PatentDe  


Dokumentenidentifikation DE102004027314B4 23.03.2006
Titel Lawinen-Verschütteten-Suchgerät und Verfahren zur Ortung eines Senders
Anmelder Kampel, Gerald, 82024 Taufkirchen, DE
Erfinder Kampel, Gerald, 82024 Taufkirchen, DE;
Zawallich, Ingo, 85774 Unterföhring, DE;
Matzner, Rolf, 82319 Starnberg, DE
Vertreter Meissner, Bolte & Partner GbR, 80538 München
DE-Anmeldedatum 04.06.2004
DE-Aktenzeichen 102004027314
Offenlegungstag 06.10.2005
Veröffentlichungstag der Patenterteilung 23.03.2006
Veröffentlichungstag im Patentblatt 23.03.2006
IPC-Hauptklasse G01V 3/08(2006.01)A, F, I, 20051017, B, H, DE
IPC-Nebenklasse G01S 1/68(2006.01)A, L, I, 20051017, B, H, DE   A62B 37/00(2006.01)A, L, I, 20051017, B, H, DE   A63B 29/02(2006.01)A, L, I, 20051017, B, H, DE   G01V 3/12(2006.01)A, L, I, 20051017, B, H, DE   

Beschreibung[de]

Die Erfindung betrifft ein Suchgerät zur Ortung eines Senders, insbesondere Lawinen-Verschütteten-Suchgerät, wobei zum Absuchen eines Suchgebietes das Suchgerät durch einen Benutzer in einem Winkelbereich geschwenkt wird, der das Suchgebiet überdeckt.

Lawinen-Verschütteten-Suchgeräte arbeiten mit einem unmodulierten Sendesignal bei 457 kHz. Alle Skifahrer in einer Gruppe schalten im Normalbetrieb ihre Geräte auf Sendebetrieb. Wird ein Teil der Gruppe in einer Lawine verschüttet, schalten die anderen Personen ihre Geräte auf Empfang und versuchen, die Verschütteten anhand des ausgesendeten Signals zu lokalisieren.

Das Sendesignal wird mit einer Frequenz von etwa einem Hertz getaktet. Die Sendezeit bei der Frequenz von 457 kHz, der sog. Duty Cycle, liegt bei zehn bis 30 Prozent.

Für die Ortung nach Gehör (bzw. maximaler/minimaler Feldstärke) erzeugen herkömmliche Geräte aus dem Sendesignal bei 457 kHz durch Heruntermischen einen hörbaren Suchton bei einer Frequenz von etwa 2 kHz. Da die eingebaute Antenne eine ausgeprägte Richtcharakteristik besitzt, kann durch Drehen des Empfangsgerätes und Suchen des Lautstärke-Maximums bzw. Minimums die Richtung der maximalen Feldstärke des verschütteten Senders bestimmt werden. Diese Technik erfordert von den Suchenden hohe Konzentration, Übung, und gerade bei größeren Entfernungen geringe Umgebungsgeräusche.

Um den Suchenden auch ohne Übung und in Stresssituationen die Suche zu vereinfachen, wurden Geräte mit mehreren, rechtwinklig zueinander angeordneten Antennen entwickelt. Durch Umschalten zwischen diesen Antennen kann die Empfangsrichtung des Sendesignals bestimmt werden. Ein entsprechendes Gerät findet sich in der AT 006 120 U2.

Dieses Verfahren hat in der Praxis eine Reihe von Nachteilen. Zum einen beeinflussen sich die Antennen gegenseitig, auch wenn sie abgeschaltet sind, so dass die Empfänger-Empfindlichkeit des Gerätes insgesamt darunter leidet. Insbesondere ist eine Richtungsbestimmung bei großen Entfernungen über 50 Metern fast nicht möglich, die so gewonnene Richtungsanzeige also nicht brauchbar. Zum anderen ist diese Technik sehr empfindlich gegenüber Störungen, so dass die Richtungsanzeige unter nicht optimalen Bedingungen stark streut.

Eine besondere Herausforderung für den Suchenden liegt vor, wenn er die Signale mehrerer Verschütteter zeitgleich empfängt. Die Ortung rein nach Gehör erfordert hier außerordentlich viel Übung und eine umständliche Suchstrategie.

Folgende weitere Schriften beschäftigen sich mit dem Auffinden von Personen.

Die DE 298 13 823 U1 zeigt, wie auch die AT 006 120 U2, ein verschüttetes Suchgerät, bei dem über das Ansprechen von mehreren, unterschiedlich angeordneten Empfangsantennen die Richtung des zu Suchenden bestimmt wird. Das Vorsehen von mehreren Empfangsantennen erweist sich als sehr aufwendig und unpraktisch.

Die DE 100 30 719 C2 beschreibt eine Lawinensuchstange oder – Sonde, die aufgrund eines im Schaft der Sonde angebrachten Empfängers die Suche in unmittelbarer Nähe des Verschütteten erleichtert.

Die DE 195 26 494 C2 und die Druckschrift WO 99/06798 zeigen Vorrichtungen, die unter anderem zum Suchen verwendet werden können. Jedoch basieren die Vorrichtungen auf GPS-Signalen, die zur Suche von Lawinenverschütteten denkbar ungeeignet sind.

Die DE 40 16 959 A1 beschreibt ein Ortungssystem, insbesondere für den untertägigen Bergbau. Hierbei werden ausgesendete elektromagnetische Wellen von einem Ortungsempfänger empfangen und ortungstechnisch ausgewertet.

Die DE 199 14 380 A1 beschreibt ein Kommunikations- und Suchsystem für Taucher.

Angesichts des durch die Druckschrift AT 006 120 U2 gegebenen Standes der Technik ist es Aufgabe der vorliegenden Erfindung, ein Lawinen-Verschütteten-Suchgerät bereit zu stelle, welches die Position mindestens eines Verschütteten auf zuverlässige Weise selbsttätig bestimmt.

Diese Aufgabe wird durch ein Lawinen-Verschütteten-Suchgerät mit den Merkmalen des Anspruchs 1 sowie ein Verfahren mit den Merkmalen des Anspruchs 16 gelöst.

Ein wesentlicher Gedanke der Erfindung besteht darin, dass ein Suchgerät, welches die oben genannte Aufgabe löst, im Idealfall wie ein Radar arbeiten und die Antenne ständig um einen Winkelbereich, bspw. 180 Grad, drehen würde. Weil dabei bekannt ist, in welchem Winkel die Antenne gerade steht, kann zu jedem Zeitpunkt ein empfangenes Signal mit der jeweiligen Feldstärke dem momentanen Winkel der Antenne zugeordnet werden. Dies ist so in der Praxis natürlich nicht durchführbar. Immerhin wird aber die Drehung um 180 Grad dadurch erreicht, dass die suchende Person das Gerät beim Gehen in der Hand hält und nach links und rechts schwenkt, ein Vorgehen, wie es bei der Anwendung von Suchgeräten nach dem Stand der Technik bekannt ist. Das Problem besteht dann darin, festzustellen, in welchem Winkel zu einem äußeren Bezugskoordinatensystem sich das Gerät zu einem gegebenen Zeitpunkt befindet.

Prinzipiell ist es denkbar, Informationen über den momentanen Suchwinkel durch die Auswertung der Signale von Beschleunigungssensoren oder Rotationssensoren zu erhalten. In der Praxis führen Anfangswertprobleme und die konstante Erdbeschleunigung hierbei zu großen Fehlern.

Auch könnten Informationen über den Suchwinkel unter Umständen aus der Auswertung des GPS-Signals gewonnen werden. Dem stehen die relativ hohen Kosten eines GPS Empfängers und die – für Rettungsanwendungen – im Allgemeinen unzureichende Verfügbarkeit ausreichender GPS-Signale entgegen.

Erfindungsgemäß wird das Erdmagnetfeld als derartiges, festes und permanent verfügbares Bezugskoordinatensystem herangezogen. Damit ist zu jeder Zeit die Zuordnung des empfangenen Sendersignals eines Senders zu einem festen Suchwinkel möglich.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Suchgerätes gibt der Magnetfeldsensor drei das Erdmagnetfeld betreffende Sensorsignale an die Signalverarbeitungseinrichtung aus. Damit lässt sich der Raumwinkel des Gerätes relativ zu den Feldlinien ermitteln, in dem die Feldstärkekomponenten des Erdmagnetfeldes in drei senkrecht zueinander stehenden Achsen gemessen werden.

Darüber hinaus sind Magnetfeldsensoren mit einer Genauigkeit von ein Grad preisgünstiger als ein GPS-Empfänger, so dass das erfindungsgemäße Suchgerät kostengünstiger gefertigt werden kann.

In einer weiteren Ausgestaltung sind Neigungssensoren vorgesehen, die Sensorsignale an die Signalverarbeitungseinrichtung ausgeben, welche die Lage des Suchgerätes bezogen auf eine Horizontalebene repräsentieren. Aus den Sensorsignalen der Neigungssensoren lassen sich die Sensorsignale des Magnetfeldsensors vorteilhaft so korrigieren, dass die relative Position des Suchgerätes zum Erdmagnetfeld sehr genau und unabhängig von der horizontalen Lage des Suchgerätes bestimmt werden kann.

In weiteren Ausführungsformen des erfindungsgemäßen Suchgerätes ist die Signalverarbeitungseinrichtung ausgebildet, um aus den Sendersignalen und den Sensorsignalen Winkelsignale zu erzeugen, die eine Empfangsfeldstärke in Abhängigkeit von einem Suchwinkel repräsentieren. Die Anwendung signalverarbeitender Mechanismen auf die erfindungsgemäßen Winkelsignale ermöglicht in besonders einfacher und zuverlässiger Weise die Bestimmung des Senderortes.

In einer weiteren Ausgestaltung insbesondere der vorgenannten Ausführungsform ist die Signalverarbeitungseinrichtung zur Berechnung eines Sendersuchwinkels, in dem sich der Sender befindet, anhand der Winkelsignale ausgebildet. Hierdurch kann durch das Suchgerät der Ort des Senders bestimmt werden, da die Bestimmung des Abstandes zwischen Sender und Suchgerät durch herkömmliche Verfahren einfach möglich ist. Eine Bestimmung des Senderortes nach Gehör ist somit nicht erforderlich. Der Sendersuchwinkel kann nach ein- oder mehrmaligem Schwenken des erfindungsgemäßen Suchgerätes bestimmt werden, auch wenn das Gerät bereits wieder in eine vollkommen andere Richtung zeigt.

In einer weiteren Ausgestaltung dieser Ausführungsform ist die Signalverarbeitungseinrichtung ausgebildet, um aus mindestens zwei Winkelsignalen den Sendersuchwinkel zu bestimmen.

Ein Problem bei Sendern zum Auffinden Verschütteter besteht darin, dass das Sendersignal des Senders getaktet ist. Bei einer zufälligen Schwenkbewegung wird es also häufig passieren, dass der Sender gerade in einer Sendepause ist, wenn das Suchgerät in Richtung maximaler oder minimaler Feldstärke (während der Zeitpunkte, zu denen der Sender sendet) gehalten wird. Die Folge der Winkelsignale, d. h. die Funktion der Empfangsfeldstärke über dem Suchwinkel, wird daher im Allgemeinen nur abschnittsweise vorliegen. Vorteilhaft ist daher im Suchgerät ein Algorithmus implementiert, um aus den dazwischenliegenden Werten Maximum und Minimum zu extrapolieren. Im Prinzip sind hierzu nur zwei beliebige Punkte des Feldstärkeverlaufs (d. h. zwei Winkelsignale) erforderlich, wenn die Richtcharakteristik der Suchantenne bekannt ist.

Dazu werden die – wie zuvor für den Suchwinkel und nachfolgend für die Feldstärke beschrieben – gewonnenen Abbildungen (Zeit -> Suchwinkel) und (Zeit -> Feldstärke) in eine Abbildung (Suchwinkel -> Feldstärke) transformiert. In einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Suchgerätes wird die Extrapolation bzw. Interpolation des vollständigen Verlaufs der Abbildung (Suchwinkel -> Feldstärke) durch Anwendung der Methode des kleinsten Fehlerquadrates durchgeführt. Dies ermöglicht eine ständige Verbesserung des geschätzten Feldstärkeverlaufs über dem Suchwinkel mit weiteren Messwerten.

In weiteren Ausführungsformen des erfindungsgemäßen Suchgerätes ist die Ausgabeeinheit zur graphischen Ausgabe von Ergebnissignalen ausgebildet, die den Sendersuchwinkel repräsentieren, und insbesondere ein Anzeigefeld zur graphischen Anzeige des Senderortes in dem Suchgebiet umfasst. Hierdurch wird vorteilhaft die schnelle und intuitive Erfassung des Senderortes durch den Benutzer ermöglicht.

In weiteren Ausführungsformen des erfindungsgemäßen Suchgerätes umfasst die Signalverarbeitungseinrichtung eine Filterkorrelationseinheit, die ausgebildet ist, um Winkelsignale durch Korrelation der Sendersignale (Empfangssignal bzw. herabgemischtes Empfangssignal) mit vorgegebenen Muster- bzw. Filtersignalen zu detektieren. Hierdurch wird die Detektion schwacher Sendersignale eines Senders ermöglicht, der sich bspw. in großer Entfernung vom Suchgerät befindet. Dies entspricht dem Auffinden eines Signals mit bekannter Form im Rauschen. Auf der Filterkorrelationseinheit kann bspw. ein sogenannter Matched-Filter-Mechanismus implementiert sein, wobei eine Kreuzkorrelation zwischen dem gesuchten und dem empfangenen Signal durchgeführt wird.

In einer weiteren Ausgestaltung dieser Ausführungsform ist die Filterkorrelationseinheit ausgebildet, um die Winkelsignale mit einer sinusförmigen- und mit einer kosinusförmigen Filtersignalfolge zu korrelieren. Insbesondere bei einem kosinusförmigen Filtersignal, d. h. wenn ein kosinusförmiges Sendersignal erwartet wird, kann der Rechenaufwand gegenüber einem Matched-Filter-Verfahren erheblich reduziert werden, wenn das Sendersignal in eine Sinus- und eine Kosinus-Komponente zerlegt wird. In diesem Fall genügt an Stelle der Kreuzkorrelation eine einfache Multiplikation mit der Sinus- und der Kosinuskomponente des Muster- bzw. Filtersignals mit anschließender Betragsbildung und Moving-Average-Filterung.

In weiteren Ausführungsformen umfasst die Signalverarbeitungseinrichtung eines erfindungsgemäßen Suchgerätes eine Autokorrelationseinheit, die ausgebildet ist, um in gespeicherten Signalen durch Autokorrelation periodische Signalanteile zu detektieren. Werden die Signale mehrerer Sender empfangen, können sich die Sendersignale der Sender gegenseitig überlagern und auch wechselseitig auslöschen. Da zwei Geräte stets leicht voneinander verschiedene Wiederholraten und/oder Tastverhältnisse aufweisen, ist jedoch im Prinzip eine Zuordnung des jeweils empfangenen Signals zu dem einen bzw. anderen Sender möglich. Bei der Überlagerung von Signalen mehrerer Sender handelt es sich um die Summe mehrerer periodisch ein- und ausgeschalteter Signale. Daher eignet sich die Autokorrelationsfunktion, um die periodischen Anteile dieses Summensignals zu erkennen. Beispielsweise kann aus den gemessenen Empfangsfeldstärken durch Schwellwertentscheidung eine Ein-/Ausschalt-Funktion gebildet werden, deren Autokorrelationsfunktion Spektrallinien an den vorkommenden Frequenzen enthält. Somit ist eine Trennung der Signale mehrerer Sender durch Vorsehen einer Autokorrelationseinheit im Suchgerät möglich.

In weiteren Ausgestaltungen des erfindungsgemäßen Suchgerätes ist die Autokorrelationseinheit einer Filterkorrelationseinheit nachgeschaltet. Hierdurch gestaltet sich der Aufbau des Suchgerätes besonders vorteilhaft, da zunächst alle detektierbaren (möglicherweise schwachen) Sendersignale identifiziert werden und dann auf einfache Weise diese Signale verschiedenen Sendern zugeordnet werden können.

In weiteren Ausgestaltungen umfasst die Suchantenne des erfindungsgemäßen Suchgerätes eine Ferrit-Antenne, vorzugsweise mit kosinusförmiger Richtcharakteristik. Ferrit-Antennen sind wegen ihrer ausgeprägten Richtcharakteristik zur Senderortung besonders geeignet. Eine kosinusförmige Richtcharakteristik ermöglicht beispielsweise eine Ausbildung der Filterkorrelationseinheit wie weiter oben angegeben, wobei die Winkelsignale mit einer sinusförmigen- und mit einer kosinusförmigen Filtersignalfolge korreliert werden.

In weiteren Ausgestaltungen der Erfindung umfasst das Suchgerät einen Sender zum Senden von Sendersignalen, wobei die Sendersignale vorzugsweise durch eine Senderkennung individualisiert sind. Hierdurch können Gruppenfunktionen verwirklicht werden, bei denen aus einer Mehrzahl von Sendern mindestens einer durch seine individualisierte Kennung identifizierbar ist, beispielsweise der Gruppenleiter einer Gruppe von Skifahrern.

Bei bestimmten weiteren Ausführungsformen der Erfindung ist die Signalverarbeitungseinrichtung zur Erzeugung von Verarbeitungssignalen ausgebildet, die einem Sendersuchwinkel eine Senderkennung zuordnen, wobei ein Sender derart ausgebildet ist, dass Sendersignale dieses Senders individualisierbar gegenüber Sendersignalen weiterer Sender sind. Hierdurch kann dem Benutzer des erfindungsgemäßen Suchgerätes in vorteilhaft einfacher Weise die Option zur Verfügung gestellt werden, sich einen aus einer Mehrzahl georteter Sender in hervorgehobener Weise anzeigen zu lassen.

Ein Verfahren zur Ortung eines Senders, insbesondere des Senders eines in einer Lawine Verschütteten, weist herkömmlich die folgenden Schritte auf:

  • – zum Absuchen eines Suchgebietes wird ein Suchgerät durch einen Benutzer in einem Winkelbereich von Suchwinkeln geschwenkt, der das Suchgebiet überdeckt,
  • – Sendersignale, die vom Sender ausgestrahlt werden, werden aus momentanen Suchrichtungen von einer Suchantenne des Suchgerätes empfangen,
  • – Verarbeitungssignale werden aus den Sendersignalen erzeugt und
  • – Ergebnissignale, welche die Verarbeitungssignale repräsentieren, werden an den Benutzer ausgegeben.

Erfindungsgemäß wird ein derartiges Verfahren in der Weise weiterentwickelt, dass Sensorsignale, die das Erdmagnetfeld betreffen, als Verarbeitungssignal durch Ergebnissignale den Benutzern angezeigt werden und jeder Suchrichtung ein fester Suchwinkel, relativ zum Erdmagnetfeld, zugeordnet wird. Damit wird das Erdmagnetfeld als festes Bezugskoordinatensystem herangezogen, und es ist zu jeder Zeit die Zuordnung des gemessenen Sendersignals eines Senders zu einem festen Suchwinkel möglich.

In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden für die Zuordnung von Suchrichtung und -winkel Feldstärkekomponenten des Erdmagnetfeldes in drei zueinander senkrecht stehenden Richtungen gemessen. Damit kann der Raumwinkel des Gerätes relativ zu den Feldlinien ermittelt werden.

In weiteren bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden die Neigungen des Suchgerätes gegen die Horizontalebene gemessen und die Sensorsignale entsprechend korrigiert. Somit kann vorteilhaft die Himmelsrichtung exakt bestimmt werden.

In weiteren Ausführungsformen des erfindungsgemäßen Verfahrens werden Winkelsignale, die jeweils eine Empfangsfeldstärke bei einem Suchwinkel angeben, aus den Sendersignalen und den Zuordnungen von Suchrichtung und Suchwinkel erzeugt. Nach Erzeugung der Winkelsignale ist vorteilhaft die Anwendung signalverarbeitender Mechanismen auf diese Signale möglich, was in besonders einfacher und zuverlässiger Weise die Bestimmung des Senderortes erlaubt.

In weiteren Ausgestaltungen des erfindungsgemäßen Verfahrens wird ein Sendersuchwinkel, in dem sich der Sender befindet, anhand der Winkelsignale berechnet und ein Ergebnissignal ausgegeben, das den Sendersuchwinkel repräsentiert. Hierdurch kann der Ort des Senders bestimmt werden, da die Bestimmung des Abstandes zwischen Sender und Suchgerät durch herkömmliche Verfahren einfach möglich ist. Eine Bestimmung des Senderortes nach Gehör ist somit nicht erforderlich. Der Sendersuchwinkel kann nach ein- oder mehrmaligem Schwenken des erfindungsgemäßen Suchgerätes bestimmt werden, auch wenn das Gerät bereits wieder in eine vollkommen andere Richtung zeigt.

In einer weiteren Ausgestaltung der Erfindung wird der Sendersuchwinkel aus mindestens zwei, insbesondere mindestens drei, Winkelsignalen bestimmt. Bei getakteten Sendersignalen eines Senders ist es bei einer zufälligen Schwenkbewegung häufig der Fall, dass der Sender gerade in einer Sendepause ist, wenn das Suchgerät in Richtung maximaler oder minimaler Feldstärke gehalten wird. Die Folge der Winkelsignale, d. h. die Funktion der Empfangsfeldstärke über dem Suchwinkel, wird daher im Allgemeinen nur abschnittsweise vorliegen. Vorteilhaft ist daher das erfindungsgemäße Verfahren ausgestaltet, um aus den dazwischenliegenden Werten Maximum und Minimum zu extrapolieren. Hierzu sind prinzipiell zwei beliebige Punkte des Feldstärkeverlaufs (d. h. zwei Winkelsignale) ausreichend, wenn die Richtcharakteristik der Suchantenne bekannt ist. Für eine robuste Approximation ist die Verwendung mindestens dreier Winkelsignale vorteilhaft.

In weiteren Ausgestaltungen der vorgenannten Ausführungsformen wird eine Schätz-Winkelsignalfolge nach der Methode der kleinsten Fehlerquadrate aus den Winkelsignalen berechnet und der Sendersuchwinkel aus dem Maximum der Schätz-Winkelsignalfolge bestimmt wird. Aus den vorliegenden, abschnittsweisen Folgen der Winkelsignale können mit der Methode des kleinsten Fehlerquadrats die bestimmenden Parameter des gesamten Kurvenverlaufs geschätzt werden. Daraus kann in einfacher Weise die Schätz-Winkelsignalfolge berechnen werden, wie dies weiter oben bereits ausgeführt wurde.

In weiteren Ausgestaltungen dieser Ausführungsform werden bei der Berechnung der Schätz-Winkelsignalfolge Winkelsignale unterschiedlich gewichtet, insbesondere gemäß der Zeit, die seit einem Empfang der den Winkelsignalen zugrundeliegenden Sendersignale vergangen ist. Bei Anwendung der Methode des kleinsten Fehlerquadrats kann die Schätzung durch Heranziehung neuer Messwerte ständig weiter verbessert werden. Hierdurch ergibt sich auch bei großer Entfernung vom Verschütteten und entsprechend schwachem Sendersignal schnell eine relativ genaue Ortsschätzung. Zum anderen lässt sich durch eine entsprechende Gewichtung älterer im Verhältnis zu den aktuellen Messwerten bzw. den hieraus ermittelten Winkelsignalen ein Springen oder eine übermäßige Instabilität des errechneten Sendersuchwinkels zuverlässig unterdrücken.

In weiteren Ausführungsformen des erfindungsgemäßen Verfahrens werden Schätz-Sendersignale durch Korrelation von Sendersignalen mit vorgegebenen Filtersignalen ermittelt und Winkelsignale aus den Schätz-Sendersignalen ermittelt. Wird eine Kreuzkorrelation zwischen den Filtersignalen und den Sendersignalen durchgeführt, wird die Detektion schwacher Sendersignale eines Senders ermöglicht, der sich bspw. in großer Entfernung vorn Suchgerät befindet, wobei dies dem Auffinden eines Signals mit bekannter Form im Rauschen entspricht.

In einer weiteren Ausgestaltung dieser Ausführungsform wird zur Ermittlung des Sendersignals aus Rauschstörungen durch Korrelation von empfangenen Sendersignalen mit einer sinusförmigen- und mit einer kosinusförmigen Filtersignalfolge jeweils eine Sinus- und eine Kosinussignalfolge ermittelt. Im Prinzip kann die oben erwähnte Kreuzkorrelation mittels eines Matched-Filter-Mechanismus durchgeführt werden. Der Nachteil des Matched Filter besteht jedoch in hohem Rechenaufwand. Dieser rührt daher, dass die durch die Filtersignale repräsentierte Musterfunktion in allen möglichen Phasenlagen mit der Folge empfangener Sendersignale verglichen werden muss. Dieser Rechenaufwand kann erheblich reduziert werden, wenn die Folge der Sendersignale in eine Sinus- und eine Kosinus-Komponente zerlegt wird.

Bei einer weiteren Ausgestaltung dieser Ausführungsform werden Empfangsfeldstärken der Signale der Schätz-Sendersignalfolge aus der Summation der Produkte der (ggf. zuvor herabgemischten) Empfangssignalfolge mit einer Sinus- und einer Kosinussignalfolge ermittelt. Das Argument (Winkel) der durch obenerwähnten Sinus- und Kosinus-Komponente gebildeten komplexen Zahl beschreibt die Phasenlage des Empfangssignals im Verhältnis zur Kosinus-Musterfunktion, während der Betrag der komplexen Zahl ein Maß für die Empfangsfeldstärke ist.

In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird zur Detektion von mehreren Sendern ein periodischer Signalanteil von gespeicherten Sendersignalen oder Verarbeitungssignalen, insbesondere Schätz-Sendersignalen, durch Autokorrelation ermittelt. Werden die Signale mehrerer Verschütteter empfangen, können sich die Sendersignale der Sender gegenseitig überlagern und auch wechselseitig auslöschen. Da zwei Sender stets leicht voneinander verschiedene Wiederholraten und/oder Tastverhältnisse aufweisen, ist jedoch im Prinzip eine Zuordnung des jeweils empfangenen Signals zu dem einen bzw. anderen Sender möglich. Bei der Überlagerung von Signalen mehrerer Sender handelt es sich um die Summe mehrerer periodisch ein- und ausgeschalteter Signale. Daher eignet sich die Autokorrelationsfunktion, um die periodischen Anteile dieses Summensignals zu erkennen. Beispielsweise kann aus den gemessenen Empfangsfeldstärken durch Schwellwertentscheidung eine Ein-/Ausschalt-Funktion gebildet werden, deren Autokorrelationsfunktion Spektrallinien an den vorkommenden Frequenzen enthält. Somit ist eine Trennung der Signale mehrerer Sender möglich. Durch Mittelung der Autokorrelationsfunktion über mehrere Beobachtungszeiträume können dominante periodische Anteile relativ unabhängig von der jeweiligen Ausrichtung des Senders zum Empfänger sehr zuverlässig bestimmt werden.

In einer Ausgestaltung dieser Ausführungsform wird ein ermittelter periodischer Signalanteil, der einem Sender zugeordnet werden kann, aus Sendersignalen oder Verarbeitungssignalen ausgeblendet, um weitere periodische Signalanteile zu ermitteln. Durch Rauschen und Ungenauigkeiten werden die periodischen Anteile schwächerer Empfangssignale häufig verdeckt. Um diese Anteile detektieren zu können, ist es vorteilhaft, wenn Signalanteile, die einem dominanten Empfangssignal zugeordnet werden können, ausgeblendet (zu Null gesetzt) werden.

In weiteren Ausführungsformen des erfindungsgemäßen Verfahrens werden die Sendersignale eines Senders gegenüber Sendersignalen weiterer Sender durch eine Senderkennung individualisiert und es werden Verarbeitungssignale erzeugt, die einem Sendersuchwinkel diese Senderkennung zuordnen. Hierdurch können Gruppenfunktionen verwirklicht werden, bei denen aus einer Mehrzahl von Sendern mindestens einer optional durch seine individualisierte Kennung identifizierbar ist, beispielsweise der Gruppenleiter einer Gruppe von Skifahrern.

Weitere Aspekte, Vorteile und Zweckmäßigkeiten der Erfindung werden durch die nachfolgende Beschreibung eines Ausführungsbeispiels der Erfindung anhand der beigefügten Figuren ersichtlich, von denen zeigt:

1 ein Ausführungsbeispiel eines erfindungsgemäßen Suchgerätes;

2a, 2b jeweils eine Ansicht der Anzeige des Suchgerätes aus der 1;

3 in schematisierter Form ein funktionales Blockschaltbild des Suchgerätes der 1.

In den Figuren werden für gleiche und gleich wirkende Elemente gleiche Bezugsziffern verwendet.

1 zeigt ein Ausführungsbeispiel eines erfindungsgemäß ausgebildeten Suchgerätes 1 für den Einsatz als Lawinen-Verschütteten-Suchgerät (LVS-Gerät). Die Kommunikation mit dem Benutzer erfolgt über ein beleuchtetes Display 10 und zwei Bedientasten 12, 13. Das Display 10 erlaubt die grafische Anzeige der Position eines oder mehrerer Verschütteter relativ zum eigenen Standort. Das Suchgerät 1 verfügt zusätzlich über einen Lautsprecher 14 zur Ausgabe eines synthetisch generierten Suchtons an den Benutzer als akustisches Feedback sowie eine LED 15, wie dies für herkömmliche Geräte bekannt ist. Der Lautsprecher 14 und die rote LED 15 ermöglichen eine konventionelle Suche auch ohne Nutzung der grafischen Anzeige über das Display 10.

Wie im Einzelnen in 2a dargestellt, ist die Anzeige des Displays 10 unterteilt in ein Koordinatenfeld 16 zur maßstabsgetreuen Darstellung der Lage der georteten Sender der Verschütteten, eine Statuszeile 18 mit der jeweils wichtigsten Information und Beschriftungsfelder 20 für die beiden Bedientasten 12.

Das Suchgerät 1 ist als kombiniertes Such- und Sendegerät mit einer nach außen nicht sichtbaren Antenne zum Senden und Suchen auf einer Suchfrequenz von 457 kHz ausgestattet. Die angegebene Frequenz ist für Lawinen-Verschütteten-Suchgeräte genormt (EN 282). Eine automatische Ortung der Verschütteten erfolgt aus der natürlichen Schwenkbewegung des Suchenden bzw. Benutzers. Erfindungsgemäß ist jedoch keine manuelle Peilung wie bei herkömmlichen Geräten erforderlich. Zusätzlich verfügt das dargestellte Suchgerät 1 über einen Peilmodus zur Konzentration auf einen ausgewählten Verschütteten.

Ein Suchvorgang läuft dabei so ab, dass der Suchende das Suchgerät 1 nach dem Umschalten von Sende- auf Suchbetrieb einige Male um ca. 180 Grad hin- und herschwenkt. Die erreichbare Peil- bzw. Suchgenauigkeit liegt anfangs bei ±10 Grad. Beim Schwenken werden alle Sende- bzw. Sendersignale der Sender von Verschütteten erfasst, die sich in Reichweite befinden. Die Reichweite des Suchgerätes liegt bei ca. 80 m. Bei den Sendern kann es sich um herkömmliche LVS-Geräte handeln, oder um zu dem Suchgerät 1 baugleiche Geräte. Eine manuelle Peilung, d.h. das Halten des Suchgerätes 1 in Richtung des stärksten Signals, ist nicht erforderlich.

Die erfassten Sender 22 werden nach Richtung und Entfernung auf dem Display 10 angezeigt, wobei die maßstäbliche Darstellung der Entfernung des Senders 22 vom Suchenden (im Zentrum des Koordinatenfeldes 16) durch Entfernungsangaben 24 in Metern präzisiert wird.

Der Suchende kann sich nun durch Ansuchen des Verschütteten, der als erstes aufgefunden werden soll, und Betätigen der Bedientaste 12 „PEILEN" auf diesen fokussieren und die weiteren Sender 22 ausblenden. Während des Suchvorgangs werden Entfernungsangaben 24 und Positionsangaben des Senders 22 ständig an die aktuelle Position des Suchenden angepasst.

Die Zielsuche im Nahbereich wird durch die rote LED 15 unterstützt.

Ist ein Verschütteter gefunden und geborgen, hebt der Suchende die Peilung auf und widmet sich dem nächsten Verschütteten.

Das Suchgerät 1 verfügt in dem hier geschilderten Ausführungsbeispiel neben der Suchfunktion über weitere Funktionen, die über das mit der Bedientaste 13 zu erreichende Hauptmenü anwählbar sind. Hierzu gehört ein elektronischer Kompass, eine Temperaturanzeige und Neigungsmessung zur Beurteilung der Lawinengefahr, eine Anzeige des Batteriezustandes und eine Restzeitanzeige für Sende- und Suchbetrieb. Bei anderen erfindungsgemäßen Suchgeräten liegen nur einige oder keine dieser Zusatzfunktionen vor. Bei niedrigem Batteriestand erfolgt unabhängig von der Betriebsart eine Warnung. Weiterhin sind über das Hauptmenü eine Kurzanleitung für das Gerät und Konfigurationsanzeigen sowie Konfigurationseinstellmöglichkeiten für Sprache und Display-Beleuchtung erreichbar.

Durch die integrierten Sensoren, die weiter unten genauer beschrieben werden, kann das Suchgerät 1 jederzeit feststellen, in welche Richtung der Suchende es gerade hält. Damit kann die Lage der georteten Sender der Verschütteten zu jedem Zeitpunkt korrekt relativ zum eigenen Standpunkt dargestellt werden.

Aus der in der 2a dargestellten Anzeige ist intuitiv klar, dass der im Koordinatenfeld 16 hervorgehoben dargestellte Verschüttete 26 in 30m Entfernung genau in der Richtung liegt, in der das Suchgerät 1 gerade gehalten wird. Der am nächsten in gerader Richtung liegende – hervorgehoben dargestellte – Verschüttete kann durch Drücken der Bedientaste 12 („PEILEN") für die weitere Suche ausgewählt werden. Wie in 2b dargestellt, wird damit die Information im Display 10 auf die Daten des angepeilten Verschütteten 26 reduziert. Der Lautsprecher 14 (vgl. 1) gibt nur noch in entfernungsabhängiger Weise den Suchton des angepeilten Verschütteten 26 wieder. Die Peilung kann jederzeit durch Betätigen der Bedientaste 13 („ALLE") aufgehoben werden. Eine Mehrfachsuche ist für bis zu sechs Verschüttete gleichzeitig möglich.

Die technische Realisierung im Suchgerät 1 erfolgt prinzipiell so, dass die empfangenen 457-kHz-Signale digitalisiert und mit einem leistungsfähigen Mikroprozessor verarbeitet werden. Algorithmen der digitalen Signalverarbeitung ermöglichen es, Suchtöne, d.h. Sendersignale auch dann noch aus dem Rauschen herauszufiltern, wenn sie schon unterhalb der Wahrnehmbarkeitsgrenze des menschlichen Gehörs liegen. Dies ermöglicht eine den konventionellen, analog arbeitenden Geräten vergleichbare Reichweite.

Aus den empfangenen Signalen werden die Positionen der Verschütteten berechnet. Die eingesetzten Algorithmen sind robust gegen einzelne Störungen oder Messfehler. Da über die gesamte Suchphase die Positionen ständig neu berechnet werden, verbessert sich die Genauigkeit der geschätzten Positionen für die Verschütteten schnell mit der Zeit.

In 3 ist schematisch der funktionale Aufbau des Suchgerätes 1 der 1 dargestellt. Neben dem Empfänger 28 mit Suchantenne und Mischstufe für den Suchton sind ein Sensor 30 für das Erdmagnetfeld, der ein Sensorsignal für jeden Rotationsfreiheitsgrad (X, Y, vertikal) abgibt, sowie Neigungssensoren 32 für die beiden Kippachsen vorhanden. Zusätzlich ist ein weiterer Sensor 34 für eine der oben angegebenen Zusatzfunktionen des Gerätes, die Temperaturmessung, eingezeichnet.

Der mikroprozessorgesteuerte Sample-Manager 36 führt den aktuellen Abtastwert dem richtigen Ziel zu und wählt den Kanal für den nächsten Abtastwext aus. Das Zeitverhalten ist so ausgelegt, dass der maximal mögliche Abtasttakt im Wesentlichen für die Abtastung der Empfangs- bzw. Sendersignale zur Verfügung steht. Für die Abtastung der Sensordaten wird das Empfangssignal etwa jeden 32. Zeitschlitz ausgeblendet und statt dessen einer der Sensorkanäle für Temperatur, Magnetfeld und Neigung eingelesen.

Im Winkelschätzungsmodul 38 wird aus den Abtastwerten des Sensors 30 für das Magnetfeld und der Neigungssensoren 32 die räumliche Position zum Erdmagnetfeld exakt bestimmt. Derartige Verfahren sind dem Fachmann an sich bekannt und werden deshalb nicht weiter beschrieben. Durch die Verwendung des Sensors 30 und des Neigungssensors 32 wird erfindungsgemäß jeder Richtung, in die das Suchgerät 1 gehalten wird, in Bezug auf den gemessenen Magnetfeldvektor &mgr; ein fester Suchwinkel &phgr; zugewiesen.

Der Sin/Cos-Korrelator 40 ist für die Detektion von Sendersignalen an der Empfindlichkeitsgrenze vorgesehen. Grundsätzlich besteht die Aufgabenstellung darin, einen Verschütteten noch in möglichst großer Entfernung orten zu können. Dies entspricht dem Auffinden eines Signals mit bekannter Form im Rauschen.

Das Auffinden eines derartigen Suchtons im Rauschen ist – im Sinne eines Hypothesentests – optimal mit einem „Matched Filter" möglich, wobei im Grunde eine Kreuzkorrelation zwischen dem gesuchten und dem empfangenen Signal durchführt wird.

Das Matched Filter hat als Impulsantwort genau die entlang der Zeitachse gespiegelte gesuchte Funktion. Der Gewinn des Matched Filters ist darauf zurückzuführen, dass Nutzsignalanteile durch die Impulsantwort konstruktiv addiert werden, während Störsignalanteile sich leistungsmäßig addieren.

Der Nachteil des Matched Filter besteht im sehr hohen Rechenaufwand. Dieser rührt daher, dass die Musterfunktion in allen möglichen Phasenlagen mit der Folge der Empfangs- bzw. Sendersignale verglichen werden muss.

Von der Sendersignalfolge ist bekannt, dass es sich um eine kosinusförmige Signalfolge mit konstanter Frequenz handelt. Jede beliebig skalierte und phasenverschobene Sinusschwingung lässt sich in einen Kosinus- und einen Sinusanteil zerlegen. Die Leistung des gesuchten Signals ergibt sich als Summe der Leistungen von Sinus- und Kosinusanteil. Daher genügt es, die Sendersignalfolge mit einer kosinus- und einer sinusförmigen Filtersignalfolge zu multiplizieren, die Folge der Sendersignale also in eine Sinus- und eine Kosinus-Komponente zu zerlegen. Das Argument (Winkel) der durch Sinus- und Kosinus-Komponente gebildeten komplexen Zahl beschreibt die Phasenlage der Empfangs- bzw. Sendersignalfolge im Verhältnis zur Kosinus-Musterfunktion, während der Betrag der komplexen Zahl ein Maß für die Empfangsfeldstärke ist.

Systemtheoretisch bewirkt der auf diese Weise arbeitende Sin/Cos-Korrelator 40 eine Demodulation des Suchtones ins Basisband (Multiplikation mit sin bzw. cos) und anschließende Tiefpassfilterung zur Unterdrückung der Spiegelfrequenzen an der doppelten Signalfrequenz. Ein wesentlicher Vorteil des Sin/Cos-Korrelators 40 liegt damit darin, dass er einfach und ressourcenschonend aufgebaut sein kann. Gegenüber einem Matched Filter ist die Detektionsleistung um 3 dB schlechter.

Im RSS-Modul 42 werden aus den Ausgangswerten a (Amplitudenschätzwert der Sinuskomponente) und b (Amplitudenschätzwert der Kosinuskomponente) des Sin/Cos-Korrelators 40 durch quadratische Mittelung RSS(„Received Signal Strength")-Werte gewonnen. Das AKF-Modul 44 berechnet dann die Autokorrelationsfunktion (AKF) der RSS-Werte. Die Ausgabe des AKF-Moduls 44 dient als Grundlage für die Separation der Signalbestandteile bei mehreren gleichzeitig aktiven Sendern.

Die Suche nach Verschütteten gestaltet sich dann besonderes schwierig, wenn zeitgleich die Signale mehrerer Verschütteter empfangen werden. Die Sendersignale der Sender können sich gegenseitig überlagern und auch wechselseitig auslöschen. Da zwei Geräte stets leicht voneinander verschiedene Wiederholraten und/oder Tastverhältnisse aufweisen, ist jedoch im Prinzip eine Zuordnung des jeweils empfangenen Signals zu dem einen bzw. anderen Sender möglich.

Bei der Überlagerung von Signalen mehrerer Sender handelt es sich um die Summe mehrerer periodisch ein und ausgeschalteter Signale. Grundsätzlich eignet sich somit eine Autokorrelationsfunktion, um die periodischen Anteile dieses Summensignals zu erkennen.

Im einfachsten Fall wird aus dem gemessenen Feldstärkewerten durch Schwellwertentscheidung eine Ein-/Ausschalt-Funktion gebildet, deren Autokorrelationsfunktion Spektrallinien an den vorkommenden Frequenzen enthalten sollte. Der Nachteil dieses Verfahrens besteht darin, dass gerade bei niedrigen Feldstärken oder unvollkommener Ausrichtung der Empfangsantenne auf den Sender die Ein-/Ausschalt-Zeitpunkte nur unzureichend genau bestimmt werden können. Durch diese Ungenauigkeiten werden die Spektrallinien der Autokorrelationsfunktion verschmiert, d.h. unscharf, und schnell unbrauchbar.

Ebenso wie in der idealen Ein-Ausschalt-Funktion sind die Informationen über die Periodizität natürlich auch in der analogen Feldstärkefunktion vorhanden. Diese wird als Betrag des Ausgangs des Sin/Cos-Korrelators 40, d. h. als Ausgang des RSS-Moduls 42 gewonnen. Durch Mittelung der Autokorrelationsfunktion über mehrere Beobachtungszeiträume können dominante periodische Anteile relativ unabhängig von der jeweiligen Ausrichtung des Senders zum Empfänger sehr zuverlässig bestimmt werden.

Durch Rauschen und Ungenauigkeiten werden die periodischen Anteile schwächerer Empfangssignale häufig verdeckt. Um diese Anteile detektieren zu können, werden Signalanteile, die einem dominanten Empfangssignal zugeordnet werden können, ausgeblendet (zu Null gesetzt).

Die Zuordnung einzelner Signalabschnitte zu verschiedenen Sendern wird durch die heuristische Segmentierung im Segmentierungsmodul 46 vorgenommen. Dazu werden im Wesentlichen durch Schwellwertentscheidung jene Signalelemente ermittelt, die zum Maximum der AKF beitragen. Die so ermittelten Signalelemente werden ggf. durch Analyse von Sprüngen in den Korrelationswerten nochmals getrennt und verschiedenen Sendern zugeordnet. Ein Signalelement kann zum Beispiel ausgehend von der linken und rechten Grenze in zwei einzelne Bereiche an den Rändern und einen – für die Ortsschätzung nicht nutzbaren – Überlagerungsbereich in der Mitte unterteilt werden. Zur Segmentierung können Sprünge und Unstetigkeiten in den sin- und cos-Korrelationswerten herangezogen werden.

Im Ortsschätzungsmodul 48 wird der Ort des mindestens einen empfangenen Senders ermittelt. Die Entfernung des Senders kann dabei auf herkömmliche Weise über Anwendung eines Potenzgesetzes auf die gemessene oder ermittelte Feldstärke zuverlässig bestimmt werden. Gleichzeitig erfolgt im Modul 48 die Zuordnung der erfindungsgemäß aus den Sensordaten gewonnenen Suchwinkel &phgr; zu den aus den gerade gemessenen Sendersignalen hervorgehenden Verarbeitungssignalen, die die momentane Empfangsfeldstärke eines Senders angeben.

Die in dem Empfänger 28 verwendete Ferrit-Empfangsantenne hat eine kosinusförmige Richtcharakteristik. Bei einem feststehenden Sender verändert sich die empfangene Feldstärke folglich mit dem Kosinus des doppelten Suchwinkels. Wird das Gerät vom Suchenden während der Suche hin und her geschwenkt, also der Winkel kontinuierlich verändert, kann im Ortsschätzungsmodul 48 folglich in einfacher Weise die Empfangsfeldstärke &sgr; als Funktion des Suchwinkels &phgr; gebildet werden.

Für alle Winkelsignalelemente eines Aufzeichnungsintervalls (aus denen genau eine AKF berechnet wurde), wird durch Verknüpfung mit den Suchwinkeln &phgr; der Sendersuchwinkel und damit der Ort des Senders geschätzt. Die Koordinaten, die aus aufeinanderfolgenden Aufzeichnungsintervallen für dieselben Sender ermittelt werden, können durch eine gewichtete Mittelung fortlaufend verbessert werden.

Aufgrund der Taktung des Suchtons, d.h. der empfangenen Sendersignalfolge, wird die Feldstärkefunktion, d. h. die Folge von Winkelsignalen &sgr; (&phgr;), die jeweils eine Empfangsfeldstärke &sgr; bei einem Suchwinkel angeben, im Allgemeinen nur abschnittsweise vorliegen. Aus den vorliegenden Abschnitten können jedoch mit der Methode des kleinsten Fehlerquadrats die bestimmenden Parameter des gesamten Kurvenverlaufs geschätzt werden. Daraus lassen sich in einfacher Weise Winkel und Entfernung des Senders berechnen.

Im störungsfreien Fall könnte aus dem Feldstärkeverlauf der empfangenen Sendersignalfolge der gesamte Feldstärkeverlauf als Folge von Schätz-Winkelsignalen berechnet werden. Zur Berechnung genügten zwei beliebige Punkte der Sendersignalfolge. In der Praxis ist das Empfangssignal allerdings mehr oder weniger verrauscht. Die zur Approximation genutzten beiden Punkte können dann zufällig durch Rausch-Samples stark verfälscht sein, so dass die Parameter der tatsächlichen Winkelsignalfolge stark fehlerhaft geschätzt werden. Um eine störungsrobuste Schätzung zu erreichen, sollten alle verfügbaren Punkte des empfangenen Feldstärkeverlaufs bzw. der Sendersignalfolge einbezogen und die gesuchten Parameter so optimiert werden, dass die Gesamtabweichung des errechneten Verlaufs der Schätz-Winkelsignalfolge vom Teilstück der Folge der aus den Sendersignalen und Suchwinkeln ermittelten Winkelsignale minimal wird.

Bei Anwendung der Methode des kleinsten Fehlerquadrats kann die Schätzung durch Heranziehung neuer Messwerte ständig weiter verbessert werden. Zum einen ergibt sich dadurch auch bei großer Entfernung vom Verschütteten und entsprechend schwachem Such- bzw. Empfangssignal schnell eine relativ genaue Ortsschätzung. Zum anderen lässt sich durch eine entsprechende Gewichtung älterer im Verhältnis zu den aktuellen Werten der gemessenen Such- bzw. ermittelten Winkelsignale ein Springen oder eine übermäßige Instabilität des ermittelten Sendersuchwinkels zuverlässig unterdrücken.

Damit ist bei genügender Zahl von Messwerten eine zuverlässige Bestimmung der Position des Senders möglich. Dies gilt insbesondere auch dann, wenn das Maximum selbst nicht detektiert werden kann, da just zu den Zeitpunkten, zu denen das suchende Gerät in Richtung des Senders zeigt, sich dieser in den Tastpausen befindet. Die Daten des realen Empfangssignals geben Anhaltspunkte für die notwendige Anzahl an Samples für eine ausreichend genaue Bestimmung.

Ebenfalls Aufgabe der Ortsschätzung ist die Lösung des Problems, aus den Feldstärkeunterschieden zweier oder mehrerer aufeinanderfolgender Aufzeichnungsintervalle die 180 Grad-Ambiguität der Winkelschätzung aufzulösen und den Sender der vorderen (in Bewegungsrichtung) oder hinteren (entgegen der Bewegungsrichtung) Halbebene zuzuordnen.

Damit ist die Lage eines Verschütteten, insbesondere der Sendersuchwinkel, auch dann vollständig und zuverlässig berechenbar, wenn sein Sender zu jenem Zeitpunkt, zu dem das Suchgerät 1 des Suchenden in seine Richtung zeigt, gerade in der Sendepause ist. Dies wird mit einem erfindungsgemäß ausgebildeten Suchgerät erreicht, welches nur eine einzige Suchantenne aufweist und daher entsprechend leichter und preisgünstiger sein kann (natürlich ist die Verwendung mehrerer Antennen in einem erfindungsgemäßen Suchgerät ebenso möglich).

Der ermittelte Ort eines Senders wird sodann auf dem Display 10 zur Anzeige gebracht, wie oben anhand der 1, 2a und 2b beschrieben.

Die Darstellung der Funktionen des hier beispielhaft beschriebenen erfindungsgemäßen Suchgerätes erfolgt anhand von Modulen, die in der 3 als getrennte Einheiten gezeichnet sind. Diese Einheiten können in dem Suchgerät in Form von Software, Firmware und/oder Hardware vorliegen. Bevorzugt liegen die Module in Form von Software auf einem Mikroprozessor/DSP vor. Für ein voll ausgestattetes Suchgerät wie das anhand der Figuren dargestellte wäre ein Prozessor mit 30 MIPS Rechenleistung und 8 KB Arbeitsspeicher geeignet.

Zahlreiche Abwandlungen des hier beispielhaft beschriebenen Suchgerätes sind denkbar. So kann ein erfindungsgemäßes Gerät ohne AKF-Modul bzw. Modul zur Separierung der Signalanteile mehrerer Sender ausgebildet sein. Ein solches Gerät ist in Situationen einsetzbar, bei denen nur ein Sender zu orten ist. Ein Beispiel hierfür stellt eine Skifahrergruppe auf gesicherter Piste dar, bei der das Auffinden des Gruppenleiters durch die Suchgeräte der Gruppenmitglieder ermöglicht wird, wobei nur der Sender des Leiters im Sendebetrieb ist.

Ebenso kann ein erfindungsgemäßes Suchgerät ohne Modul für die Durchführung der Kreuzkorrelation eines Filtersignals mit schwachen Such- bzw. Empfangssignalen ausgebildet sein. Dann sind schwache Signale im Rauschen nicht mehr detektierbar, die Empfindlichkeit des Suchgerätes ist entsprechend verringert. Jedoch sind dann die Ressourcen des Gerätes (verfügbarer Speicherplatz, Prozessorbearbeitungskapazität) für andere Funktionen verfügbar, bspw. kann das AKF-Modul ausgebildet sein, um eine größere Anzahl Sender voneinander zu trennen. Auch kann ein funktionsärmeres Gerät bei gleicher Batteriekapazität über eine verlängerte Betriebsdauer verfügen, wenn etwa ein kleinerer Prozessor verwendet wird.

Statt nur als Lawinen-Verschütteten-Suchgerät kann ein erfindungsgemäß ausgebildetes Suchgerät auch vorteilhaft für weitere Anwendungen eingesetzt werden. Als Beispiel sei eine Gruppe von Skifahrern genannt, die sich an ihrem Gruppenleiter orientieren, bspw. bei schlechter Sicht oder sonst unübersichtlichen Verhältnissen. Alle Teilnehmer verfügen über Sende-/Suchgeräte. Das Gerät des Leiters verfügt über einen Sender, dessen Sendersignal mit einer individuellen Senderkennung versehen ist. Die Suchgeräte der Gruppenteilnehmer sind zur Auswertung der empfangenen Senderkennung ausgebildet, so dass der geortete Sender des Leiters unter der Mehrzahl der georteten Sender identifizierbar ist. Die Anzeige der Suchgeräte der Teilnehmer identifiziert den Ort des Gruppenleiters durch Angabe der Kennung. Bei einer Weiterentwicklung dieses Verfahrens sind alle Sender einer Gruppe durch Senderkennungen individualisierbar.

Zwar ist die Übertragung von Senderkennungen über das genormte Signal bei 457 kHz nicht vorgesehen. Jedoch könnte neben dem ansonsten standardkonformen Sender in einem Sendegerät ein zweiter Sender vorgesehen sein, der die Signale mit Senderkennungen ausstrahlt.

Darüber hinaus sind im Geltungsbereich der Erfindung, der ausschließlich durch die nachfolgenden Ansprüche angegeben wird, durch fachmännisches Handeln noch viele weitere Ausführungsformen denkbar.

1Suchgerät 10Display 12, 13Bedientasten 14Lautsprecher 15LED 16Koordinatenfeld 18Statuszeile 20Beschriftungsfeld für Bedientasten 22Sender (symbolisch im Koordinatenfeld 16 dargestellt) 24Entfernungsangaben im Koordinatenfeld 16 26hervorgehoben dargestellter georteter Sender 28Empfänger mit Suchantenne 30Sensor für das Erdmagnetfeld 32Neigungssensoren 34Temperatursensor 36Sample-Manager 38Winkelschätzungsmodul 40Sin/Cos-Korrelator 42RSS-Modul 44AKF-Modul 46Segmentierungsmodul für die heuristische Segmentierung 48Ortsschätzungsmodul aAmplitudenschätzwert der Kosinuskomponente bAmplitudenschätzwert der Sinuskomponente rEmpfangs- bzw. Sendersignal RAusgangssignal des RSS-Moduls &mgr;Magnetfeldvektor &phgr;Suchwinkel &sgr;ermittelte Empfangsfeldstärke eines Senders

Anspruch[de]
  1. Lawinen-Verschütteten-Suchgerät zur Ortung eines Senders, wobei zum Absuchen eines Suchgebietes das Suchgerät (1) in einem Winkelbereich von Suchwinkeln schwenkbar ist, der das Suchgebiet überdeckt, mit

    – einer Suchantenne (28) mit einer Richtcharakteristik zum Empfang von Sendersignalen des Senders (22, 24) aus einer momentanen Suchrichtung,

    – einen Magnetfeldsensor (30),

    – einer Signalverarbeitungseinrichtung zur Erzeugung von Verarbeitungssignalen aus den Sendersignalen und

    – einer Ausgabeeinheit (10, 14, 15), der die Verarbeitungssignale zugeführt werden, zur Ausgabe von Ergebnissignalen, welche die Verarbeitungssignale repräsentieren, an den Benutzer,

    dadurch gekennzeichnet, dass

    der Magnetfeldsensor (30) das Erdmagnetfeld betreffende Sensorsignale an die Signalverarbeitungseinrichtung (3648) ausgibt,

    die Sensorsignale als Verarbeitungssignal der Ausgabeeinheit (10) zugeführt werden und

    jedem empfangenen Sendersignal ein fester Suchwinkel (&phgr;) relativ zum Erdmagnetfeld (&mgr;), zugeordnet wird.
  2. Lawinen-Verschütteten-Suchgerät nach Anspruch 1, dadurch gekennzeichnet, dass der Magnetfeldsensor (30) drei das Erdmagnetfeld betreffende Sensorsignale an die Signalverarbeitungseinrichtung (3640) ausgibt.
  3. Lawinen-Verschütteten-Suchgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Neigungssensoren (32) vorgesehen sind, die Sensorsignale an die Signalverarbeitungseinrichtung (3640) ausgeben, welche die Lage des Suchgerätes (1) bezogen auf eine Horizontalebene repräsentieren.
  4. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signalverarbeitungseinrichtung (48) ausgebildet ist, um aus den Sendersignalen und den Sensorsignalen Winkelsignale zu erzeugen, die eine Empfangsfeldstärke in Abhängigkeit von einem Suchwinkel (&phgr;) repräsentieren.
  5. Lawinen-Verschütteten-Suchgerät nach Anspruch 4, dadurch gekennzeichnet, dass die Signalverarbeitungseinrichtung (48) zur Berechnung eines Sendersuchwinkels, in dem sich der Sender befindet, anhand der Winkelsignale ausgebildet ist.
  6. Lawinen-Verschütteten-Suchgerät nach Anspruch 5, dadurch gekennzeichnet, dass die Signalverarbeitungseinrichtung (48) ausgebildet ist, um aus mindestens zwei Winkelsignalen den Sendersuchwinkel zu bestimmen.
  7. Lawinen-Verschütteten-Suchgerät nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Ausgabeeinheit (10) zur graphischen Ausgabe von Ergebnissignalen ausgebildet ist, die den Sendersuchwinkel repräsentieren, und ein Anzeigefeld (10) zur graphischen Anzeige (16) des Senderortes (22) in dem Suchgebiet umfasst.
  8. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signalverarbeitungseinrichtung eine Filterkorrelationseinheit (40) umfasst, die ausgebildet ist, um Winkelsignale durch Korrelation der Sendersignale mit vorgegebenen Filtersignalen zu detektieren.
  9. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Filterkorrelationseinheit (40) ausgebildet ist, um die Sendersignale mit einer sinusförmigen- und mit einer kosinusförmigen Filtersignalfolge zu korrelieren.
  10. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signalverarbeitungseinrichtung eine Autokorrelationseinheit (44) umfasst, die ausgebildet ist, um in gespeicherten Signalen durch Autokorrelation periodische Signalanteile zu detektieren.
  11. Lawinen-Verschütteten-Suchgerät nach Anspruch 10, dadurch gekennzeichnet, dass die Autokorrelationseinheit (44) einer Filterkorrelationseinheit (40) nachgeschaltet ist.
  12. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Suchantenne (28) eine Ferrit-Antenne umfasst.
  13. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Suchantenne (28) derart ausgebildet ist, dass sie eine kosinusförmige Richtcharakteristik hat.
  14. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Sender zum Senden von Sendersignalen, wobei die Sendersignale durch eine Senderkennung individualisiert sind.
  15. Lawinen-Verschütteten-Suchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signalverarbeitungseinrichtung zur Erzeugung von Verarbeitungssignalen ausgebildet ist, die einem Sendersuchwinkel eine Senderkennung zuordnen, wobei ein Sender derart ausgebildet ist, dass Sendersignale dieses Senders individualisierbar gegenüber Sendersignalen weiterer Sender sind.
  16. Verfahren zur Ortung eines Senders (22, 24) eines in einer Lawine Verschütteten,

    – bei dem zum Absuchen eines Suchgebietes ein Suchgerät (1) durch einen Benutzer in einem Winkelbereich von Suchwinkeln geschwenkt wird, der das Suchgebiet überdeckt,

    – Sendersignale des Senders (22, 24) aus einer momentanen Suchrichtung von einer Suchantenne (28) des Suchgerätes (1) empfangen werden, wobei die Suchantenne eine Richtcharakteristik aufweist,

    – Verarbeitungssignale aus den Sendersignalen erzeugt werden und

    – Ergebnissignale, welche die Verarbeitungssignale repräsentieren, an den Benutzer ausgegeben werden,

    dadurch gekennzeichnet, dass

    Sensorsignale, die das Erdmagnetfeld betreffen, als Verarbeitungssignal durch Ergebnissignale den Benutzern angezeigt werden und jeder Suchrichtung ein fester Suchwinkel (&phgr;), relativ zum Erdmagnetfeld (&mgr;), zugeordnet wird.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass für die Zuordnung von Suchrichtung und -winkel Feldstärkekomponenten (&mgr;) des Erdmagnetfeldes in drei zueinander senkrecht stehenden Richtungen gemessen werden (X, Y, vertikal).
  18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Neigungen des Suchgerätes gegen die Horizontalebene gemessen (32) und die Sensorsignale entsprechend korrigiert werden (38).
  19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass Winkelsignale, die jeweils eine Empfangsfeldstärke (&sgr;) bei einem Suchwinkel (&phgr;) angeben, aus den Sendersignalen (r) und den Zuordnungen von Suchrichtung und -winkel erzeugt werden.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass ein Sendersuchwinkel, in dem sich der Sender befindet, anhand der Winkelsignale berechnet und ein Ergebnissignal ausgegeben wird (10, 16), das den Sendersuchwinkel repräsentiert (22).
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass der Sendersuchwinkel aus mindestens zwei Winkelsignalen bestimmt wird.
  22. Verfahren nach einem der Ansprüche 20 oder 21, dadurch gekennzeichnet, dass eine Schätz-Winkelsignalfolge nach der Methode der kleinsten Fehlerquadrate aus den Winkelsignalen berechnet und der Sendersuchwinkel aus dem Maximum der Schätz-Winkelsignalfolge bestimmt wird.
  23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass bei der Berechnung der Schätz-Winkelsignalfolge Winkelsignale unterschiedlich gewichtet werden.
  24. Verfahren nach einem der Ansprüche 22 oder 23, dadurch gekennzeichnet, dass bei der Berechnung der Schätz-Winkelfolge Winkelsignale gemäß der Zeit gewichtet werden.
  25. Verfahren nach einem der Ansprüche 16 bis 24, dadurch gekennzeichnet, dass Schätz-Sendersignale (40a, 40b) durch Korrelation von Sendersignalen (r) mit vorgegebenen Filtersignalen ermittelt werden und Winkelsignale aus den Schätz-Sendersignalen ermittelt werden.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass zur Ermittlung des Sendersignals aus Rauschstörungen durch Korrelation von empfangenen Sendersignalen (r) mit einer sinusförmigen- und mit einer kosinusförmigen Filtersignalfolge jeweils eine Sinus- und eine Kosinussignalfolge (a, b) ermittelt wird.
  27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass Empfangsfeldstärken der Signale der Schätz-Sendersignalfolge aus der Summation der Produkte der empfangenen Sendersignalfolge mit einer Sinus- und einer Kosinussignalfolge (a und b) ermittelt werden.
  28. Verfahren nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, dass zur Detektion von mehreren Sendern ein periodischer Signalanteil von gespeicherten Sendersignalen oder Verarbeitungssignalen durch Autokorrelation ermittelt wird (44).
  29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass ein ermittelter periodischer Signalanteil (&sgr;), der einem Sender zugeordnet werden kann, aus Sendersignalen oder Verarbeitungssignalen ausgeblendet wird, um weitere periodische Signalanteile zu ermitteln.
  30. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sendersignale eines Senders gegenüber Sendersignalen weiterer Sender durch eine Senderkennung individualisiert werden und Verarbeitungssignale erzeugt werden, die einem Sendersuchwinkel diese Senderkennung zuordnen.
Es folgen 3 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com