PatentDe  


Dokumentenidentifikation DE102004029431B3 23.02.2006
Titel Wiegezelle für Präzisionswaagen für das Wiegen von Messfiltern
Anmelder Georg, Hartmut, Dipl.-Ing., 53773 Hennef, DE
Erfinder Georg, Hartmut, Dipl.-Ing., 53773 Hennef, DE
DE-Anmeldedatum 30.08.2004
DE-Aktenzeichen 102004029431
Veröffentlichungstag der Patenterteilung 23.02.2006
Veröffentlichungstag im Patentblatt 23.02.2006
IPC-Hauptklasse G01G 9/00(2006.01)A, F, I, ,  ,  ,   
IPC-Nebenklasse G01G 19/00(2006.01)A, L, I, ,  ,  ,      
Zusammenfassung Beim Wiegen von Messfiltern, wie sie z. B. in der Luftanalytik üblich sind, werden durch statische Aufladungen, Feuchtigkeitsaustausch und Luftauftrieb die Wiegeergebnisse beeinflusst, so dass sich im Vergleich zum Wiegen von Metallgewichten erheblich größere Ergebnisstreuungen ergeben. Diese drei physikalischen Effekte erzeugen ein Messrauschen, in dem das Wiegesignal sehr kleiner Massen verloren geht, so dass die Präzision der genauesten heute erhältlichen Waagen beim Wiegen von Messfiltern nicht vollständig genutzt werden kann.
Durch den Umbau der Wiegezelle mit einem dicht schließenden Wiegezelledeckel, einer automatischen Absenkung des Messfilters auf den Wiegeteller und der Verbindung zu einer Vakuumpumpe kann die Wiegezelle luftleer gepumpt werden, so dass alle drei störenden Effekte eliminiert werden können.
Durch die Eliminierung der genannten Störeffekte können kleinere Massen gewogen werden, so dass die Messzeiten, die für eine auswertbare Masse auf dem Messfilter erforderlich sind, reduziert und Kosten eingespart werden können.

Beschreibung[de]

Die Auswertung von Luftmessproben bezüglich der Verschmutzung mit Partikeln erfolgt heute in der Regel durch Differenzwägung von Messfiltern, durch die ein definiertes Luftvolumen gesaugt wurde. Da die geforderten Luftgrenzwerte immer strenger werden, müssen auch die Nachweisgrenzen (kleinste Menge, die mit einem Messverfahren gemessen werden kann) dieser Messverfahren verringert werden. Ein Weg hierfür ist die Messzeit zu verlängern.

Oft jedoch kann die Messzeit nicht beliebig verlängert werden, da die entstehenden Kosten zu hoch werden. Will man beispielsweise die Staubemission von Laserdruckern unter reproduzierbaren Bedingungen auf einem Prüfstand testen, so muss während der Luftmessung gedruckt werden. Bei der Druckgeschwindigkeit heutiger, leistungsfähiger Drucker können in einer Stunde mehr als 4000 Blatt bedruckt werden. Man erkennt sehr schnell, dass der bessere Weg zu Absenkung der Nachweisgrenze die Erhöhung der Genauigkeit der Waagen ist.

Die genauesten heute erhältlichen Waagen mit Messbereichen 0-2 g bzw. 0-5 g erzielen bei der letzten Anzeigenziffer eine Auflösung von 0,1 &mgr;g. Durch mehrfaches Wiegen der gleichen Probe kann die Streuung (Statistisches Maß für die Reproduzierbarkeit der Messergebnisse) ermittelt werden. Sie liegt je nach Wiegegut deutlich schlechter als die Auflösungsgrenze. Während beim Wiegen von Metallgewichten (1 g) Streuungen von kleiner als 1 &mgr;g erreichbar sind, verhindern beim Wiegen von Messfiltern physikalische Effekte, die beim Wiegen von Metallgewichten vernachlässigbar sind, die volle Ausnutzung der Genauigkeit der Waage. Diese Effekte sind:

  • 1. Statische Aufladungen: Da die Wiegezellen moderner Waagen aus Metall sind, bzw. eine elektrisch leitende Bedampfung haben, haben können Ladungen bei elektrisch leitendem Wiegegut schnell abgeleitet werden. Messfilter sind jedoch Isolatoren, die die statischen Aufladungen lange halten, so dass durch die resultierenden elektrischen Felder Anziehungs- bzw. Abstoßungskräfte entstehen, die das Wiegeergebnis verfälschen.
  • 2. Feuchtigkeitseinfluss: Obwohl die Messfilter nur unter definierten klimatischen Bedingungen gewogen werden, können geringe Feuchtigkeitsmengen der Atemluft der Person, die die Waage bedient, durch das Messfilter aufgenommen werden, so dass Masseänderungen des Filters und damit Verfälschungen der Messergebnisse die Folge sind.
  • 3. Luftauftrieb: Ähnlich wie ein Schiff im Wasser schwimmt, erzeugt auch Luft einen Auftrieb, so dass bei Wiegegut mit geringer Dichte die Messergebnisse verfälscht werden. Es gibt zwar Korrekturformeln, mit denen die ermittelten Wiegeergebnisse auf die wahre Masse umgerechnet werden können, diese sind jedoch beim Wiegen von Messfiltern nicht verwendbar, da die Dichte des Wiegegutes unbekannt ist (unbekanntes Partikelgemisch). Kleinste Luftbewegungen fügen zu diesem systematischen Fehler einen zufälligen Fehleranteil bei, der mit keiner Korrekturformel beherrschbar ist.

In der DE 1933839 U1 ist eine im Vakuum arbeitende Feinstwaage beschrieben worden, jedoch ist es bei dieser Balkenwaage erforderlich, den gesamten, die Waage umgebenden Raum, luftleer zu pumpen, was eine aufwändige und kostenintensive Lösung darstellt. Dies ist vermutlich der Grund, warum sich dieses Prinzip bis heute nicht durchsetzen konnte und gegenwärtig keine Vakuumwaagen erhältlich sind.

Die Aufgabe der Erfindung besteht darin, die Messfehler, die durch statische Aufladungen, Feuchtigkeitseinflüssen und dem Luftauftrieb verursacht werden, bei hochauflösenden Waagen zu eliminieren.

Bei der beschriebenen Erfindung wird nur der Wiegeraum evakuiert, so dass nur in einem kleinen Volumen von etwa einer halben Tasse Rauminhalt Vakuum erzeugt werden muss. Somit können bei kostengünstiger Bauweise die folgenden Vorteile der Vakuumwiegetechnik genutzt werden:

zu 1. Elektrisch geladene Teilchen können sich im Vakuum frei bewegen. Dieser Effekt wird z.B. seit Jahrzehnten in den Transistorvorgängern, den Elektronenröhren technisch genutzt. Durch die freie Beweglichkeit der elektrisch geladenen Teilchen können auch statische Aufladungen gut abgeführt werden. Das Messfilter stellt ein poröses Medium dar, so dass das Vakuum als ein elektrisch leitfähiges Medium auch die feinsten Strukturen des Filters umhüllt und die isolierenden Eigenschaften des Messfilters aufhebt.

zu 2. Durch das Vakuum wird die Verdampfungstemperatur des Wassers so stark herabgesetzt, so dass vorhandene Restfeuchten auch bei Zimmertemperatur sofort verdampfen und über die Vakuumpumpe aus dem Wiegeraum abgesaugt werden können.

zu 3. Im Vakuum gibt es kein Luftauftrieb und keine Luftturbulenzen. Eine Vogelfeder fällt im Vakuum so schnell wie ein Stein und verursacht keine Verwirbelungen.

Im Folgenden soll ein Vorschlag für die technische Realisierung einer VakuumWiegezelle dargestellt werden anhand der Zeichnungen. Dabei zeigt:

1 eine Gesamtdarstellung des Wiegezellengehäuses

2 eine Einzelteilzeichnung des Wiegezellengehäuses

Bei modernen Präzisionswaagen erfolgt die Ermittlung des Messsignals nicht mehr mechanisch, sondern wird elektronisch über einen in eine Spule eintauchenden Metallschaft ausgewertet. Dieser Metallschaft stellt das untere Ende des Wiegetellers dar und wird durch ein Magnetfeld der Spule in Position gehalten. Wird auf den Wiegeteller eine zu wiegende Masse aufgelegt, so muss der Strom in der Spule vergrößert werden, um den Metallschaft in Position halten zu können. Dieser Strom ist das Messsignal, das zur Ermittlung der Masse ausgewertet wird.

Somit führen keine mechanisch bewegten Teile außerhalb des Wiegeraumes, so dass lediglich Kabel nach außen führen. Die Kabeldurchführungen können also stabil und luftdicht vergossen werden.

Auf eine seitlich in die Wiegezelle eingelassene Öffnung zum Auflegen der Filter mit Pinzette kann verzichtet werden, so dass der obere Rand der Wiegezelle eine glatte Oberfläche ergibt, die zum Wiegezellendeckel z.B. mit Nut und O-Ring abgedichtet werden kann.

An das Wiegezellengehäuse wird eine Schlauchtülle angebaut, so dass über einen Schlauch und eine externe Vakuumpumpe die Luft abgesaugt werden kann. Die Vakuumpumpe sollte nicht in die Waage integriert werden, da dann die Vibrationen der Pumpe ein genaues Wiegen unmöglich machen.

Mit zunehmenden Vakuum presst sicht der Wiegezellendeckel auf das Wiegezellengehäuse, so dass auf Schraubarretierungen verzichtet werden kann.

Bei Erreichen des Mindestunterdruckes kann die Waage automatisch den Wiegevorgang starten. Es ist eine möglichst hohe Dichtigkeit in der Wiegezelle anzustreben, damit während des eigentlichen Wiegevorganges die Vakuumpumpe abgeschaltet werden kann, ohne dass das Vakuum signifikant abfällt. Somit wird auch die Übertragung kleinster Schwingungen von der Pumpe zur Waage über den Saugschlauch ausgeschlossen. Für ein automatisches Wiegen muss die Wiegezelle, wie sie an jetzt erhältlichen Waagen zu finden ist, modifiziert werden. Hierfür ist in den Zeichnungen ein Vorschlag dargestellt und im folgenden Text der Wiegeablauf beschrieben.

Bevor ein Messfilter in die Wiegezelle gelegt (und auch wieder herausgenommen) werden kann, muss die Absenkeinheit bis zum oberen Anschlag hochgefahren werden, so dass die vier Metallstäbe etwas über den oberen Rand der Wiegezelle stehen und ein bequemes Auflegen des Messfilters mit Pinzette möglich ist.

Die Absenkeinheit muss einen vibrationsarmen Antrieb haben. Denkbar wäre beispielsweise ein Mikromotor mit Schneckenrad, der über eine Zahnstange die Linearbewegung für die Absenkeinheit realisiert oder auch ein kleiner Hydraulikzylinder.

Nach dem Auflegen des Messfilters wird die Absenkeinheit so weit heruntergefahren (Mittelstellung), so dass das Filter noch nicht auf dem Wiegeteller aufliegt, aber die Wiegezelle mit dem Deckel verschlossen und mit dem Abpumpen der Luft begonnen werden kann.

Die Schutzabdeckung trennt den Wiegeraum und den unteren Teil der Wiegezelle mit Spule und Antrieb für die Absenkeinheit nicht luftdicht, da in der Schutzabdeckung Öffnungen vorhanden sein müssen, die eine Bewegung für den Wiegetellerschaft und die Metallstäbe der Absenkeinheit zulassen. Somit sollten die beiden Räume der Wiegezelle ein möglichst kleinen Rauminhalt haben, damit nicht unnötig viel Luft bis zum Erreichen des Vakuums abgepumpt werden muss. Da durch die zu wiegenden Messfilter ein Mindestdurchmesser vorgegeben ist, kann eine Volumenreduzierung nur über eine Reduzierung der Wiegezellenhöhe bzw. der Vermeidung von Hohlräumen erfolgen.

Über einen im unteren Teil der Wiegezelle eingebauten Drucksensor kann die Waage automatisch erkennen, wann das Vakuum erreicht ist und sich mittels Tariervorgang auf Null stellen. Nachdem die Waage den Nullpunkt gefunden hat, wird die Absenkeinheit bis zum unteren Anschlag heruntergefahren, so dass das Filter auf den Wiegeteller abgelegt wird und gewogen werden kann. Nach der Wägung wird die Absenkeinheit wieder in Mittelstellung gefahren.

Dieser Vorgang (Nullpunkteinstellung – Wiegen) kann mehrfach wiederholt werden, ohne dass der Wiegezellendeckel geöffnet werden muss, so dass durch die Mittelwertbildung das Wiegeergebnis zuverlässiger wird und die Waage mit dem heute bereits eingebauten Datenspeicher eine Streuung des Wiegeergebnisses automatisch ermitteln kann.

Nach Abschluss der Wiegeserie wird wieder Luft in die Wiegezelle gelassen, der Deckel abgenommen und die Absenkeinheit bis zum oberen Anschlag hochgefahren, so dass das Messfilter entnommen bzw. ein neues aufgelegt werden kann.

Zu den bereits erwähnten Vorteilen des Wiegens im Vakuum kommt, dass auf die bisher erforderliche Akklimatisierungszeit (üblich sind etwa 24 h) der Messfilter im Wiegelabor verzichtet werden kann, da kein Feuchtigkeitsausgleich der Messfilter mit der umgebenden Luft mehr möglich ist, bzw. weil im Vakuum keine Drift der Masse durch aufgenommene bzw. abgegebene Feuchtigkeit auftreten kann.

Ohne Vakuumwiegezelle wird es selbst bei weiterer Verbesserung der Elektronik zukünftiger Waagen nicht möglich sein, Messfilter genauer wiegen zu können, als die gegenwärtig der Fall ist, weil bedingt durch statische Aufladungen, Feuchtigkeitsaustausch und Luftauftrieb sehr kleine Massen durch das Messrauschen überdeckt werden.


Anspruch[de]
  1. Wiegezelle für Präzisionswaagen mit einem Lastsensor nach dem Prinzip der elektromagnetischen Kraftkompensation für das Wiegen von Messfiltern mit:,

    • einer externen Vakuumpumpe zur Erzeugung eines Vakuums in der Wiegezelle;

    • einer in die Wiegezelle integrierten Absenkvorrichtung mit einem vibrationsfreien Antrieb zum automatischen Auflegen und Absenken der zu wiegenden Messfilter auf den Wiegeteller nach Erreichen eines vorbestimmten Unterdrucks;

    • einer Schutzabdeckung, die den unteren Teil der Wiegezelle mit dem Lastsensor, dem Antrieb für die Absenkvorrichtung und einem Drucksensor vom Wiegeraum trennt, so dass ein Schutz vor Verschmutzungen besteht, aber das Vakuum einen Schaltvorgang am Drucksensor auslösen kann, der den Start des Wiegevorganges auslöst.
Es folgen 2 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com