PatentDe  


Dokumentenidentifikation EP1043770 27.04.2006
EP-Veröffentlichungsnummer 0001043770
Titel Herstellung von vergrabenen Hohlräumen in einer einkristallinen Halbleiterscheibe und Halbleiterscheibe
Anmelder STMicroelectronics S.r.l., Agrate Brianza, Mailand/Milano, IT
Erfinder Barlocchi, Gabriele, 20010 Cornaredo, IT;
Villa, Flavio, 20159 Milano, IT
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69930099
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 09.04.1999
EP-Aktenzeichen 998302061
EP-Offenlegungsdatum 11.10.2000
EP date of grant 01.03.2006
Veröffentlichungstag im Patentblatt 27.04.2006
IPC-Hauptklasse H01L 21/764(2006.01)A, F, I, 20051017, B, H, EP
IPC additional class H01L 21/20  (2006.01)  A,  L,  N,  20051017,  B,  H,  EP
H01L 21/306  (2006.01)  A,  L,  N,  20051017,  B,  H,  EP

Beschreibung[en]

The present invention relates to a method for forming horizontal buried channels or cavities in wafers of monocrystalline semiconductor material.

As known, at present, in many applications it is necessary to form cavities inside a monocrystalline silicon substrate, for example to obtain suspended masses of microactuators and/or sensors of various types, such as speed, acceleration and pressure sensors, or to isolate electronic components.

Now, buried cavities can be formed substantially in two ways. According to a first solution, shown in figure 1, two monocrystalline silicon wafers 1, suitably excavated and presenting each a half-cavity, are bonded to one another, using an adhesive layer (for example silicon oxide 2), so that the two half-cavities form a buried cavity 3.

According to a second solution, shown in figure 2, a monocrystalline silicon wafer 1, suitably excavated and comprising final cavities 4, is bonded to a glass layer 5 (anodic bonding process).

These solutions are costly, have a high criticality and low productivity, and are not fully compatible with the usual technological steps of microelectronics processing. In addition, the buried cavities or channels can be arranged only on a single plane, represented by line 7 in figure 3, and it is not possible to form cavities or channels at different heights, as shown in figure 4.

US-A-4,993,143 discloses a method for forming a wafer having a diaphragm overlying a buried cavity. The method includes the steps of forming a cavity in a substrate of monocrystalline semiconductor material and growing a monocrystalline epitaxial layer on the substrate (10) and the cavity. The dimensions of the diaphragm is limited by the dimensions of the cavity.

The object of the invention is thus to provide a method overcoming the disadvantages of the known solutions.

According to the present invention, there are provided a method for forming buried cavities in wafers of monocrystalline semiconductor material, and a wafer of monocrystalline semiconductor material, as defined respectively in claims 1 and 14.

To help understanding of the present invention, preferred embodiments are now described, purely by way of non-limiting example, with reference to the attached drawings, wherein:

  • figure 1 shows a cross-section of a semiconductor material wafer, formed according to a known solution;
  • figure 2 shows a cross-section of another known solution;
  • figure 3 shows an example of cavities formed according to the known methods;
  • figure 4 shows an example of cavities arranged on different levels;
  • figure 5 shows a plan view of a semiconductor material wafer, wherein the cavities have a first orientation with respect to the wafer;
  • figures 6-12 illustrate cross-sections of the wafer of figure 5, on an enlarged scale and in successive manufacture steps, according to a first embodiment;
  • figure 13 shows a plan view of a semiconductor material wafer, wherein the cavities have a second orientation with respect to the wafer;
  • figures 14 and 15 illustrate cross-sections of the wafer of figure 13, on an enlarged scale and in successive manufacture steps, according to a second embodiment;
  • figure 16 illustrates a cross-section of the wafer of figure 13, on an enlarged scale and in a manufacture step according to a third embodiment;
  • figures 17-19 show cross-sections of silicon wafers, provided with cavities with different shapes and positions;
  • figures 20 and 21 show perspective cross-sections of a wafer in two successive steps, for forming thin membranes;
  • figures 22-26 show cross-sections of the wafer of figure 21, taken along plane XXII-XXII of figure 21, in successive steps; and
  • figures 27-28 show cross-sections of the wafer of figure 21, taken along a plane parallel to plane XXII-XXII, in subsequent steps with respect to figures 22-26.

Figure 5 shows a monocrystalline silicon wafer 10, wherein a cavity or channel is to be formed, extending at 45° with respect to the flat part of the wafer, determined by orientation <110>. The surface of wafer 10 has orientation <100>.

As shown in figure 6, initially a first oxide layer is grown on surface 11 of wafer 10; the first oxide layer having a thickness comprised, for example, between 20 and 60 nm; then a nitride layer is deposited, having a thickness between 90 and 150 nm. Using a resist mask, the uncovered portions of the first nitride layer and of the first oxide layer are dry etched, and the resist mask is then removed;-thereby, the portions of the first oxide layer and of the first nitride layer, remaining after the dry etching (oxide portions 12 and nitride portions 13) form a hard mask, indicated at 14.

Subsequently, using the hard mask 14, the wafer 10 is etched (first trench etching), forming first trenches 15 (figure 6), having a width, for example, between 1 and 3 µm (and preferably 2 µm), and a depth depending on the structures to be formed, for example of a few microns.

Subsequently, as shown in figure 7, the wafer 10 is subjected oxidation, thus forming a second oxide layer 18 having a thickness, for example, comprised between 20 and 60 nm, covering the walls and base of the first trenches 15, and connected to the oxide portions 12, such as to form a single layer. Then a second nitride layer 19 is deposited, having a thickness, for example, comprised between 90 and 150 nm, and connected to the nitride portions 13, to form a single layer.

Subsequently, figure 8, the nitride material is dry etched and the oxide material is dry or wet etched. This etching causes removal of the horizontal portions of the nitride layer 19 and oxide layer 18 on the bottom of the first trenches 15, and of the horizontal portions of the nitride layer 19, above surface 11 of wafer 10, thus forming a first protective coating or spacer 20 on the walls of the first trenches 15, and exposing the monocrystalline silicon on the bottom of the first trenches 15. The hard mask 14 also remains on surface 11 of wafer 10.

Then, figure 9, the silicon material below the first trenches 15 is time etched using TMAH (tetramethylammoniumhydroxide). This etching, of anisotropic type, generates cavities 21, having a width d (at the widest point) of, for example, 10-100 µm, and therefore much larger than the first trenches 15. If the first trenches 15 have an elongate shape, in a direction perpendicular to the drawing plane, the cavities 21 form elongate channels.

Subsequently, figure 10, the walls of cavities 21 are covered with an inhibiting layer 22, which does not allow epitaxial growth. To this end, for example, a rapid oxidation step can be carried out, to grow an oxide layer (with a greater thickness than the oxide portions 12 and 18, covering the surface 11 of wafer 10 and the wall of the first trench 15, as described hereinafter, for example comprised between 60 and 100 nm), or a layer selected among deposited oxide, nitride, or TEOS-tetraethylorthosilicate, may be deposited.

Then, figure 11, the first spacers 20 are removed from the walls of the first trenches 15, and the hard mask 14 is removed from the surface 11 of the wafer 10. During removal of the oxide portions 12 and 18, part of the inhibiting layer 22 is also removed; the inhibiting layer 22, is not removed completely since it is thicker, as already stated, and remains to an extent sufficient to ensure complete covering of the walls of the cavities 21.

Subsequently, figure 12, epitaxial growth is carried out, using as a nucleus the monocrystalline silicon of wafer 10; consequently, monocrystalline silicon is grown horizontally, inside the first trenches 15, thus closing the latter, and vertically, from the surface 11 (which can no longer be seen in figure 12). On the other hand, the silicon is not grown inside the cavities 21, due to the presence of the inhibiting layer 22. Thus a monolithic wafer 25 of monocrystalline silicon is obtained, formed by substrate 10 and an epitaxial layer 26, and accommodating closed cavities 21, delimited internally by the inhibiting layer 22.

If the trenches 15 (and thus the cavities 21) are oriented at 0° and 90° with respect to the flat part of the wafer 10 (as shown in plan view in figure 13), after forming the first spacers 20 (figure 8), and before TMAH etching (figure 9), a second trench etching is carried out, masked by the hard mask 14 and the first spacers 20 (figure 14). Thereby a deep trench 30 is formed, the lower portion 30a whereof extends below the first spacers 20.

Subsequently, figure 15, timed TMAH etching is carried out, forming a cavity 21' around the lower part 30a of the deep trenches 30 (shown by broken line in figure 15). Subsequently, the process already described with reference to figures 11, 12 is carried out, forming an inhibiting layer 22, removing the hard mask 14 and the first spacers 20, and growing an epitaxial layer, to obtain the final structure of figure 12.

According to a different embodiment, again with trenches 15 oriented at 90° with respect to the flat part 110 of the wafer 10 (as shown in figure 13), after forming the hard mask 14 and first trench etching, forming the first trenches 15 (figure 6), timed TMAH etching is carried out directly, forming a cavity 21" around the first trenches 15, figure 16. Similarly to the above described case, then the steps of forming an inhibiting layer 22, removing the hard mask 14 and the first spacers 20, and epitaxial growth are carried out.

The wafer 25 thus obtained may integrate electronic components and/or integrated microstructures in the epitaxial area above the cavities 21, 21', 21", in a known manner.

According to the orientation of cavities 21, 21', 21", the duration of TMAH etching, the number and arrangement of the cavities 21, 21', 21", it is possible to obtain various geometries, as shown in figures 17-19, wherein, for simplicity, the inhibiting layer has been omitted. In detail, figure 17 shows a wafer 25 accommodating a plurality of cavities 21 with a substantially octagonal shape, arranged parallel to one another, in a direction at right-angle with respect to the drawing plane and at a same height. The wafer 25 in figure 17 is obtained in the above-described manner, and selecting a TMAH etching time that does not allow complete silicon etching.

Figure 18 shows a wafer 25 accommodating a plurality of cavities 36 square-shaped (rotated by 45°) or rhombus-shaped, arranged similarly to the previous case parallel to one another, at a right-angle with respect to the drawing plane, at a same height. The wafer 25 in figure 18 is obtained furthering the TMAH etching, until obtaining the final geometry (square or rhombus, depending on the orientation of the cavities 36 with respect to the crystallographic plane of the wafer 25) caused by the TMAH etching.

Figure 19 shows a wafer 25 accommodating a plurality of cavities 38, 39, having an octagonal shape and arranged at different heights in wafer 25. The wafer 25 of figure 19 is obtained by forming first trenches 15 with different depths (with different etching times), or different widths (such that the final depth of the channels 38, 39 is different); or repeating the process described with reference to figures 6-12 or 14-15 or 16 several times, forming one or more cavities 39 at a first height, carrying out first epitaxial growth, forming one or more cavities 38 at a greater height, carrying out second epitaxial growth, and so on.

The above-described method may be also used to form monocrystalline silicon membranes with a reduced thickness (for example between 1 and 3 µm, if the membrane is used as a sensor, and approximately 10 µm, if electronic components are to be integrated), above an air gap of desired shape, as described hereinafter with reference to figures 20-29.

To this end, beginning for example from wafer 25 of the type shown in figure 17, illustrated in perspective in figure 20, comprising a plurality of cavities or channels 21 having a length l (in direction y), much greater than their maximum width d (in direction x). In particular, the channels 21 have a length l linked to the desired length of the membrane, and are of such a number to extend along the entire width (in the direction x) of the membrane. In addition, the upper side of the channels 21 is arranged at a depth, from the surface of the wafer 25, equivalent to the desired thickness for the membrane.

As shown in figures 21 and 22, trench etching of silicon above the cavities 21 is then carried out, to form at least two connection trenches, extending parallel to one another, in a direction perpendicular to the length of the cavities 21 (parallel to the x axis in the example shown). For this purpose, in a known manner, a third oxide layer 40 is initially deposited or grown and a third nitride layer 41 is then deposited; the oxide layer 40 and the nitride layer 41 are photolithographically defined, to form a second hard mask 42 completely covering the wafer 25, except the parts where the connection trenches are to be formed; the exposed silicon is then etched, thus forming connection trenches 44, extending as far as the inhibiting layer 22 of cavities 21.

Subsequently, figure 23, the surface of the connection trenches 44 is oxidized, forming a fourth oxide layer 45 (which, above the cavities 21, is integral with the inhibiting layer 22), and a fourth nitride layer 46 is deposited.

Then, figure 24, the nitride and then the oxide material of layers 45, 46 is dry etched, thus removing the latter from the horizontal portions above the second hard mask 42 and from the bottom of the connection trenches 44; thereby, spacers 47 are formed above the cavities 21 and on the walls of the trenches 22. In this step, part of the inhibiting layer 22 (if of oxide), present in the upper part of the cavities 21 is also removed, as also shown in figure 25, showing a cross-section of a connection trench 44 taken along a cross-section plane perpendicular to figure 24.

Subsequently, figure 26, the inhibiting layer 22 covering the walls of the cavities 21 is wet etched. The inhibiting layer 22 is thus completely removed. Subsequently, figure 27, the silicon material surrounding the cavities 21 is time etched, to completely remove the diaphragms (indicated at 50 in figure 26) separating the cavities 21 from each other. Thereby an air gap 51 is formed, extending continuously below a monocrystalline silicon portion forming a membrane 52, as can be seen in cross-section in figure 27, taken along a plane parallel to figure 26 and not intersecting a connection trench 44. In this step, planarization of the upper and lower walls of the gap 51 is also obtained, as can be seen in figure 27, wherein the original cavities 21 are shown in broken lines, to help understanding.

After the second hard mask 42 has been removed, a wafer 54 is thus obtained, as shown in figure 28, wherein the membrane 52 has a thickness to length ratio s/L <<1, for example, comprised between 0.1 and 0.01.

The advantages of the described method are apparent from the preceding description. In particular, it is emphasised that the method allows forming completely buried cavities and channels, using steps common in microelectronics, and thus reliably and repeatably. It also allows obtaining different geometries, depending on requirements, with an extensive variety of shapes. Additionally, membranes may be formed having the desired shapes and dimensions, depending on the necessary components (electronic or micro-electric-mechanical).


Anspruch[de]
Verfahren zum Herstellen einer Membran (52) aus einem einkristallinen Halbleitermaterial, die über einem Luftspalt (51) angeordnet ist, mit dem Schritt des Herstellens einer Scheibe (54) aus einkristallinem Halbleitermaterial mit einem Luftspalt (51), dadurch gekennzeichnet, dass der Schritt zum Herstellen einer Scheibe das Folgende beinhaltet: - Herstellen mehrerer benachbarter Hohlräume (21; 21'; 22") in einem Substrat (10) aus einkristallinem Halbleitermaterial, die durch Trennwände (50) voneinander getrennt sind; - Züchten einer einkristallinen Epitaxieschicht (26) auf dem Substrat (10) und den Hohlräumen (21), um dadurch eine Scheibe (25) aus einkristallinem Halbleitermaterial zu erhalten, der vergrabene Hohlräume (21) enthält, die vollständig vom einkristallinen Material umgeben sind; - Herstellen von Verbindungsgräben (44) in der Epitaxieschicht (26), die sich quer zu den vergrabenen Kanälen (21) ausgehend von einer Oberfläche der Scheibe bis zu den vergrabenen Kanälen erstrecken; und - Entfernen der Trennwände (50). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vor dem Schritt des Züchtens einer Epitaxieschicht (26) ein Schritt ausgeführt wird, gemäß dem alle Wände der Hohlräume (21) mit einem epitaktisches Wachstum behindernden Material (22) beschichtet werden. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das epitaktisches Wachstum behindernde Material ein Oxid ist. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das epitaktisches Wachstum behindernde Material TEOS ist. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das epitaktisches Wachstum behindernde Material ein Nitrid ist. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Schritt des Herstellens der Hohlräume (21; 21') die folgenden Schritte beinhaltet: - Herstellen erster Gräben (15) im Substrat (10); - Bedecken von Seitenwänden der ersten Gräben (15) mit ersten Schutzbereichen (20) aus einem Material, das bei einem Ätzen des einkristallinen Halbleitermaterials resistent ist; und - anisotropes Ätzen des Substrats (10) unter den ersten Gräben (15). Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass der Schritt des Herstellens mehrerer Gräben (21") die folgenden Schritte beinhaltet: - Herstellen mehrerer erster Gräben (15) im Substrat (10); und - anisotropes Ätzen des Substrats (10) zum Entfernen des Halbleitermaterials um die ersten Gräben (15) herum. Verfahren nach Anspruch 6 oder Anspruch 7, dadurch gekennzeichnet, dass das anisotrope Ätzen ein TMAH-Ätzen ist. Verfahren nach einem der Ansprüche 6 - 8, dadurch gekennzeichnet, dass das anisotrope Ätzen ein Ätzen für eine abgemessene Zeit ist. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass vor dem Schritt des anisotropen Ätzens ein Schritt ausgeführt wird, gemäß dem mehrere zweite Gräben (30a) hergestellt werden, die mit den ersten Gräben (15) ausgerichtet und unter diesen angeordnet sind. Verfahren nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass nach dem Schritt des Herstellens von Verbindungsgräben (44) ein Schritt ausgeführt wird, gemäß dem zweite Schutzbereiche (47) hergestellt werden, die sich auf den Wänden der Verbindungsgräben erstrecken. Verfahren nach einem der Ansprüche 1 - 11, bei dem die vergrabenen Gräben (21) über Wände verfügen, die mit einer epitaktisches Wachstum behindernden Schicht (22) bedeckt sind, dadurch gekennzeichnet, dass das Entfernens der Trennwände (50) die folgenden Schritte beinhaltet: - Entfernen der epitaktisches Wachstum behindernden Schicht (22) und - anisotropes Ätzen des Halbleitermaterials. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das anisotrope Ätzen ein TMAH-Ätzen für eine abgemessene zeit ist. Scheibe (25) aus einem einkristallinen Halbleitermaterial, gekennzeichnet durch mehrere vergrabene Hohlräume (51), die vollständig vom einkristallinen Material umgeben sind und die über Trennwände (50) hinweg, durch die sie voneinander getrennt sind, einander benachbart sind, wobei sich Verbindungsgräben (44) quer zu den vergrabenen Hohlräumen ausgehend von der Oberfläche der Scheibe bis zu den vergrabenen Hohlräumen erstrecken. Scheibe nach Anspruch 14, dadurch gekennzeichnet, dass mindestens ein vergrabener Hohlraum (21) mit einer Schicht aus einem epitaktisches Wachstum behindernden Material (22) bedeckt ist. Scheibe nach Anspruch 15, dadurch gekennzeichnet, dass das epitaktisches Wachstum behindernde Material ein Oxid ist. Scheibe nach Anspruch 15, dadurch gekennzeichnet, dass das epitaktisches Wachstum behindernde Material TEOS ist. Scheibe nach Anspruch 15, dadurch gekennzeichnet, dass das epitaktisches Wachstum behindernde Material ein Nitrid ist.
Anspruch[en]
A method for forming a membrane (52) of monocrystalline semiconductor material, arranged above an air gap (51), comprising the step of forming a wafer (54) of monocrystalline semiconductor material having an air gap (51), characterized in that said step of forming a wafer comprises: forming a plurality of adjacent cavities (21; 21'; 21") separated from each other by dividers (50) in a substrate (10) of monocrystalline semiconductor material, growing a monocrystalline epitaxial layer (26) on said substrate (10) and said cavities (21), thereby obtaining a wafer (25) of monocrystalline semiconductor material, containing buried cavities (21) completely surrounded by said monocrystalline material; forming connection trenches (44) in said epitaxial layer (26), said connection trenches extending transversely to said buried channels (21) from a surface of said wafer, as far as said buried channels; and removing said dividers (50). A method according to claim 1, characterised in that before said step of growing an epitaxial layer (26), the step is carried out of covering walls of said cavities (21) with material inhibiting epitaxial growth (22). A method according to claim 2, characterised in that said material inhibiting epitaxial growth comprises oxide. A method according to claim 2, characterised in that said material inhibiting epitaxial growth comprises TEOS. A method according to claim 2, characterised in that said material inhibiting epitaxial growth comprises nitride. A method according to any one of the preceding claims, characterised in that said step of forming cavities (21; 21') comprises the steps of: - forming first trenches (15) in said substrate (10); - covering lateral walls of said first trenches (15) with first protective regions (20) of a material resistant to etching of said monocrystalline semiconductor material; and - anisotropically etching said substrate (10), below said first trenches (15). A method according to any one of claims 1-5, characterised in that said step of forming a plurality of cavities (21") comprises the steps of: - forming a plurality of first trenches (15) in said substrate (10) ; and - anisotropically etching said substrate (10), to remove said semiconductor material around said first trenches (15). A method according to claim 6 or claim 7, characterised in that said anisotropic etching is TMAH etching. A method according to any one of claims 6-8, characterised in that said anisotropic etching is timed etching. A method according to claim 6, characterised in that before said step of anisotropically etching, the step is carried out of forming a plurality of second trenches (30a) aligned with, and arranged below, said first trenches (15). A method according to any of claims 1-10, characterised in that, after said step of forming connection trenches (44), the step is carried out of forming second protective regions (47) extending on the walls of said connection trenches. A method according to any of claims 1 or 11, wherein said buried channels (21) have walls covered by a layer inhibiting epitaxial growth (22), characterised in that said step of removing said dividers (50) comprises the steps of: - removing said layer inhibiting epitaxial growth (22); and - anisotropically etching said semiconductor material. A method according to claim 12, characterised in that said anisotropic etching comprises TMAH timed etching. A wafer (25) of monocrystalline semiconductor material, characterised by a plurality of buried cavities (21) completely surrounded by said monocrystalline material, said buried cavities (21) being adjacent and separated from each other by dividers (50), connection trenches (44) extending transversely to said buried cavities from a surface of said wafer as far as said buried cavities. A wafer according to claim 14, characterised in that said at least one buried cavity (21) is covered with a layer of material inhibiting epitaxial growth (22). A wafer according to claim 15, characterised in that said material inhibiting epitaxial growth comprises oxide. A wafer according to claim 15, characterised in that said material inhibiting epitaxial growth comprises TEOS. A wafer according to claim 15, characterised in that said material inhibiting epitaxial growth comprises nitride.
Anspruch[fr]
Procédé pour former une membrane (52) de matériau semi-conducteur monocristallin, agencée au-dessus d'un entrefer (51), comprenant l'étape de formation d'une plaquette (54) de matériau semi-conducteur monocristallin ayant un entrefer (51), caractérisé en ce que ladite étape de formation d'une plaquette comprend : la formation d'une pluralité de cavités contiguës (21, 21', 21") séparées l'une de l'autre par des diviseurs (50) dans un substrat (10) de matériau semi-conducteur monocristallin, la croissance d'une couche épitaxiale monocristalline (26) sur ledit substrat (10) et lesdites cavités (21) afin d'obtenir une plaquette (25) de matériau semi-conducteur monocristallin, renfermant des cavités enfouies (21) complètement entourées par ledit matériau monocristallin ; la formation de tranchées de connexion (44) dans ladite couche épitaxiale (26), lesdites tranchées de connexion s'étendant transversalement auxdits canaux enfouis (21) à partir d'une surface de ladite plaquette aussi loin que lesdits canaux enfouis ; et le retrait desdits diviseurs (50). Procédé selon la revendication 1, caractérisé en ce que, avant ladite étape de croissance d'une couche épitaxiale (26), on met en oeuvre l'étape de couverture de parois desdites cavités (21) avec un matériau inhibant la croissance épitaxiale (22). Procédé selon la revendication 2, caractérisé en ce que ledit matériau inhibant la croissance épitaxiale comprend un oxyde. Procédé selon la revendication 2, caractérisé en ce que ledit matériau inhibant la croissance épitaxiale comprend de l'orthosilicate de tétraéthyle. Procédé selon la revendication 2, caractérisé en ce que ledit matériau inhibant la croissance épitaxiale comprend du nitrure. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite étape de formation de cavités (21, 21') comprend les étapes de : - formation de premières tranchées (15) dans ledit substrat (10); - couverture des parois latérales desdites premières tranchées (15) avec des premières régions protectrices (20) d'un matériau résistant à la gravure dudit matériau semi-conducteur monocristallin ; et - gravure anisotrope dudit substrat (10) en dessous desdites premières tranchées (15). Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite étape de formation d'une pluralité de cavités (21") comprend les étapes de : - formation d'une pluralité de premières tranchées (15) dans ledit substrat (10) ; et - gravure anisotrope dudit substrat (10) pour éliminer ledit matériau semi-conducteur autour desdites premières tranchées (15). Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que ladite gravure anisotrope est une gravure à l'hydroxyde de tétraméthylammonium. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que ladite gravure anisotrope est une gravure minutée. Procédé selon la revendication 6, caractérisé en ce que, avant ladite étape de gravure anisotrope, on réalise l'étape de formation d'une pluralité de secondes tranchées (30a) alignées avec lesdites premières tranchées (15) et agencées en dessous de celles-ci. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que, après ladite étape de formation des tranchées de connexion (44), on réalise l'étape de formation de secondes régions protectrices (47) s'étendant sur les parois desdites tranchées de connexion. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel lesdits canaux enfouis (21) ont des parois couvertes par une couche inhibant la croissance épitaxiale (22), caractérisé en ce que ladite étape d'élimination desdits diviseurs (50) comprend les étapes de : - éliminer ladite couche inhibant la croissance épitaxiale (22) ; et - graver de façon anisotrope ledit matériau semiconducteur. Procédé selon la revendication 12, caractérisé en ce que ladite gravure anisotrope comprend une gravure minutée à l'hydroxyde de tétraméthylammonium. Plaquette (25) de matériau semi-conducteur monocristallin, caractérisée par une pluralité de cavités enfouies (21) complètement entourées par ledit matériau monocristallin, lesdites cavités enfouies (21) étant contiguës et séparées les unes des autres par des diviseurs (50), des tranchées de connexion (44) s'étendant transversalement auxdites cavités enfouies à partir d'une surface de ladite plaquette aussi loin que lesdites cavités enfouies. Plaquette selon la revendication 14, caractérisée en ce que ladite au moins une cavité enfouie (21) est couverte avec une couche de matériau inhibant la croissance épitaxiale (22). Plaquette selon la revendication 15, caractérisée en ce que ledit matériau inhibant la croissance épitaxiale comprend un oxyde. Plaquette selon la revendication 15, caractérisée en ce que ledit matériau inhibant la croissance épitaxiale comprend de l'orthosilicate de tétraéthyle. Plaquette selon la revendication 15, caractérisée en ce que ledit matériau inhibant la croissance épitaxiale comprend un nitrure.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com