädigt.
  6. Verfahren zum Vermindern der Dicke eines Substrats, das ein Bild trägt, umfassend:
    • (a) Ausbilden eines Bilds auf einem Substrat, wobei das Substrat von einem Abbildungszustand mit einer ersten Dicke auf einen komprimierten Zustand mit einer zweiten geringeren Dicke umwandelbar ist; und
    • (b) Komprimieren des abgebildeten Substrats mit einer Kompressionskraft, um das Substrat in den komprimierten Zustand umzuformen, ohne wesentlich das Bild zu verzerren, wobei die Kompressionskraft gewählt ist, um das Substrat an der Rückkehr auf die Anfangsdicke zu hindern, wobei das Substrat ein faltbares Papier ist und die komprimierte Dicke kleiner oder gleich 90% der Anfangsdicke ist.
  7. Verfahren zum Verdichten eines abgebildeten Substrats, umfassend:
    • (a) Ausbilden eines Bilds auf einer Vielzahl von Blättem eines komprimierbaren Substrats, wobei das komprimierbare Substrat eine Abbildungsdicke hat;
    • (b) Anwenden einer ausreichenden Kompressionskraft auf eine Vielzahl von Blättern mit Bildern in einem Stapel, um jedes Blatt auf eine komprimierte Dicke kleiner als die Abbildungsdicke zu komprimieren und
    • (c) Entfernen der Kompressionskraft von dem Stapel, so dass die Blätter bei der komprimierten Dicke verbleiben, wobei das Substrat ein faltbares Papier ist und die komprimierte Dicke kleiner oder gleich 90% der Anfangsdicke ist.
  8. Verfahren zum Erhöhen der Dicke eines Substrats, das ein Bild hervorbringt, wobei das Substrat eine Anfangsdicke hat, umfassend
    • (a) Anwenden einer Kompressionskraft auf das abgebildete Substrat, um die Dicke des Substrats zu erhöhen, wobei die Kompressionskraft gewählt ist, um das Substrat am Zurückkehren auf die Anfangsdicke nach Entfernen der Kompressionskraft von dem Substrat zu hindern, wobei das Substrat ein faltbares Papier ist und die komprimierte Dicke kleiner als oder gleich 90% der Anfangsdicke ist
  9. Verfahren nach Anspruch 1, worin die komprimierte Dicke kleiner als 70% der Anfangsdicke ist.
  10. Verfahren nach einem der vorhergehenden Ansprüche, worin das faltbare Papier eine Vielzahl von faltbaren Mikrostrukturen darin eingebettet hat.
Anspruch[en]
  1. A method for reducing a thickness of a compressible substrate bearing an image, the substrate having an initial thickness, comprising:
    • (a) applying a compressive force to the imaged substrate to compress the substrate to a compressed thickness less than the initial thickness, the compressive force selected to preclude the substrate returning to the initial thickness after removal of the compressive force from the substrate, wherein the substrate is a collapsible paper and the compressed thickness is less than or equal to 90% of the initial thickness.
  2. The method of Claim 1, wherein the compressive force is applied by passing the substrate through a nip between a pair of rollers.
  3. The method of Claim 1, where the compressive force is between approximately 2760 to 11000 Kpa (400 to 1600 pounds per square inch).
  4. The method of Claim 1, further comprising heating the substrate above ambient temperature prior to applying the compressive force.
  5. The method of Claim 1, wherein applying the compressive force is below a threshold force that degrades the image on the substrate.
  6. A method for reducing a thickness of a substrate bearing an image, comprising:
    • (a) forming an image on a substrate, the substrate transformable from an imaging state having a first thickness to a compressed state having a second smaller thickness; and
    • (b) compressing the imaged substrate with a compressive force to transform the substrate to the compressed state without substantially distorting the image, the compressive force being selected to preclude the substrate returning to the initial thickness wherein the substrate is a collapsible paper and the compressed thickness is less than or equal to 90% of the initial thickness.
  7. A method for compacting an imaged substrate, comprising;
    • (a) forming an image on a plurality of sheets of a compressible substrate, the compressible substrate having an imaging thickness;
    • (b) applying a sufficient compressive force to a plurality of the imaged sheets in a stack to compress each sheet to a compressed thickness less than the imaging thickness; and
    • (c) removing the compressive force from the stack, so that the sheets remain at the compressed thickness, wherein the substrate is a collapsible paper and the compressed thickness is less than or equal to 90% of the initial thickness.
  8. A method for increasing the density of a substrate bearing an image, the substrate having an initial density, comprising:
    • (a) applying a compressive force to the imaged substrate to increase the density of the substrate, the compressive force being selected to preclude the substrate returning to the initial density after removal of the compressive force from the substrate, wherein the substrate is a collapsible paper and the compressed thickness is less than or equal to 90% of the initial thickness.
  9. A method according to claim 1, wherein the compressed thickness is less than 70% of the initial thickness.
  10. A method according to any preceding claim, wherein the collapsible paper comprises a multiplicity of collapsible microstructures embedded therein.
Anspruch[fr]
  1. Procédé pour réduire une épaisseur d'un substrat compressible supportant une image, le substrat ayant une épaisseur initiale, comprenant l'étape consistant à:
    • (a) appliquer une force de compression au substrat supportant une image pour comprimer le substrat à une épaisseur comprimée inférieure à l'épaisseur initiale, la force de compression étant sélectionnée pour empêcher le substrat de retourner à l'épaisseur initiale après suppression de la force de compression du substrat, et où le substrat est un papier écrasable et l'épaisseur comprimée est inférieure ou égale à 90% de l'épaisseur initiale.
  2. Procédé selon la revendication 1, dans lequel la force de compression est appliquée en faisant passer le substrat à travers un resserrement entre deux rouleaux.
  3. Procédé selon la revendication 1, dans lequel la force de compression est comprise approximativement entre 2760 et 11000 Kpa (400 et 1600 livres par pouce carré).
  4. Procédé selon la revendication 1, comprenant en outre l'étape consistant à chauffer le substrat au-dessus de la température ambiante avant d'appliquer la force de compression.
  5. Procédé selon la revendication 1, dans lequel l'application de la force de compression est au-dessous d'une force de seuil qui détériore l'image sur le substrat.
  6. Procédé pour réduire une épaisseur d'un substrat compressible supportant une image, comprenant les étapes consistant à:
    • (a) former une image sur un substrat, le substrat étant transformable d'un état d'imagerie ayant une première épaisseur à un état comprimé ayant une deuxième épaisseur inférieure ; et
    • (b) comprimer le substrat supportant une image avec une force de compression pour transformer le substrat à l'état comprimé sans déformer sensiblement l'image, la force de compression étant sélectionnée pour empêcher le substrat de retourner à l'épaisseur initiale, et où le substrat est un papier écrasable et l'épaisseur comprimée est inférieure ou égale à 90% de l'épaisseur initiale.
  7. Procédé pour compacter un substrat supportant une image, comprenant les étapes consistant à :
    • (a) former une image sur une pluralité de feuilles d'un substrat compressible, le substrat ayant une épaisseur d'imagerie;
    • (b) appliquer une force de compression suffisante à une pluralité de feuilles supportant une image dans une pile pour comprimer chaque feuille à une épaisseur comprimée inférieure à l'épaisseur d'imagerie; et
    • (c) supprimer la force de compression de la pile, de sorte que les feuilles restent à l'épaisseur comprimée, et où le substrat est un papier écrasable et l'épaisseur comprimée est inférieure ou égale à 90% de l'épaisseur initiale.
  8. Procédé pour augmenter la densité d'un substrat supportant une image, le substrat ayant une densité initiale, comprenant l'étape consistant à:
    • (a) appliquer une force de compression au substrat supportant une image pour augmenter la densité du substrat, la force de compression étant sélectionnée pour empêcher le substrat de retourner à la densité initiale après suppression de la force de compression du substrat, et où le substrat est un papier écrasable et l'épaisseur comprimée est inférieure ou égale à 90% de l'épaisseur initiale.
  9. Procédé selon la revendication 1, dans lequel l'épaisseur comprimée est inférieure à 70% de l'épaisseur initiale.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel le papier écrasable comprend une multitude de microstructures écrasables englobées dans celui-ci.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com