PatentDe  


Dokumentenidentifikation EP1463605 13.04.2006
EP-Veröffentlichungsnummer 0001463605
Titel POSITIONIERMASCHINE MIT FLEXIBLER LAUFSCHIENE
Anmelder The Boeing Company, Seattle, Wash., US
Erfinder BOYL-DAVIS, M., Theodore, Snohomish, WA 98290, US;
BUTTRICK, N., James, Seattle, WA 98115, US;
GAGE, A., Roger, Marysville, WA 98270, US;
JONES, D., Darrell, Mill Creek, WA 98012-5904, US;
PAPANIKOLAOU, D., Kostandinos, Southfield, MI 48034, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60209039
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 04.11.2002
EP-Aktenzeichen 027894062
WO-Anmeldetag 04.11.2002
PCT-Aktenzeichen PCT/US02/35321
WO-Veröffentlichungsnummer 0003049899
WO-Veröffentlichungsdatum 19.06.2003
EP-Offenlegungsdatum 06.10.2004
EP date of grant 01.02.2006
Veröffentlichungstag im Patentblatt 13.04.2006
IPC-Hauptklasse B23Q 9/00(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
FIELD OF THE INVENTION

The present invention relates to machines for drilling or performing other work operations on large workpieces configured as simple- or compound-contoured panels or the like, such as wing and fuselage sections for aircraft. The invention relates more particularly to a flexible track machine and method for positioning a working module such as a drill, marking device, or the like, relative to a workpiece by traversing the module along a track mounted on and indexed to the workpiece.

BACKGROUND OF THE INVENTION

The problem of accurately drilling holes in large workpieces such as aircraft wing and fuselage panels and other types of structures has been an ongoing challenge in the aircraft industry as well as other industries, and one for which a completely satisfactory solution applicable to a wide range of workpiece configurations has not heretofore been provided. Large fixed-monument machines such as five-axis drilling machines can be used for some types of workpieces, but these machines are quite expensive to procure and operate. In contrast, a relatively low-cost solution to the above-noted problem that has been developed by the assignee of the present application and others is to mount an automated drill or other working module on a track that is mounted to the workpiece. The drill or module is supported on a carriage that travels along the track, which is formed by a pair of parallel rails mounted on the workpiece. For examples of such devices, see U.S. Patent No. 4,850,763, assigned to the assignee of the present application and U.S. Patent No. 3,575,364.

In the above-noted patents, however, the embodiments illustrated and described were applied to workpieces that did not have compound-contoured surfaces. As used herein, the term "compound-contoured" is used to denote a surface having curvature in more than one direction. On such a compound-contoured surface, it is not possible in general to lay a pair of straight, flexible rails such that the rails conform to the surface contour and are the same distance apart at all points along the rails. Thus, the surface of a sphere is an example of a compound-contoured surface, because in the general case the spacing between a pair of flexible rails laid on the surface will vary. In contrast, a circular cylinder does not have a compound-contoured surface, because the rails can be laid in either circumferential, axial, or helical directions and the spacing between them can be constant. In U.S. Patent No. 3,575,364 noted above, a pair of flexible rails are mounted in the circumferential direction around a circular cylindrical workpiece. It will be appreciated that the rails can be perfectly parallel in such an arrangement, because the cylindrical surface is a simple-contoured surface. The rails in the '364 patent are made flexible so that they can be conformed to a variety of surfaces, but even such flexible rails cannot be made exactly the same distance apart at all points along the rails when they are mounted on a compound-contoured surface. Furthermore, rails mounted along two different paths on a compound-contoured surface will twist differently from each other because of the different directions of the surface normals along the two paths. This can make it difficult to traverse a carriage along the rails and maintain good accuracy of carriage positioning.

It is possible to mount a pair of spaced rails on a compound-contoured surface such that the rails are the same distance apart at all points along the rails, but only by custom-designing the rails for the particular workpiece surface. If such custom-designed rails were used on a differently contoured surface, they would not be the same distance apart at all points. While it is highly desirable to be able to traverse a drill or other machine component on a pair of rails mounted on a compound-contoured surface, it is also desirable to be able to use the same apparatus on a wide variety of surface contours, including simple- and compound-contoured surfaces.

SUMMARY OF THE INVENTION

The above needs are addressed and other advantages are achieved by the present invention as defined in apparatus claim 1 and method claim 22, which provides a flexible track machine for accurately positioning a drill or other machine component that can be used on simple- and compound-contoured surfaces of various configurations. The machine has no rigid monument or foundation; rather, the workpiece itself supports the machine. More particularly, a pair of rails are mounted on the workpiece, and the drill or other machine component is traversed along the rails. The above-noted difficulties associated with laying rails on compound-contoured surfaces would seem to counsel making the rails flexible in all bending directions so that they act as splines, and fixing the location of each rail at a plurality of hard points spaced along the rail such that the rails are precisely parallel. The present invention, however does not take this approach.

In accordance with the present invention, a pair of spaced flexible rails are mounted on the workpiece such that the rails extend along an X-axis direction along which the drill or other machine component is to be traversed. The rails are placed approximately parallel but, as noted, will not be precisely parallel when the surface has a compound curvature. An X-axis carriage is slidably mounted on the rails and supports the drill or other machine component. The X-axis carriage is driven using only one of the rails as a reference rail to set the X-axis location of the carriage. The other rail is not used as a reference but is used only to react forces on the carriage in a Z-axis direction (i.e., normal to the workpiece surface), such as from drill thrust. The rails are relatively stiff in bending about a first bending axis and relatively flexible in bending about a second bending axis orthogonal to the first bending axis. This is accomplished in preferred embodiments of the invention by configuring the rails as elongate plate-like structures having widths much greater than their thickness. The rails are mounted on the workpiece with the major surfaces of the plate-like rails substantially parallel to the workpiece surface, such that the first bending axis is substantially normal to the workpiece surface (parallel to the Z-axis) and the second bending axis is substantially parallel to the workpiece surface (parallel to the Y-axis). The rails thus are able to bend and twist to substantially follow the surface normals of the workpiece surface. In this manner, the rails are able to position the X-axis carriage so that it reflects the surface normal of the workpiece at any given position along the rails.

The machine component can be a drill, as noted above, but can also be other types of devices, including but not limited to a marking device for applying markings on the workpiece, or a welding device. In any case, preferably the machine component is mounted on the X-axis carriage via a Y-axis carriage that in turn is mounted on the X-axis carriage so as to be translatable along the Y axis transverse to the direction along which the X-axis carriage travels along the rails. Thus, the machine component is independently translatable in each of two axes.

The invention thereby enables the three-dimensional positioning of a drill or the like relative to the workpiece to be accomplished by numerical programming in only two axes, i.e., the X- and Y-axes, since the rails and X-axis carriage act to automatically position the drill normal to the workpiece surface when the drill is suitably mounted on the X-axis carriage. In accordance with a preferred embodiment of the invention, a mathematical definition of the three-dimensional surface of the workpiece is transformed into a two-dimensional flat pattern, and numerical programming of a controller for the X-axis and Y-axis carriage drive systems is performed in the two axes of the flat pattern. Thus, programming is considerably simplified compared with conventional multi-axis machines requiring programming in three or more axes.

The rails can be attached to the workpiece in various manners. In one embodiment, a plurality of spaced attachment devices are mounted on the workpiece and the rails are releasably attached to the attachment devices. The attachment devices can attach to the workpiece by vacuum.

The X-axis carriage preferably is mounted on the rails by flexible mounts that can accommodate varying bending and/or twisting that occurs along each rail from one end to the other when mounted on a compound-contoured surface. The flexible mounts can comprise plate-shaped springs affixed to the X-axis carriage and having rail-engaging rollers mounted thereon, or bearing cars coupled to the X-axis carriage by spherical bearings and having the rollers mounted thereon.

In the preferred embodiment, the flexible mounts comprise plate-shaped springs that are rigidly affixed to the X-axis carriage near their middles such that opposite ends of each spring are supported in a cantilever fashion from the X-axis carriage. The rail-engaging rollers are mounted on the cantilevered ends of the springs. The springs preferably have a width that is smallest in the middle and greater at the ends so that the spring preferentially twists at the middle rather than at the ends.

The X-axis drive device preferably employs a pinion gear mounted on one cantilevered end of the plate-shaped spring that is disposed above one of the rails (i.e., the reference rail). The pinion gear engages a rack mounted on the reference rail. To control the height of the pinion gear relative to the rack so that the height is substantially constant as the X-axis carriage is driven along the reference rail, the rotational axis of the pinion gear preferably lies in the same plane as the rotational axes of a pair of rollers mounted on the end of the spring. The rollers preferably are V-groove rollers that define V-shaped grooves in which the opposite edges of the rail are engaged, thus preventing movement of the rollers relative to the rail in the direction generally normal to the workpiece surface.

In a preferred embodiment of a flexible track drilling machine in accordance with the invention, a pre-load force is applied between the X-axis carriage and the surface of the workpiece prior to drilling a hole, a normal component of the pre-load force having a greater magnitude than a normal component of reaction force on the X-axis carriage caused by thrust of the drill during drilling. This pre-load force helps stabilize the machine and takes up any play in the Z-direction that may exist in the connections between the attachment devices, rails, carriage, etc. Preferably, the pre-load force is applied by a pressure foot attached to the drill. The pressure foot preferably is connected with the drill such that the reaction force caused by drill thrust is reacted through the pressure foot so as to reduce the pre-load force between the pressure foot and the workpiece.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features, and advantages of the invention will become more apparent from the following description of certain preferred embodiments thereof, when taken in conjunction with the accompanying drawings in which:

  • FIG. 1 is a perspective view of a flexible track drilling machine in accordance with one preferred embodiment of the invention;
  • FIG. 2 is a perspective view of the machine with the drill spindle removed;
  • FIG. 3 is a perspective view similar to FIG. 2, but without the vacuum cups and without the mounting elements for the drill spindle;
  • FIG. 4 is a perspective view showing the assembly of the X-axis carriage and Y-axis carriage in engagement with the rails, generally from above;
  • FIG. 5 is a perspective view similar to FIG. 4, generally from below;
  • FIG. 6 is a cross-sectional view through the drill assembly of the machine; and
  • FIG. 7 is a perspective view of an alternative embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.

With reference to Figure 1, a machine 20 in accordance with one preferred embodiment of the invention is shown. The machine comprises a pair of rails 22, 24 to which a plurality of attachment devices, preferably in the form of vacuum cup assemblies 26, are releasably affixed at spaced intervals along the length of each rail. The rails 22, 24 preferably have a width substantially greater than their thickness such that they are substantially stiffer in bending about an axis that extends in the thickness direction than they are about an axis that extends in the width direction. The rails are oriented approximately parallel to each other, although the lateral spacing between the rails can vary when the rails are mounted on a compound-contoured workpiece surface. Preferably, the rails are rigidly affixed to each other at only one end by a connecting member 28, which fixes the spacing between the rails at that end. At other locations along the rails, the spacing between the rails can vary as noted. There can be another connecting member 28' at the opposite end of the rails, but this connecting member 28' provides a "floating" connection that allows the spacing between the rails to adjust as needed depending on the contour of the workpiece surface.

The widths of the rails extend substantially parallel to the surface of the workpiece when the vacuum cups are attached to the workpiece surface. Because the rails are able to easily bend about the widthwise directions and to twist about their longitudinal axes, the rails flex and twist as needed to substantially follow the surface of the workpiece and the vacuum cup assemblies maintain each rail at a substantially constant distance from the surface of the workpiece. In this manner, the major surfaces of the rails are substantially perpendicular to the surface normal of the workpiece at any point along each rail.

Mounted on the rails is an X-axis carriage 30 (FIGS. 2-5) that slides along the rails by virtue of rollers 32 that are mounted on the carriage 30 and engage the rails. The X-axis carriage 30 in the illustrated embodiment comprises a plate-shaped member. The rollers 32 are mounted along each of the opposite side edges of the carriage. More particularly, spring plates 34 and 36 (best seen in FIG. 5) are attached to the carriage 30 adjacent to a lower surface thereof at each of the opposite side edges of the carriage. The spring plates are affixed to the X-axis carriage at locations 37 (FIG. 5) spaced inwardly from the opposite ends of the spring plates, such that each spring plate has two opposite end portions that are cantilevered from the carriage. The rollers 32 are mounted on these cantilevered end portions of the spring plates 34, 36. There are two opposing rollers 32 mounted on each cantilevered end portion of each of the spring plates 34, 36. Each rail 22, 24 is received between the opposing rollers 32. The rails 22, 24 preferably have V-shaped edges engaged by the rollers, and the rollers are V-groove rollers having V-shaped grooves that receive the V-shaped edges of the rails. The rollers thus prevent relative movement between the rollers and rails in the direction along the rotational axes of the rollers, which axes are substantially normal to the workpiece surface.

The spring plates 34, 36 on which the rollers are mounted flex and twist as needed (i.e., dictated by the contour of the workpiece surface as the X-axis carriage traverses the rails) to allow a limited degree of relative movement to occur between the X-axis carriage 30 and the rollers 32. This is facilitated by making the spring plates relatively narrow at their middles and wider at their ends, so that the plates preferentially bend and twist at the middle rather than at the ends where the rollers are mounted. Thus, a limited degree of relative movement can occur between the X-axis carriage and the rails 22, 24. The net result is that the flexible track machine 20 enables the X-axis carriage to traverse the rails along the X-axis (i.e., the axis parallel to the length direction of the rails) even though the rails may be bending and twisting in somewhat different ways relative to each other. In effect, the rails 22, 24 conform to the contour of the workpiece surface and thus approximate a normal to the surface at any point along the path defined by the rails. Consequently, a reference axis of the carriage (in the illustrated embodiment, an axis normal to the plane of the carriage) is maintained substantially normal to the workpiece surface at any position of the carriage along the rails.

A rack 38 (FIGS. 2 and 3) for a rack and pinion arrangement is mounted along the surface of the rail 24 that faces the spring plate 36. A motor 40 and associated gearbox 42 are mounted on the spring plate 36. An output shaft from the gearbox 42 has a pinion gear 44 mounted thereon, and the spring plate 36 includes a window 46 (FIG. 4) that the pinion gear extends through to engage the rack 38 on the rail 24. Thus, rotation of the pinion gear 44 drives the X-axis carriage 30 along the rails. It will be recognized that the rail 24 having the rack 38 comprises a reference rail relative to which the X-axis positioning of the X-axis carriage is performed. No attempt is made to determine or control the X-axis positioning of the carriage relative to the other rail 22.

It is important for accurate control of the X-axis position of the X-axis carriage that the pinion gear 44 have a constant height relative to the rack 38 at any point along the reference rail 24. To accomplish this height control, the rotation axis of the pinion gear 44 preferably lies in the same plane as that defined by the rotational axes of the two rollers 32 mounted on the end of the spring plate 36. More particularly, the axes of the rollers 32 are parallel to each other and substantially normal to the workpiece surface, and the axis of the pinion gear 44 is substantially parallel to the workpiece surface and lies in the plane of the roller axes.

A Y-axis carriage 50 is slidably mounted atop the X-axis carriage 30 so that the Y-axis carriage can slide back and forth along a Y-axis direction perpendicular to the X-axis direction. More particularly, a pair of rails 52, 54 are affixed to the opposite edges of the X-axis carriage 30, and rollers 56 are mounted on the Y-axis carriage for engaging the rails 52, 54. A rack 58 for a rack and pinion arrangement is affixed to the X-axis carriage along the edge thereof adjacent to the rail 54 (see FIG. 5). A motor 60 and associated gearbox 62 are mounted on a plate 64 that is affixed to the Y-axis carriage adjacent to the rack 58. The plate 64 includes a window therethrough, and the output shaft of the gearbox 62 extends through the window and drives a pinion gear 66 that engages the rack 58. Thus, rotation of the pinion gear 66 drives the Y-axis carriage along the rails 52, 54 in the Y-axis direction.

Mounted atop the Y-axis carriage is a clamp ring assembly 70, best seen in FIG. 2. The clamp ring assembly supports and secures a drill assembly 80 as shown in FIG. 1. The drill assembly 80 includes a drill spindle 90. FIG. 6 depicts a portion of the drill assembly in cross-section, with the drill spindle 90 shown in a retracted position on the left-hand side of the figure and in an advanced position on the right-hand side of the figure. The drill spindle extends through a window in the Y-axis carriage 50 (visible in FIGS. 3 and 4), and through a window in the X-axis carriage 30 (visible in FIG. 5) that is elongated in the Y-axis direction. The drill spindle is retracted and advanced by a pair of fluid cylinders 92 (FIG. 1) the cylinder portions of which are affixed to the drill spindle. More specifically, the cylinders 92 are connected between a pair of plate members 94, 96 that are affixed to the spindle. The rods of the cylinders extend through apertures in the lower plate member 96 and attach to a plate member 98 that is affixed to the clamp assembly 70 on the Y-axis carriage. Thus, retraction of the rods into the cylinder portions causes the drill spindle to be advanced toward the workpiece, and extension of the rods causes the drill spindle to be retracted away from the workpiece. In this manner, a hole can be drilled in the workpiece with a rotary drill bit (not shown) mounted in the drill spindle. The axis of the drill along which the spindle is advanced and retracted is parallel to the reference axis of the X-axis carriage 50, i.e., normal to the plane of the carriage, and hence is substantially normal to the workpiece surface.

The machine also preferably includes a hydraulic check cylinder 100 shown in FIG. 1, for controlling the speed of advancement of the drill spindle. The check cylinder is connected between the plate member 98 and the assembly of the plate members 94, 96 and fluid cylinders 92, and acts as a damping device to limit the advancement speed of the spindle.

With reference to FIG. 6, the drill assembly includes a pressure foot 102 that is extendable to bear against the workpiece surface in a direction substantially normal thereto so as to exert a pre-load between the workpiece and the drill. A piston 104 surrounds and is affixed to the body 106 of the drill. The piston 104 is received into an annular space defined in a cylinder 108 that surrounds and is affixed to the clamp ring assembly 70 on the Y-axis carriage. The pressure foot 102 is also affixed to the body 106 of the drill. The piston 104 and cylinder 108 include seals as shown, such that a working chamber is defined in the piston-cylinder unit, which can be pressurized via an inlet port 110 to cause the piston 104 to be urged downward in FIG. 6, thus urging the drill downward and urging the pressure foot 102 against the workpiece surface. The pre-load exerted by the pressure foot against the workpiece preferably is of a greater magnitude than the maximum expected reaction force caused by the drill thrust during drilling of a hole. The drill thrust reaction force acts in a manner tending to reduce the pre-load between the pressure foot and the workpiece; stated differently, all drill thrust is reacted through the pressure foot. By pre-loading with a force greater than the expected maximum drill thrust, undesirable spindle movement can be minimized during drilling.

An alternative embodiment of the invention is shown, in partial assembly, in FIG. 7. This embodiment is similar to the previously described embodiment, except that instead of mounting the rollers 32 on spring plates 34, 36, the rollers 32 are mounted on bearing cars 37. Two bearing cars 37 are mounted to each of the opposite side edges of the X-axis carriage 30. Each bearing car 37 has two pairs of opposed rollers 32 that receive the respective rail 22 or 24 therebetween. The bearing cars 37 are attached to the X-axis carriage 30 by spherical bearings 39 that permit rotational movement of the bearing cars relative to the X-axis carriage. The bearing cars 37 and spherical bearings 39 thereby provide the relative movement that the spring plates 34, 36 provide in the previous embodiment.

In accordance with the invention, the compound-contoured three-dimensional surface of the workpiece is transformed or mapped to a planar or flat pattern such that a curvilinear distance between two points on the workpiece surface equates to a linear distance between corresponding points on the flat pattern. More specifically, the three-dimensional representation of the workpiece surface is transformed such that each point (x, y, z) on the workpiece surface is transformed into a corresponding point (X, Y) on the flat pattern. The drill is then positioned along the workpiece surface so that drilling will occur at a desired point (x 1 , y 1 , z 1 ) by positioning the drill to intersect the point (X 1 , Y 1 ) on the flat pattern that corresponds to the point (x 1 , y 1 , z 1 ). A numerical controller for the X-axis and Y-axis drive motors is programmed in the two-dimensional axis system of the flat pattern. The X and Y coordinates in the flat pattern generally correspond to the X-and Y-axes along which the carriages travel, but the correspondence in general will not be exact and a reference point is needed to calibrate the machine coordinates to those of the flat pattern.

To establish the relation between the flat pattern and the machine axes, two locating holes are drilled into the workpiece at known locations, one at each end of a zone of the workpiece to be operated upon. The apparatus is attached to the workpiece such that a line connecting the two locating holes is approximately parallel to the X-axis defined by the rails and so that the locating holes are within the X-Y working envelope of the apparatus. The drill spindle is removed from the apparatus and a laser edge finder (not shown) is installed in its place. The X- and Y-axis drive motors are operated to position the carriages until the laser edge finder detects one of the locating holes, and the X and Y coordinates for the hole are stored in memory, and the process is repeated for the other locating hole. The coordinates of the locating holes in the frame of reference of the workpiece (as transformed into the flat pattern) are known. Thus, a coordinate transformation is performed to relate the machine X,Y coordinates to the workpiece coordinates in the flat pattern, so that the machine can be positioned at any desired point of the workpiece by controlling the X and Y drive motors to position the machine at the corresponding X,Y point.

Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, while the rails 22, 24 in the illustrated embodiment achieve relative flexibility about one axis and relative stiffness about a perpendicular axis by virtue of their widths being much greater than their thicknesses, it will be recognized that there are other ways of achieving this characteristic. As an example, the rails could be made of a material having different moduli of elasticity in different directions, such as composite materials, or the cross-sectional shape of the rails could be designed to impart the differential flexibility. Furthermore, while rollers 32 are shown for engaging the rails, other types of members could be used instead of rollers for engaging the rails to facilitate sliding of the carriage 30 therealong, such as slide blocks or the like. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.


Anspruch[de]
Vorrichtung zum Führen und Positionieren einer Maschinenkomponente relativ zu einer kompliziert umrissenen Oberfläche eines Werkstücks, wobei die Vorrichtung umfasst: eine erste und eine zweite lang gezogene flexible Schiene (22, 24), wobei die Schienen (22, 24) beabstandet und nahezu parallel zueinander sind; eine Mehrzahl von Vakuumhalterungsvorrichtungen (26), welche mit jeder Schiene (22, 24) verbunden und mit Abständen dort entlang beabstandet sind, um jede Schiene (22, 24) durch Vakuum an der Oberfläche des Werkstücks lösbar anzubringen, wobei sich die Breiten der Schienen (22, 24) im Wesentlichen parallel zu der Oberfläche des Werkstücks erstrecken, wobei die Schienen gebogen und verdreht sind, wie es notwendig ist, um im Wesentlichen der Oberfläche des Werkstücks zu folgen; und ein X-Achsen-Schlitten (30), welcher strukturiert und angeordnet ist, um die Maschinenkomponente zu halten, wobei sich der X-Achsen-Schlitten gleitend mit den Schienen (22, 24) in Eingriff befindet und entlang der Schienen (22, 24) derart verschiebbar ist, dass die Maschinenkomponente relativ zu dem Werkstück angeordnet wird. Vorrichtung nach Anspruch 1, wobei jede Schiene (22, 24) beim Biegen um eine erste Biegeachse relativ steif ist und beim Biegen um eine zweite Biegeachse, welche orthogonal zu der ersten Biegeachse ist, relativ flexibel ist, und wobei jede Schiene (22, 24) derart an dem Werkstück montiert ist, dass die erste Biegeachse im Wesentlichen senkrecht zu der Werkstückoberfläche und die zweite Biegeachse im Wesentlichen parallel zu der Werkstückoberfläche ist. Vorrichtung nach einem der Ansprüche 1-2, weiter ein Verbindungsteil (28, 28') umfassend, welches zwischen den Schienen (22, 24) an einer Stelle dort entlang verbunden ist, um eine Abstandsentfernung zwischen den Schienen (22, 24) an der Stelle im Wesentlichen festzulegen, wobei die Schienen (22, 24) eine Freiheit aufweisen, um sich zueinander oder voneinander weg an anderen Stellen, welche von der Stelle entfernt ist, zu bewegen. Vorrichtung nach einem der Ansprüche 1-3, wobei die Halterungsvorrichtungen Vakuumnäpfe (26) umfassen. Vorrichtung nach einem der Ansprüche 1-4, wobei der X-Achsen-Schlitten (30) durch flexible Halterungen mit den Schienen (22, 24) verbunden ist. Vorrichtung nach Anspruch 5, wobei die flexiblen Halterungen plattenförmige Federn (34, 36) umfassen. Vorrichtung nach Anspruch 6, weiter eine X-Achsen-Antriebsvorrichtung umfassend, um den X-Achsen-Schlitten (30) entlang der Schienen (22, 24) anzutreiben, wobei die X-Achsen-Antriebsvorrichtung auf einer der plattenförmigen Federn (34, 36) montiert ist. Vorrichtung nach Anspruch 7, wobei die X-Achsen-Antriebsvorrichtung ein Antriebsteil aufweist, welches sich mit einem zusammenwirkenden Teil auf einer der Schienen (22, 24) in Eingriff befindet. Vorrichtung nach Anspruch 8, wobei sich das Antriebsteil durch eine Öffnung (46) in der plattenförmigen Feder (36) erstreckt. Vorrichtung nach Anspruch 1, wobei der X-Achsen-Schlitten (30) durch Drehteile (32), welche einen Rolleingriff mit den Schienen aufweisen, gleitbar mit den Schienen (22, 24) verbunden ist. Vorrichtung nach Anspruch 10, wobei die Drehteile (32) auf flexiblen Halterungen (34, 36) montiert sind, welche an dem X-Achsen-Schlitten (30) befestigt sind und relativ zu dem X-Achsen-Schlitten (30) gebogen werden können, um sich an ein sich veränderndes Biegen und Verdrehen der Schienen (22, 24) anzupassen. Vorrichtung nach einem der vorhergehenden Ansprüche, weiter einen Bohrer umfassend, welcher auf dem X-Achsen-Schlitten (30) montiert ist. Vorrichtung nach einem der vorhergehenden Ansprüche, weiter eine Betätigungsvorrichtung, welche mit dem X-Achsen-Schlitten (30) verbunden ist, und einen Druckfuß, welcher mit der Betätigungsvorrichtung gekoppelt ist, umfassend, wobei die Betätigungsvorrichtung betriebsfähig ist, den Druckfuß (102) gegen die Werkstückoberfläche im Allgemeinen senkrecht dazu zu drücken, um so eine Vorlastkraft zwischen dem Werkstück und dem X-Achsen-Schlitten (30) auszuüben. Vorrichtung nach Anspruch 13, wobei der Druckfuß mit dem Bohrer (80) derart verbunden ist, dass der Druckfuß (102) auf eine Rückstellkraft, welche durch einen Bohrschub während eines Bohrens des Werkstücks verursacht wird, reagiert, um so die Vorfastkraft zwischen dem Druckfuß (102) und dem Werkstück zu verringern. Vorrichtung nach Anspruch 14, wobei der Bohrer (80) auf einem Y-Achsen-Schlitten (50) montiert ist, welcher auf dem X-Achsen-Schlitten (30) entlang einer Y-Achse gleitbar ist, und wobei die Betätigungsvorrichtung zwischen dem Y-Achsen-Schlitten (50) und dem Bohrer (80) verbunden ist. Vorrichtung nach einem der Ansprüche 13-15, wobei die Betätigungsvorrichtung eine Mehrzahl von mit Fluid betriebenen Zylindern (92) umfasst. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Halterungen federnde Platten (34, 36) umfassen. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die sich mit der Schiene in Eingriff befindlichen Teile (32) Rollen umfassen. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Halterungen Lagerwagen umfassen, welche mit sphärischen Lagern an dem Schlitten (30, 50) angebracht sind. Vorrichtung nach einem der vorhergehenden Ansprüche, weiter einen Antriebsmotor (40) umfassend, welcher auf einer der Halterungen und in Antriebsverbindung mit einem Antriebselement montiert ist, welches sich mit einem zusammenwirkenden angetriebenen Element, das sich entlang einer der Schienen (22, 24) erstreckt, in Eingriff befindet. Vorrichtung nach Anspruch 20, wobei das Antriebselement ein Drehgetriebeelement und das angetriebene Element ein Lineargetriebeelement ist, wobei die Halterungen nachgiebig sind und Paare von beabstandeten Rollen halten, welche jedes die Schienen (22, 24) dort dazwischen aufnehmen, wobei das Drehgetriebeelement derart angeordnet ist, dass eine Drehachse davon planparallel mit Drehachsen von einem der Paare von Rollen ist, welches auf der Halterung, die den Antriebsmotor (40) hält, montiert ist. Verfahren zum Positionieren einer Maschinenkomponente (80) relativ zu einer kompliziert umrissenen Oberfläche eines Werkstücks, so dass eine Maschinenachse der Maschinenkomponente (80) im Wesentlichen senkrecht zu der Oberfläche des Werkstücks ist, umfassend: gleitendes Montieren eines ersten Schlittens (30) auf einem Paar von beabstandeten flexiblen Schienen (22, 24), welche beim Biegen um erste Biegeachsen relativ flexibel sind und beim Biegen um zweite Biegeachsen relativ unflexibel sind; Befestigen der Schienen (22, 24) an der Oberfläche des Werkstücks, so dass die ersten Drehachsen im Wesentlichen parallel zu der Werkstückoberfläche und die zweiten Biegeachsen im Wesentlichen senkrecht zu der Werkstückoberfläche sind, wobei die Schienen (22, 24) gebogen und verdreht werden, wie es notwendig ist, um sich im Wesentlichen an die Oberfläche des Werkstücks anzupassen, so dass eine Bezugsachse des ersten Schlittens bei irgendeiner Position entlang der Schienen (22, 24) im Wesentlichen senkrecht zu der Werkstückoberfläche ist; und Befestigen der Maschinenkomponente an dem ersten Schlitten (30), so dass die Maschinenachse der Maschinenkomponente entlang der Referenzachse des ersten Schlittens (30) ausgerichtet ist, wobei die Maschinenachse im Wesentlichen senkrecht zu der Werkstückoberfläche angeordnet ist. Verfahren nach Anspruch 22, weiter ein Bereitstellen eines zweiten Schlittens (50) umfassend, welcher auf dem ersten Schlitten (30) derart montiert wird, dass der zweite Schlitten (50) auf dem ersten Schlitten (30) entlang einer Richtung gleitbar ist, welche durch eine Y-Achse, die parallel zu der Werkstückoberfläche ist, definiert wird, wobei der erste Schlitten (30) entlang der Schienen (22, 24) in einer Richtung gleitbar ist, welche durch eine X-Achse, die senkrecht zu der Y-Achse ist, definiert wird, und wobei die Maschinenkomponente (80) an dem zweiten Schlitten (50) befestigt wird. Verfahren nach Anspruch 23, weiter umfassend ein Bestimmen einer mathematischen Transformation der kompliziert umrissenen Werkstückoberfläche in ein zweidimensionales flaches Modell und Steuern eines Anordnens des ersten und zweiten Schlittens (30, 50) basierend auf dem flachen Modell.
Anspruch[en]
Apparatus for guiding and positioning a machine component relative to a compound-contoured surface of a workpiece, the apparatus comprising: first and second elongate flexible rails (22,24), the rails (22,24) being spaced apart and approximately parallel to each other; a plurality of vacuum attachment devices (26) connected to each rail (22,24) and spaced at intervals therealong for releasably attaching each rail (22,24) to the surface of the workpiece by vacuum, with the widths of the rails (22,24) extending substantially parallel to the surface of the workpiece, the rails bending and twisting as needed to substantially follow the surface of the workpiece; and an X-axis carriage (30) structured and arranged to support the machine component, the X-axis carriage slidably engaging the rails (22,24) and being traversable along the rails (22,24) so as to position the machine component relative to the workpiece. Apparatus according to claim 1, wherein each rail (22,24) is relatively stiff in bending about a first bending axis and relatively flexible in bending about a second bending axis orthogonal to the first bending axis, and each rail (22,24) is mounted on the workpiece such that the first bending axis is substantially normal to the workpiece surface and the second bending axis is substantially parallel to the workpiece surface. Apparatus according to any of claims 1-2, further comprising a connecting member (28,28') connected between the rails (22,24) at a location therealong to substantially fix a spacing distance between the rails (22,24) at said location, the rails (22,24) having freedom to move toward and away from each other at other locations remote from said location. Apparatus according to any of claims 1-3, wherein the attachment devices comprise vacuum cups (26). Apparatus according to any of claims 1-4, wherein the X-axis carriage (30) is connected to the rails (22,24) by flexible mounts. Apparatus according to claim 5, wherein the flexible mounts comprise plate-shaped springs (34,36). Apparatus according to claim 6, further comprising an X-axis drive device for driving the X-axis carriage (30) along the rails (22,24), the X-axis drive device being mounted on one of the plate-shaped springs (34,36). Apparatus according to claim 7, wherein the X-axis drive device includes a drive member that engages a cooperating member on one of the rails (22,24). Apparatus according to claim 8, wherein the drive member extends through an aperture (46) in the plate-shaped spring (36). Apparatus according to claim 1, wherein the X-axis carriage (30) is slidably connected to the rails (22,24) by rotary members (32) that have a rolling engagement with the rails. Apparatus according to claim 10, wherein the rotary members (32) are mounted on flexible mounts (34,36) that are affixed to the X-axis carriage (30) and can flex relative to the X-axis carriage (30) to accommodate varying bending and twisting of the rails (22,24). Apparatus according to any of the foregoing claims, further comprising a drill mounted on the X-axis carriage (30). Apparatus according to any of the foregoing claims, further comprising an actuator connected to the X-axis carriage (30) and a pressure foot coupled with the actuator, the actuator being operable to press the pressure foot (102) against the workpiece surface generally normal thereto so as to exert a pre-load force between the workpiece and the X-axis carriage (30). Apparatus according to claim 13, wherein the pressure foot is connected with the drill (80) such that a reaction force caused by drill thrust during drilling of the workpiece is reacted through the pressure foot (102) so as to reduce the pre-load force between the pressure foot (102) and the workpiece. Apparatus according to claim 14, wherein the drill (80) is mounted on a Y-axis carriage (50) that is slidable on the X-axis carriage (30) along a Y axis, and wherein the actuator is connected between the Y-axis carriage (50) and the drill (80). Apparatus according to any of claims 13-15, wherein the actuator comprises a plurality of fluid-operated cylinders (92). Apparatus according to any of the foregoing claims, wherein the supports comprise spring plates (34, 36). Apparatus according to any of the foregoing claims, wherein the rail-engaging members (32) comprise rollers. Apparatus according to any of the foregoing claims, wherein the supports comprise bearing cars that are attached to the carriage (30, 50) with spherical bearings. Apparatus according to any of the foregoing claims, further comprising a drive motor (40) mounted on one of the supports and in driving connection with a drive element that engages a cooperative driven element extending along one of the rails (22, 24). Apparatus according to claim 20, wherein the drive element is a rotary gear element and the driven element is a linear gear element, the supports being resilient and supporting pairs of spaced rollers that receive each of the rails (22, 24) therebetween, the rotary gear element being arranged such that a rotational axis thereof is coplanar with rotational axes of one of the pairs of rollers mounted on the support that supports the drive motor (40). Method of positioning a machine component (80) relative to a compound-contoured surface of a workpiece such that a machine axis of the machine component (80) is substantially normal to the surface of the workpiece, comprising: slidably mounting a first carriage (30) on a pair of spaced-apart flexible rails (22,24) that are relatively flexible in bending about first bending axes and relatively inflexible in bending about second bending axes; affixing the rails (22,24) to the surface of the workpiece such that first bending axes are substantially parallel to the workpiece surface and the second bending axes are substantially normal to the workpiece surface, whereby the rails (22,24) bend and twist as needed to substantially conform to the surface of the workpiece such that a reference axis of the first carriage at any position along the rails (22,24) is substantially normal to the workpiece surface; and fixing the machine component on the first carriage (30) such that the machine axis of the machine component is aligned along the reference axis of the first carriage (30), whereby the machine axis is positioned substantially normal to the workpiece surface. Method according to claim 22, further comprising providing a second carriage (50) mounted on the first carriage (30) such that the second carriage (50) is slidable on the first carriage (30) along a direction defined by a Y axis parallel to the workpiece surface, the first carriage (30) being slidable along the rails (22,24) in a direction defined by an X axis perpendicular to the Y axis, and wherein the machine component (80) is affixed to the second carriage (50). Method according to claim 23, further comprising determining a mathematical transformation of the compound-contoured workpiece surface into a two-dimensional flat pattern, and controlling positioning of the first and second carriages (30,50) based on the flat pattern.
Anspruch[fr]
Appareil permettant de guider et de positionner un composant de machine par rapport à une surface profilée composée d'une pièce à usiner, l'appareil comprenant : des premier et second rails flexibles allongés (22, 24), les rails (22, 24) étant espacés et approximativement parallèles l'un par rapport à l'autre ; une pluralité de dispositifs de fixation sous vide (26) raccordés à chaque rail (22, 24) et espacés selon des intervalles le long de celui-ci pour fixer de manière amovible chaque rail (22, 24) à la surface de la pièce à usiner par vide, avec les largeurs des rails (22, 24) qui s'étendent sensiblement parallèlement à la surface de la pièce à usiner, les rails fléchissant et se tordant si nécessaire pour suivre sensiblement la surface de la pièce à usiner ; et un chariot (30) d'axe X structuré et agencé pour supporter le composant de machine, le chariot d'axe X mettant en prise de manière coulissante les rails (22, 24) et pouvant traverser le long des rails (22, 24) afin de positionner le composant de machine par rapport à la pièce à usiner. Appareil selon la revendication 1, dans lequel chaque rail (22, 24) est relativement rigide pour fléchir autour d'un premier axe de flexion et relativement flexible pour fléchir autour d'un second axe de flexion orthogonal au premier axe de flexion, et chaque rail (22, 24) est monté sur la pièce à usiner de sorte que le premier axe de flexion est sensiblement normal par rapport à la surface de la pièce à usiner et le second axe de flexion est sensiblement parallèle à la surface de la pièce à usiner. Appareil selon l'une quelconque des revendications 1 - 2, comprenant en outre un élément de raccordement (28, 28') raccordé entre les rails (22, 24) à un emplacement situé le long de ceux-ci pour fixer sensiblement une distance d'espacement entre les rails (22, 24) audit emplacement, les rails (22, 24) ayant la liberté de se déplacer vers et à distance l'un de l'autre à d'autres emplacements à distance dudit emplacement. Appareil selon l'une quelconque des revendications 1 à 3, dans lequel les dispositifs de fixation comprennent des ventouses (26). Appareil selon l'une quelconque des revendications 1 à 4, dans lequel le chariot (30) d'axe X est raccordé aux rails (22, 24) par des montants flexibles. Appareil selon la revendication 5, dans lequel les montants flexibles comprennent des ressorts (34, 36) en forme de plaque. Appareil selon la revendication 6, comprenant en outre un dispositif d'entraînement d'axe X pour entraîner le chariot (30) d'axe X le long des rails (22, 24), le dispositif d'entraînement d'axe X étant monté sur l'un des ressorts (34, 36) en forme de plaque. Appareil selon la revendication 7, dans lequel le dispositif d'entraînement d'axe X comprend un élément d'entraînement qui met en prise un élément coopérant sur l'un des rails (22, 24). Appareil selon la revendication 8, dans lequel l'élément d'entraînement s'étend par une ouverture (46) dans le ressort (36) en forme de plaque. Appareil selon la revendication 1, dans lequel le chariot (30) d'axe X est raccordé de manière coulissante aux rails (22, 24) par des éléments rotatifs (32) qui ont une mise en prise roulante avec les rails. Appareil selon la revendication 10, dans lequel les éléments rotatifs (32) sont montés sur des montants flexibles (34, 36) qui sont fixés sur le chariot (30) d'axe X et peuvent fléchir par rapport au chariot (30) d'axe X pour accepter une flexion et une torsion variables des rails (22, 24). Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un foret monté sur le chariot (30) d'axe X. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un actionneur raccordé au chariot (30) d'axe X et un pied de pression couplé avec l'actionneur, l'actionneur pouvant être actionné pour comprimer le pied de pression (102) contre la surface de la pièce à usiner généralement normale par rapport à celui-ci afin d'exercer une force de précharge entre la pièce à usiner et le chariot (30) d'axe X. Appareil selon la revendication 13, dans lequel le pied de pression est raccordé avec le foret (80) de sorte que l'on fait réagir une force de réaction provoquée par la poussée du foret pendant le perçage de la pièce à usiner par le biais du pied de pression (102) afin de réduire la force de précharge entre le pied de pression (102) et la pièce à usiner. Appareil selon la revendication 14, dans lequel le foret (80) est monté sur un chariot (50) d'axe Y qui peut coulisser sur le chariot (30) d'axe X le long d'un axe Y, et dans lequel l'actionneur est raccordé entre le chariot (50) d'axe Y et le foret (80). Appareil selon l'une quelconque des revendications 13 à 15, dans lequel l'actionneur comprend une pluralité de cylindres hydrauliques (92). Appareil selon l'une quelconque des revendications précédentes, dans lequel les supports comprennent des lames de ressort (34, 36). Appareil selon l'une quelconque des revendications précédentes, dans lequel les éléments de mise en prise de rail (32) comprennent des galets. Appareil selon l'une quelconque des revendications précédentes, dans lequel les supports comprennent des boîtiers de roulement qui sont fixés au chariot (30, 50) avec des paliers sphériques. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un moteur d'entraînement (40) monté sur l'un des supports et en raccordement d'entraînement avec un élément d'entraînement qui met en prise un élément entraîné coopératif s'étendant le long de l'un des rails (22, 24). Appareil selon la revendication 20, dans lequel l'élément d'entraînement est un élément d'engrenage rotatif et l'élément entraîné est un élément d'engrenage linéaire, les supports étant élastiques et supportant des paires de galets espacés qui reçoivent chacun des rails (22, 24) entre eux, l'élément d'engrenage rotatif étant agencé de sorte que son axe de rotation est coplanaire avec les axes de rotation de l'une des paires de galets montées sur le support qui supporte le moteur d'entraînement (40). Procédé permettant de positionner un composant (80) de machine par rapport à une surface profilée composée d'une pièce à usiner de sorte qu'un axe de machine du composant (80) de machine est sensiblement normal par rapport à la surface de la pièce à usiner, comprenant les étapes consistant à : monter de manière coulissante un premier chariot (30) sur une paire de rails flexibles (22, 24) espacés qui sont relativement flexibles pour se fléchir autour de premiers axes de flexion et relativement inflexibles pour se fléchir autour de seconds axes de flexion ; fixer les rails (22, 24) sur la surface de la pièce à usiner de sorte que les premiers axes de flexion sont sensiblement parallèles à la surface de la pièce à usiner et que les seconds axes de flexion sont sensiblement normaux par rapport à la surface de la pièce à usiner, moyennant quoi les rails (22, 24) se fléchissent et se tordent si nécessaire pour se conformer sensiblement à la surface de la pièce à usiner de sorte qu'un axe de référence du premier chariot à n'importe quelle position le long des rails (22,24) est sensiblement normal par rapport à la surface de la pièce à usiner ; et fixer le composant de machine sur le premier chariot (30) de sorte que l'axe de machine du composant de la machine est aligné le long de l'axe de référence du premier chariot (30), moyennant quoi l'axe de machine est positionné de manière sensiblement normale par rapport à la surface de la pièce à usiner. Procédé selon la revendication 22, comprenant en outre l'étape consistant à prévoir un second chariot (50) monté sur le premier chariot (30) de sorte que le second chariot (50) peut coulisser sur le premier chariot (30) le long d'une direction définie par un axe Y parallèle à la surface de la pièce à usiner, le premier chariot (30) pouvant coulisser le long des rails (22, 24) dans une direction définie par un axe X perpendiculaire à l'axe Y et dans lequel le composant (80) de machine est fixé sur le second chariot (50). Procédé selon la revendication 23, comprenant en outre les étapes consistant à déterminer une transformation mathématique de la surface profilée composée de la pièce à usiner en un modèle plat en deux dimensions et contrôler le positionnement des premier et second chariots (30, 50) en fonction du modèle plat.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com