PatentDe  


Dokumentenidentifikation EP1113167 14.06.2006
EP-Veröffentlichungsnummer 0001113167
Titel Elektrisch gesteuertes Dieselkraftstoffeinspritzsystem
Anmelder Detroit Diesel Corp., Detroit, Mich., US
Erfinder Jiang, He, Canton, MI 48188, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60027857
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 22.11.2000
EP-Aktenzeichen 001255876
EP-Offenlegungsdatum 04.07.2001
EP date of grant 10.05.2006
Veröffentlichungstag im Patentblatt 14.06.2006
IPC-Hauptklasse F02M 57/02(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse F02M 63/02(2006.01)A, L, I, 20051017, B, H, EP   F02M 63/00(2006.01)A, L, I, 20051017, B, H, EP   F02M 55/02(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
Background of the Invention 1. Field of Invention

The present invention relates to a new fuel injector and fuel injection system for internal combustion engines and particularly for heavy-duty diesel cycle internal combustion engines. The present invention further relates to a fuel injector and fuel injection system which takes advantage of both electronic unit injectors and common rail fuel systems to improve power consumption for the fuel system in reference to drive of a camshaft train.

The present invention further relates to a fuel injection system and a fuel injector which provides high injection pressure characteristic of electronic unit injectors and flexibility of adjusting injection pressure in a common rail system.

The present invention further relates to a new, heavy duty diesel fuel injection system which take advantage of Electronic Unit Injectors (EUI) system, while improving EUI's flexibility to define injection timing and the ability to adjust injection pressure independent of the engine speed or load. In addition, the present invention improves power consumption for the fuel system and improves the roughness of the drive camshaft train.

2. Description of the Related Art.

The present invention is related to a electronically controlled fuel injection system and a fuel injector which is capable of being driven from a camshaft train.

Deckard et al., U.S. Patent No. 4,572,433 discloses an electromagnetic unit fuel injector for use in a multi-cylinder, diesel engine having an externally actuated pump for intensifying the pressure of fuel delivered to the pressure actuated injection valve controlling a flow discharge out through a spray outlet which is normally biased to a closed position by a spring. Pressurized fuel from the pump is supplied via a throttling orifice to a modulated pressure servo-controlled chamber having a servo piston means operatively associated with the injection valve. A drain passage extends from the servo control chamber with flow therethrough controlled by a solenoid actuated control valve in the form of a pop-it valve, which is normally biased to a closed position by a valve return spring of a predetermined force whereby the control valve is also operative as a pressure relief valve and preferably, a secondary pressure relief valve means is also incorporated into the unit injector so that all of the unit injectors for the engine will operate at a uniform maximum peak pressure.

Although Deckard '433 substantially achieves this goal, it has been observed that there are still variations in maximum peak pressure achievable in a fuel system and particularly between individual fuel injection units on an internal combustion engine. This variability in pressure can affect the performance of the engine and reduce the efficiency of the engine during operation.

Gibson et al., U.S. Patent No. 5,535,723 according to the preamble of claim 1 discloses an electronically controlled fluid injector having pre-injection pressurizable fluid storage chamber in an outwardly opening direct operated check. The Gibson concept is directed to an improved electronically-controlled fuel injection system which comprises a fluid storage chamber in a direct operated check. Pressurization of the fluid in the storage chamber begins before the start of the fluid injection. Fluid injection begins by hydraulically unbalancing the check. Fluid injection sharply ends by hydraulically balancing the check to allow a biasing device to close the check.. Fluids such as fuel can be injected as a purely vapor phase to improve mixing and combustion air. The system of Gibson et al controls several fluid injection parameters including higher peak fluid injection capability and less fluid injection pressure drop at the end of injection, thereby resulting in improved engine performance and lower noise, emissions, and wear.

Gibson et al achieves these purposes in part by use of a solenoid means which activates two valves for pressurizing the fuel prior to the injection. The first valve is movable between a first position, which opens fluid communication between the storage chamber and control passage and the second position to close fuel communication. The second valve is a three-way valve such as a pop-it valve or a spool valve which at its first position blocks fluid communication between a pressure control chamber and the control passage and opens fluid communication between the pressure control chamber and the injection chamber.

It has been determined that a simpler and more advanced system is necessary in order to address all the concerns in the fuel injection art. To this end, it's necessary to control the pressure of the fuel from the fuel source all the way through to the injection event.

Summary of the Invention

The present invention is a new, electronic controlled fuel injection system as well as an Electronic Unit Injector (EUI) for use in the same. The fuel injection system of the instant invention is designed for use in internal combustion engines and particularly heavy-duty diesel fuel injection systems and takes advantage of both Electronic Unit Injection ("EUI") and common rail fuel systems. To this end, the high injection pressure of EUI's is combined with the flexibility of adjusting injection pressure in common rail systems. The design of the instant invention improves power consumption for the fuel system, as well as provides the roughness of the system to be driven by a camshaft train.

The system components are comprised of a fuel delivery pump which is preferably a low pressure pump so that output pressure is kept at a constant 10 bar through the relatively low pressure fuel line. The relatively low pressure fuel line is connected to an electronic controlled pressure regulator and pressure sensor. Fuel pressure is feedback adjusted by an electronic control module (ECM) to monitor fuel pressure in the common fuel delivery line alid to adjust the pressure regulator to achieve a desired specific fuel delivery pressure accurately. The common fuel delivery line feeds diesel fuel to all injectors at a feed-back controlled pressure. A slow response solenoid with a Pulse Width Modulated (PMW) drive is used to operate the regulator, since the pressure in the common fuel delivery line may not vary rapidly.

Each cylinder in an internal combustion engine is equipped with an electronic unit injector. This electronic unit injector consists of an injector body with a metering orifice in accumulative chamber, a plunger with a returning spring, a solenoid control valve with a spring, and nozzle needle with spring. The fuel injection timing is controlled by the ECM through activation and deactivation of a solenoid control valve.

A metering orifice is precisely machined to provide a flow passage at the plunger bushing wall or in the plunger of the EUI. The amount of fuel being fed in the a cumulative chamber through the metering orifice will be determined by the fuel pressure on the common delivery line and the size of the metering orifice. The volume of the a cumulative chamber is 20 to 60 times the maximum fuel volume/cycle, and is optimized based upon a tradeoff between injector compactness, maximum injection pressure and maximum injector pressure drop.

The system further includes a camshaft with a plurality of specially designed cam lobe to drive the injector plungers. The cam has four sections. The first is a base circle section for fuel metering process. The second is a rising section for pressurizing fuel captured in the accumulative chamber. The third is a zero velocity section when a plunger reaches its maximum lift. The third section should be long enough to cover all possible injection timing sequences. The fourth section is a falling section which should be overlapped with a rising section of another cam lobe for recovering energy of remaining pressurized fuel in the accumulative chamber.

Brief Description of the Drawings

  • Figure 1 is a schematic cross sectional view of the an Electronic Unit Injector (EUI) and an Electronic Controlled Fuel Injection System.
  • Figure 2 is a cross-sectional view of the slow response solenoid adapted for use in the fuel injector for the electronically controlled fuel injection system.
  • Figure 3 is a cross-sectional view of the slow response solenoid of Figure 2 in its activated position.
  • Figure 4 is a schematic of a fuel injection system of the present invention utilizing a plurality of EUI's as depicted in Figure 1.

Detailed Description of the Preferred Embodiment

Turning now to the drawings wherein like numerals refer to like structures, and particularly to Figure 1, there is depicted there in a schematic, cross-sectional view of the Electronic Controlled Fuel Injection System of the instant invention.

Injector 10 is comprised of a threaded body 12 and a threaded nut 14 wherein nut 14 is cooperatively threaded to threaded body 12 in final assembly to form housing 13 of the fuel injector of the Electronic Controlled Fuel Injector. Threaded body 12 has a bore 16 extending substantially therethrough which slidingly accommodates plunger 18. Plunger 18 is actuated in the conventional manner by plunger actuator follower 20 and biasing return spring 22. Threaded body 12 is equipped with a fuel metering orifice 24 oriented such that when the plunger is in a fully returned position, a low pressure fuel passage 26 is provided in the plunger which cooperatively engages the metering orifice to allow fuel to pass from the variable fuel line 84 to the fuel accumulation volume chamber 28. It is important to note that metering orifice 24 is of a larger diameter than the low pressure fuel passage 26.

Nut 14 is bored to accommodate a solenoid control valve 30 which is oriented proximal to the fluid cumulation volume chamber 28. Turning to Figure 2, the solenoid control valve assembly is preferably of a slow response variety and may be driven by a pulse with modulation output from an engine control module not shown.

The solenoid includes a stator with an electric coil wound thereon and the coil is controllably connected to a source of electric energy and the ECM so that control of the electric solenoid can be electronically controlled. The electronic solenoid armature 50 is movably mounted within the solenoid assembly and is magnetically proximate to the stator core. The armature is resiliently biased away from the core by an armature coil spring 52. Moreover, the armature includes a stop 56 to prevent damage to the armature during activation and deactivation. The armature is in reality a solenoid pop-it valve 46 having a dual valve stem attached to the armature spring seat 60. The armature spring seat is movable within armature chamber 62 so that by energizing the coil 41, the armature is magnetically actuated within the chamber a predetermined distance.

It is expected that a slow response solenoid could be used since the supply pressure is not varied rapidly through the fuel system. Crushers at the injection point are at optimum ranges independent of engine speed. This allows improved control of fuel injection parameters, including higher peak injection capability and less fluid injection pressure drop at the end of injection resulting in improved engine performance and lower emissions, noise and wear. Moreover, it is possible using the fuel injection system of the instant invention to design a common rail fuel system which does not suffer from pressure variability and resulting injection inefficiencies.

As can be seen in Figures 1, 2, and 3, high pressure fuel passage 32 extends through the stator of the solenoid and is in fluid communication with the fluid accumulation volume chamber 28 in the body of the injector. The dual control valve stem 48 is equipped with a Z-shaped fuel bypass passage 46 which allows fluid communication between high pressure fuel passage 32 and high pressure fuel passage 33. The high pressure fuel passage 33 is put in fluid communication with high pressure fuel passage 32 when the solenoid valve is actuated as seen in Figure 3, thereby moving the fuel passage 46 into communication with both fuel passage 33 and fuel passage 32 to allow pressurized fuel to travel from the fuel accumulation pressure chamber 28 through the solenoid control valve assembly and into the spray tip chamber 34. The tip of the injector is of the conventional sort, having a spray tip valve 36 with a spring seat 42 slidably disposed within a bore 35 in the tip. The spray tip coil spring 38 acts to bias the spray tip valve assembly in a closed position so that fuel does not exit through orifices 40. The spray tip needle is equipped with a differential portion which in reaction to pressurized fuel entering chamber 34, biases against the spring thereby opening the spray nozzle and allowing fuel to be injected into an engine cylinder (not shown). The plunger is acted upon by a rocker 70 which in turn follows cam 68 through an injection sequence thereby pressurizing the fuel during the injection sequence of operation.

The camshaft has a plurality specially designed cam lobe to drive the EUI plungers. Ideally the camshaft has one cam lobe for each EUI Each cam lobe has four sections. The first is a base circle section 21 for fuel metering process,. The second is a rising section 23 for pressurizing fuel captured in the accumulative chamber. The third is a zero velocity section 25 when a plunger reaches its maximum lift. The third section should be long enough to cover all possible injection timing sequences. The fourth section is a falling section 27 which should be overlapped with a rising section of another cam lobe for recovering energy of remaining pressurized fuel in the accumulative chamber.

Turning now back to Figure 1, the fuel system 72 is comprised of a fuel storage area depicted as a fuel tank 74 having a low pressure fuel passage 76 leading to a low pressure fuel pump 78. The low pressure fuel pump may be hydraulic or electric or of any sort which is able to keep output pressure at about 10 bar. A pressure regulator 80 is disposed on the fuel line 76 and is electrically connected to the ECM 81 to send and receive information to and from the ECM. The pressure regulator is applied at the output of the fuel delivery pump. Fuel pressure is feedback adjusted by the ECM. The fuel pressure regulator insures that the fuel pressure from the low pressure fuel pump is modulated and kept within a range of about 10 bar. A fuel pressure sensor works in conjunction with the fuel pressure regulator to keep the output pressure of the fuel delivery pump at about 10 bar within the now constant fuel pressure passage 84. Fuel pressure passage 84 is in fluid communication with the metering orifice 26 of the injector 10 to allow fuel to travel from the fuel tank to the injector and thereby be injected in the engine.

In an overview of the operation of the Electronic Controlled Fuel Injection System of the Present Invention, cam 68 rotates to a base circle section. The fuel cumulative chamber 28 begins to be short-circuited to the fuel supply port when the plunger is approaching its highest point. Under an ECM defined supply pressure, fresh fuel is fed into the fuel cumulative chamber through the metering 24. The amount of fuel fed into the fuel cumulative chamber is determined by the fuel supply pressure which is calibrated by a two-dimensional map, Ps = F (engine speed load), which is contained in the software of the ECM. The cumulative chamber is then filled and the cam begins to face the rising section and drives the plunger downward via operation of the rocker arm engaging the follower 20. The begin of pressurization point (BOP) is defined by the amount of fuel in the cumulative chamber. The pressurizing process ends when the maximum lift section of the camshaft has been reached. The steady high state pressure will be kept in the cumulative chamber until fuel injection actually begins. It has been determined that the fuel pressure level at the end of the fuel pressure rising period depends upon the begin of pressurization point. It follows therefore that the earlier the begin of pressurization point is defined, the a higher the fuel pressure.

The pressure in the cumulative chamber or fuel injection pressure is directly related to fuel feeding pressure and is independent of engine speed and load. By means of this system, it is anticipated that there are more freedoms to map fuel injection pressures and optimize engine performance and emission perimeters than was possible in the prior art. It will be further appreciated that all fuel volumes exposed to high pressure are in the cumulative chamber within the injector body and the maximum fuel injection pressure possible is comparable to the level of an electronic unit injector system.

In the fuel injection phase, the cam is in the maximum lift section and the plunger is kept stationary. The solenoid is activated by the ECM at calibrated timing to connect the nozzle chamber and the fuel cumulative chamber. The pressure in the needle chamber rises rapidly to lift the needle and start fuel injection. The injection pressure will be reduced gradually due to fuel injection. The allowed maximum fuel pressure drop is determined by the designed volume of the cumulative chamber which is a tradeoff of injector size. To this end, it is expected that the volume of the cumulative chamber is 20 to 60 times of maximum fuel volume/cycle of the needle chamber and is optimized based on a tradeoff of injector compactness, maximum injector pressure and maximum injection pressure drop.

During the pressure energy release phase, the cam begins its falling section. The plunger moves upward to push the cam load in the direction of its rotation through the expansion of the remaining pressurized fuel in the cumulative chamber. Since part of the energy consumed to pressurize fuel is recovered during this period, the total power consumption of the new injection system is less than that in conventional fuel injection systems. The end point of pressurizing and the begin point of pressure release are defined by smooth curves of the cam lobe. Therefore, there is much less abrupt mechanical impact on the camshaft and drive train. Moreover, it is now possible to adapt a common rail fuel system to a multi-cylindered internal combustion engine and eliminate the drawbacks of common rail fuel systems. Among these drawbacks are that of providing sufficient pressure in the fuel line to supply the injectors with enough fuel to satisfy engine needs.

Figure 4 shows such a common rail fuel system. Indeed, it will become apparent to one of ordinary skill in the art that Figure 1 is merely a detailed view of one EUI of the system of Figure 4.


Anspruch[de]
Kraftstoffeinspritzsystem, das aufweist eine Niederdruck- Kraftstoffförderpumpe (78) mit einer konstanten Ausgangsleistung in der Fluid- Verbindung mit einem Niederdruck- Kraftstoffkanal (76, 84); ein elektronisches Steuerungsmodul (81); um den Kraftstoffdruck in dem Niederdruck- Kraftstoffkanal (76, 84) auf einen gewünschten Kraftstoffförderdruck zu überwachen und einzustellen und Kraftstoff zu einem Einspritzer (10) unter einem rückmeldungsgesteuerten Druck zuzuführen; und zumindest einen Einspritzer (10) in Fluid- Verbindung mit einem Zylinder in einer Brennkraftmaschine; wobei der Einspritzer (10) einen Einspritzerkörper (12) hat, ausgerüstet mit einer Kraftstoff- Messdrosselstelle (24), um Kraftstoff von dem Niederdruck- Kraftstoffkanal (76, 84) zu einer Kraftstoffsammelkammer (28) innerhalb des Einspritzers zu führen, einen hin- und hergehenden Kolben (18) innerhalb des Einspritzers (10); wobei der Kolben (18) mit einem Kolbenkanal (26) ausgerüstet ist; wobei der Kolbenkanal (26) sich an einem Ende zu der Kraftstoffsammelkammer (28) öffnet, der Einspritzer (10) außerdem mit einem elektronisch gesteuerten Magnetsteuerventil (36) ausgerüstet ist, um eine Kraftstoffnadel (36) innerhalb des Einspritzers (10) zu betätigen, um Kraftstoff in den Motorzylinder einzuspritzen, und eine Nockenwelle mit zumindest einer Nockennase (68), um den Einspritzerkolben (18) anzutreiben; wobei die Nockennase (68) einen Basiskreisabschnitt (21) hat, um Kraftstoff für die Einspritzung abzumessen; einen Anstiegsabschnitt (23) für das Unterdrucksetzen von Kraftstoff in der Kraftstoffsammelkammer (28); einen Nullgeschwindigkeitsabschnitt (25) von ausreichender Länge, um eine Mehrzahl von Kraftstoffeinspritzzeitpunktabfolgen abzudecken, und einen fallenden Abschnitt (27); wobei die Nockenwelle mit dem Kipphebelarm (70) zusammenwirkt, um den Kolben (18) anzutreiben und Kraftstoff in den Motorzylinder einzuspritzen,

gekennzeichnet dadurch

dass der Niederdruck- Kraftstoffkanal (76, 84) mit einem elektronisch- gesteuerten Kraftstoffdruckregler (80) und einem Kraftstoffdrucksensor verbunden ist, und sich der Kolbenkanal (26) während des Hin- und Hergehens des Kolbens (18) innerhalb des Einspritzers (10) an seinem anderen Ende zu der Messdrosselstelle (24) öffnet.
Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Niederdruck- Kraftstoffförderpumpe (78) den Kraftstoff, gefördert durch den Niederdruck- Kraftstoffkanal, bei einem konstanten Druck von 10 bis 20 bar hält. Kraftstoffeinspritzsystem von Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kraftstoff- Messdrosselstelle (24) von größerem Durchmesser als der Kolbenkanal (26) ist. Kraftstoffeinspritzsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kolbenkanal (26) nur in Verbindung mit der Messdrosselstelle (24) ist, wenn der Kolben (18) in einer vollständig zurückgezogenen Position ist. Kraftstoffeinspritzsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kraftstoffsammelkammer (28) 10 bis 20 mal das maximale Kraftstoffvolumen / Takt einer Nadelkammer (34) beträgt. Kraftstoffeinspritzsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Magnetsteuerventil (30) eine Magnetspule mit langsamer Reaktion enthält, die auf einen Impulsbreiten- modulierten Antrieb reagiert. Kraftstoffeinspritzsystem nach Anspruch 6, dadurch gekennzeichnet, dass das Magnetventil ein Ablassventil enthält, bewegbar innerhalb einer Ankerkammer (62); einen Ventilschaft (48), ausgerüstet mit einem Schaftkanal (46) derart, dass Kraftstoff aus der Kraftstoffsammelkammer (28) durch den Schaftkanal (46) in die Nadelkammer (34) nur geführt wird, wenn das Magnetventil aktiviert ist.
Anspruch[en]
A fuel injection system, comprising a low pressure fuel delivery pump (78) with constant output in fluid communication with a low pressure fuel passage (76, 84); an electronic control module (81) to monitor and adjust fuel pressure in said low pressure fuel passage (76, 84) to a desired fuel delivery pressure and supply fuel to an injector (10) at a feed-back controlled pressure; and at least one injector (10) in fluid communication with a cylinder in an internal combustion engine; said injector (10) having an injector body (12) equipped with a fuel metering orifice (24) to supply fuel from the low pressure fuel passage (76, 84) to a fuel cumulative chamber (28) within the injector (10), a reciprocating plunger (18) within said injector (10); said plunger (18) equipped with a plunger passage (26); said plunger passage (26) opening at one end to said fuel cumulative chamber (28), said injector (10) further equipped with an electronically controlled solenoid control valve (36) to operate a fuel needle (36) within said injector (10) to inject fuel into said engine cylinder; and a camshaft with at least one cam lobe (68) to drive said injector plungers (18); said cam lobe (68) having a base circle section (21) to meter fuel for injection; a rising section (23) for pressurizing fuel in the cumulative chamber (28); a zero velocity section (25) of sufficient length to accommodate a variety of fuel injection timing sequences, and a falling section (27); said camshaft interactive with a rocker arm (70) to drive said plunger (18) and inject fuel into said engine cylinder,

characterized by

said low pressure fuel passage (76, 84) being connected to an electronic controlled fuel pressure regulator (80) and a fuel pressure sensor, and said plunger passage (26) upon reciprocation of the plunger (18) within the injector (10), opening at its other end to said metering orifice (24).
The fuel injection system of Claim 1, characterized in that said low pressure fuel delivery pump (78) keeps the fuel delivered through the low pressure fuel passage at a constant pressure of 10 to 20 bar. The fuel injection system of Claim 1 or 2, characterized in that said fuel metering orifice (24) is of larger diameter than said plunger passage (26). The fuel injection system of one of Claims 1 to 3, characterized in that said plunger passage (26) is in communication with said metering orifice (24) only when said plunger (18) is in a fully returned position. The fuel injection system of one of Claims 1 to 4, characterized in that said cumulative chamber (28) is 10 to 20 times the maximum fuel volume/cycle of a needle chamber (34). The fuel injection system of one of Claims 1 to 5, characterized in that the solenoid control valve (30) includes a slow response solenoid, which is responsive to a pulse width modulated drive. The fuel injection system of Claim 6, characterized in that said solenoid includes a poppet valve moveable within an armature chamber (62); a valve stem (48) equipped with a stem passage (46) there through such that fuel is poured from the cumulative chamber (28) through the stem passage (46) and into the needle chamber (34) only when the solenoid is activated.
Anspruch[fr]
Un système d'injection de carburant, comprenant une pompe de fourniture de carburant basse pression (78) ayant un débit constant, en communication fluidique avec un passage de carburant basse pression (76,84) ; un module de commande électronique (81) pour surveiller et ajuster la pression de carburant dans ledit passage de carburant basse pression (76,84) à une pression de fourniture de carburant souhaitée, et fournir du carburant à un injecteur (10), à une pression commandée par asservissement, et au moins un injecteur (10) en communication fluidique avec un cylindre, dans un moteur à combustion interne ; ledit injecteur (10) ayant un corps d'injecteur (12) équipé d'un orifice de dosage de carburant (24) pour fournir du carburant depuis le passage de carburant basse pression (76,84) à une chambre d'accumulation de carburant (28) située dans l'injecteur (10), un plongeur à mouvement de va et vient (18) monté dans ledit injecteur (10), ledit plongeur (18) étant équipe d'un passage à plongeur (26) ; ledit passage à plongeur (26) s'ouvrant à une extrémité vers ladite chambre d'accumulation de carburant (28), ledit injecteur (10) étant en outre équipé d'une électrovanne de commande (36) commandée électroniquement, pour actionner un pointeau à carburant (36) placé à l'intérieur dudit injecteur (10) pour injecter du carburant dans ledit cylindre de moteur thermique, et un arbre à came ayant au moins un lobe de came (68), pour entraîner lesdits plongeurs d'injecteur (18) ; ledit lobe de came (68) ayant une section de cercle de base (21) servant au dosage du carburant pour l'injection, une section montante (23a) pour la pressurisation du carburant situé dans la chambre d'accumulation (28) ; une section à vitesse zéro (25) ayant une longueur suffisante pour accepter une quantité de séquences de positionnement temporel de l'injection de carburant, et une section descendante (27) ; ledit arbre à came étant en interaction avec un bras de culbuteur (70), pour entraîner ledit plongeur (18) et injecter du carburant dans ledit cylindre de moteur thermique,

caractérisé par le fait que

ledit passage à carburant basse pression (76,84) est connecté à un régulateur de pression de carburant (80) à commande électronique et à un capteur de pression de carburant, et ledit passage de plongeur (26), lors du mouvement en va en vient du plongeur (18) à l'intérieur de l'injecteur (10), s'ouvre à son autre extrémité vers ledit orifice de dosage (24).
Le système d'injection de carburant selon la revendication 1, caractérisé en ce que ladite pompe de fourniture de carburant basse pression (78) maintient le carburant, délivré par le passage de carburant basse pression, à une pression constante, dans la fourchette de 10 à 20 bars. Le système d'injection de carburant selon la revendication 1 ou 2, caractérisé en ce que ledit orifice de dosage de carburant (24) est d'un plus grand diamètre que le passage de plongeur (26). Le système d'injection de carburant selon l'une des revendications 1 à 3, caractérisé en ce que ledit passage de plongeur (26) est en communication avec ledit orifice de dosage (24), uniquement lorsque ledit plongeur (16) est en une position complètement retournée. Le système d'injection de carburant selon l'une des revendications 1 à 4, caractérisé en ce que ladite chambre d'accumulation (28) est d'un volume faisant 10 à 20 fois le volume maximal de carburant/cycle d'une chambre à pointeau (34). Le système d'injection de carburant selon l'une des revendications 1 à 5, caractérisé en ce que l'électrovanne de commande (30) comprend un solénoïde à réponse lente, réagissant à une commande à modulation d'impulsions en largeur. Le système d'injection de carburant selon la revendication 6, caractérisé en ce que ledit solénoïde comprend une soupape à champignon, déplaçable dans une chambre à induit (62), une tige de soupape (68) équipée en son sein d'un passage à tige (46) la traversant, de manière que du carburant soit versé de la chambre d'accumulation (28) par le passage à tige (46) et dans la chambre à pointeau (34), uniquement lorsque le solénoïde est activé.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com