PatentDe  


Dokumentenidentifikation EP1088965 29.06.2006
EP-Veröffentlichungsnummer 0001088965
Titel Pyrometerhalterung für eine Gasturbine mit geschlossenem Kühlkreislauf
Anmelder General Electric Co., Schenectady, N.Y., US
Erfinder Jones, Raymond Joseph, Duanesburg, New York 12056, US;
c, deceased, US;
Burns, James Lee, Schenectady, New York 12308, US;
Fulton, John Robert, Clifton Park, New York 12065, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60028149
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 09.06.2000
EP-Aktenzeichen 003049079
EP-Offenlegungsdatum 04.04.2001
EP date of grant 24.05.2006
Veröffentlichungstag im Patentblatt 29.06.2006
IPC-Hauptklasse F01D 17/08(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse F01D 21/00(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to gas turbines having a closed-circuit thermal medium cooling system for cooling the nozzle stages and particularly relates to a pyrometer mount for a closed-circuit steam-cooled gas turbine for determining the surface temperature of gas turbine components in the hot gas path.

A pyrometer adapter for a gas turbine is disclosed in US-A-5421652.

In a multi-stage advanced gas turbine, the nozzle stages are cooled by a thermal medium, preferably cooling steam. The steam flows into a plenum in the outer band of the nozzle stage for impingement cooling of the outer band. The steam then flows through the vanes of the nozzle stages for impingement cooling the vanes and into a plenum in the inner band for cooling the inner band. The spent cooling steam returns from the inner band through cavities in the vanes and through the outer band. It will be appreciated that the nozzle stages lie in the hot gas path of the turbine. It has been found necessary to monitor the surface temperature of gas turbine components during operational use and particularly to monitor the operational temperature of the first-stage buckets which, of course, rotate in the hot gas path.

To accomplish this, a pyrometer is employed which has a line of sight through the steam-cooled outer band of a nozzle stage, for example, the second stage, downstream of the buckets whose operational temperature is to be measured, e.g., the first-stage buckets. As will be appreciated, the outer band and cover contain cooling steam which would normally interrupt any line of sight through the nozzle stage. That is, the pyrometer must be able to see through the cover and nozzle band along the line of sight without allowing steam to leak into the components of the gas turbine or into the hot gas path. Consequently, the present invention addresses the requirement for a pyrometer's line of sight to pass through a steam-cooled nozzle without steam leakage.

In accordance with a preferred embodiment of the present invention, a pyrometer mount is provided enabling the pyrometer's line of sight to pass through the nozzle's outer cover and outer band while providing a joint between the mount and the nozzle stage without steam leakage. It will be appreciated that the nozzle stage is formed of an array of nozzle segments circumferentially arranged about the rotor axis. In the present invention, the outer cover and band of a selected nozzle segment are provided with a pair of openings in registration with one another and angled in a forward and circumferential direction. A pyrometer boss is disposed in the openings and extends between the outer cover and the outer band, terminating along the radial inner surface of the outer band in the hot gas flow path. The radially inner portion of the pyrometer boss is electron beam welded to the outer band. Particularly, the circumferential angle of the axis of the apertures and the boss received through the apertures permits the electron beam to weld about the margin of the boss and outer band from one side of the nozzle segment. By using an electron beam welding technique, reduced distortion and a better quality weld at that location is provided. The radial outer end of the pyrometer boss is preferably TIG-welded to the outer cover. By welding about each of the radially inner and outer ends of the boss, leakage-free joints are provided between the boss and the outer band and cover.

Upon installation of the boss in the nozzle stage segment, the boss is machined to provide a through aperture having an axis generally corresponding to the axis of the registering holes through the outer band and outer cover. Also, a seat is provided in the aperture of the boss to receive a tube coupling the boss to a pyrometer mounted on the turbine frame. Thus, a line of sight facilitating temperature readings of the first-stage bucket is established through the outer band and outer cover of a steam-cooled nozzle stage.

In a preferred embodiment of the present invention, there is provided a pyrometer mount and nozzle stage assembly for a closed-circuit thermal medium cooled gas turbine, comprising a nozzle stage segment having inner and outer bands with at least one nozzle vane extending therebetween, the bands and the vane adapted to lie in a hot gas path of the turbine, a cover spaced from the outer band and lying on a side thereof remote from the vane, the cover and the outer band defining a plenum for receiving the thermal medium, the outer band and the cover having openings therethrough in registration with one another and a pyrometer boss having an aperture therethrough disposed in the registering openings, the boss being welded to both the outer band and the cover to seal the cooling medium within the plenum without cooling medium leakage about the boss.

An embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:

  • FIGURE 1 is a fragmentary perspective view of a nozzle stage segment with portions in cross-section illustrating a pyrometer mount according to a preferred embodiment of the present invention;
  • FIGURE 2 is an enlarged fragmentary perspective view with portions broken out and in cross-section illustrating welds between the pyrometer mount and the nozzle stage;
  • FIGURE 3 is a plan view of the pyrometer mount;
  • FIGURE 4 is a side elevational view of the pyrometer mount;
  • FIGURE 5 is a plan view of an outer cover for the nozzle segment illustrating an opening for receiving the pyrometer mount; and
  • FIGURE 6 is a front elevational view of the nozzle segment illustrating the location and angle of the pyrometer mount.

Referring to the drawings, particularly to Figure 1, there is illustrated a nozzle vane segment, generally designated 10. Segment 10 forms part of a circumferential array of segments joined one to the other for disposition in the hot gas path, generally designated 12, and about the axis of a turbine. The illustrated nozzle segment comprises one of the plurality of second-stage nozzle segments disposed aft of a plurality of circumferentially first-stage buckets 15. In the illustrated nozzle segment 10, the segment comprises a doublet having a pair of vanes 14 extending between radially inner and outer bands 16 and 18, respectively. It will be appreciated that the nozzle segments 10 may comprise a single vane between the inner and outer bands.

Referring more particularly to Figure 1, the outer band 18 includes a pair of radially outwardly projecting forward hooks 20 for securing the nozzle segment to the outer frame of the turbine. Additionally, Figure 1 illustrates the outer band with a forward outer cover 22 overlying the outer band and defining a plenum 24 therewith. An aft cover, not shown, overlies the aft portion of the outer band 18 and, with the outer band 18, defines the plenum 24. As illustrated in Figure 1, the vanes 14 have vane extensions 26 extending through the outer band. Extensions 26 form continuations of a plurality of cavities, for example, cavities 28, 30, 32 and 34, passing generally radially through the vanes 14. The cavities provide passages for flowing a thermal cooling medium, for example, steam, through the vanes 14 to the inner band 16 and returning the spent cooling steam from the inner band 16 and vanes 14. Additionally, the forward cover 22 includes a thermal cooling medium inlet 36 for supplying thermal medium, e.g., steam, to the plenum 24. Within the plenum 24, there is an impingement plate 40 (Figure 2) for directing the received cooling steam for impingement cooling of the outer band 18. Openings, not shown, are provided in the vane extensions 26 to supply the cooling steam after impingement on the outer band through the vanes to an inner plenum between the inner band 16 and an inner cover, not shown. The cooling steam is diverted for impingement cooling of the inner band and for return flow through one of the cavities of the vanes to exit the cooling system. It will be appreciated from the foregoing discussion that steam flows through the plenum 24 defined by the outer cover 22 and outer band 18 of the second-stage nozzle vane segment 10 into the vanes and inner plenums and returns without leakage relative to the hot gas path or other turbine components.

To monitor the surface temperature of the buckets forwardly of this stage, for example, the first-stage buckets 15, a pyrometer P is mounted externally about the frame of the turbine and employs a line of sight 56 looking directly into the hot gas path and forwardly at the buckets of the first stage to measure the surface temperature of the buckets. The line of sight 56 must pass through the outer cover and outer band of the following stage, i.e., the second stage, if the first-stage buckets are to be observed. A pyrometer must therefore be able to see through the outer cover and outer band without allowing steam to leak from the plenum 24 into the hot gas path or other turbine components. To accomplish this, openings lying in registration with one another are formed through the outer band 18 and outer front cover 22. For example, referring to Figure 2, an opening 42 is disposed through the outer band 18, while an opening 44 is formed through the outer front cover 22. The openings 42 and 44 register one with the other and are of a generally oval or racetrack configuration, as illustrated in Figure 5. Additionally, from a review of Figures 2 and 6, it will be appreciated that a central axis passing through the registering openings 42 and 44 extends forwardly and in an angled circumferential direction, for reasons which will become clear. An opening 45 is also formed through the impingement plate 40 in registration with each of the openings 42 and 44.

A pyrometer mount, for example, a boss 46, is disposed in the registering openings 42, 44 and 45. The boss 46 is elongated and has a similar oval or racetrack configuration at its juncture with each of the openings 42, 44 and 45. The boss has a stepped body at 50 and terminates at its radially inner end in a surface which, when installed, lies flush with the radial inner surface of the outer band 18. While Figure 3 shows the boss 46 with a linearly extending aperture 52 therethrough, it will be appreciated from the following description that the boss 46 is installed in the outer band without the aperture 52, which is later machined through the boss. Also, the boss 46 is tightly toleranced to the openings 42 and 44 through the outer band 18 and outer cover 22. Tight tolerances are not necessary between the boss 46 and the opening 45 through impingement plate 40.

To install the boss in the outer band and outer cover in a manner precluding thermal cooling medium leakage from the plenum 24, the boss is inserted through the outer cover and into the outer band. The joint between the boss and the outer band 18 is electron beam-welded at 43. By angling the openings 42 and 44, as illustrated in Figure 6, in a circumferential direction and locating the openings along one side of the segment, the electron beam of the welding apparatus can be disposed inwardly of the outer band and to one side of the segment to weld the boss to the outer band 18. Using electron beam-welding techniques reduces distortion and provides a high-quality weld 43 at the juncture of the boss and outer cover and which juncture is exposed to the high temperatures of the hot gas path. The impingement plate is then located about the boss but need not be secured or welded to the boss.

The aperture 52 is then machined through the boss 46. The axis of the aperture 52 is generally coaxial with the axis of the registering openings 42 and 44. After the aperture 52 is formed through the boss, the outer cover 22 is placed on the segment in a radial direction and then displaced aft to accommodate the boss. This provides a gross fit between the forward outer cover opening 44 and the boss 46. A TIG-weld 51 is then provided to secure the boss to the outer cover, as well as to fill the gap between the opening 44 and the boss 46 to prevent leakage of the steam through the outer cover. The aperture 52 through the boss is also provided with a seat 57 for receiving the radial inner end of a pyrometer tube 58 which is coaxial with the axis of the aperture 52 through the boss. In this manner, the pyrometer mounted about the turbine frame has a clear, linearly extending line of sight 56 to the buckets of the stage forwardly of the nozzle stage receiving the boss, in this instance, the first-stage buckets. Consequently, the surface temperature of the first-stage buckets can be readily measured by the pyrometer.

The openings through the cover and outer band are skewed in forward and circumferential directions. The aperture 52 through the boss is similarly angularly oriented. Particularly, the line of sight axis 56 (Figure 6) extends forwardly at an acute angle to a plane normal to the rotor axis and at an acute angle relative to an axial plane intersecting the axis of the aperture. The line of sight angle facilitates the electron beam welding of the boss to the outer band.


Anspruch[de]
Pyrometerhaltevorrichtung und Düsenstufenanordnung für eine mit einem thermischen Medium in einem geschlossenen Kreislauf gekühlte Gasturbine, die aufweist: ein Düsenstufensegment (10), das ein inneres und ein äußeres Deckband (16, 18) mit wenigstens einer Düsenleitschaufel (14) aufweist, die sich zwischen diesen erstreckt, wobei die Deckbänder und die Leitschaufel dazu eingerichtet sind, in einem Heißgaspfad der Turbine angeordnet zu sein, gekennzeichnet durch: eine Abdeckung (22), die von dem äußeren Deckband (18) beabstandet angeordnet ist und sich auf der von der Leitschaufel abgewandten Seite desselben befindet, wobei die Abdeckung und das äußere Deckband einen Raum (24) zur Aufnahme des thermischen Mediums bilden, wobei das äußere Deckband und die Abdeckung Öffnungen (42, 44) durch sie hindurch aufweisen, die aufeinander ausgerichtet sind, und ein Pyrometeraugenelement (46), das eine Öffnung (52) durch dieses hindurch aufweist und in den aufeinander ausgerichteten Öffnungen (42, 44) angeordnet ist, wobei das Augenelement sowohl mit dem äußeren Deckband als auch mit der Abdeckung verschweißt ist, um das Kühlmedium ohne Leckverluste von Kühlmittel um das Augenelement herum innerhalb des Raumes dicht einzuschließen. Anordnung nach Anspruch 1, bei der das Augenelement (46) mit dem äußeren Deckband (18) elektronenstrahlverschweißt ist. Anordnung nach Anspruch 1, bei der das Augenelement (46) mit der Abdeckung (22) WIG-verschweißt ist. Anordnung nach Anspruch 1, bei der das Augenelement (46) mit dem äußeren Deckband (18) elektronenstrahlverschweißt und mit der Abdeckung (22) WIG-verschweißt ist. Anordnung nach Anspruch 1, bei der sich die Öffnung (52) durch das Augenelement geradlinig zwischen den gegenüberliegenden Enden desselben und entlang einer gegenüber der Drehachse der Turbine schrägen Achse (56) erstreckt. Anordnung nach Anspruch 1, bei der die Öffnung (52) eine sich geradlinig erstreckende Achse (56) und einen Sitz (57) zur Aufnahme eines Endes eines geradlinigen Rohres (58) aufweist, das koaxial innerhalb der Öffnung und in dem Augenelement angeordnet ist. Anordnung nach Anspruch 1, die eine Prallplatte (40) innerhalb des Raumes, die zwischen dem äußeren Deckband und der Abdeckung beabstandet angeordnet ist, und eine auf die Öffnungen (42, 44) in dem äußeren Deckband und der Abdeckung ausgerichtete Öffnung in der Prallplatte zur Aufnahme des Augenelementes aufweist. Anordnung nach Anspruch 1, bei der die Düsenstufe die zweite Stufe einer mehrstufigen Turbine ist, wobei die Öffnung (52) eine sich geradlinig erstreckende Achse (56) aufweist, wobei das Augenelement (46) so angeordnet ist, dass die sich geradlinig erstreckende Achse der Öffnung sich in den Gaspfad hinein erstreckt, der durch die erste Stufe der mehrstufigen Turbine gebildet wird. Anordnung nach Anspruch 1, bei der die Öffnung (52) eine geradlinige Achse (56) aufweist, die sich (i) in einer Vorwärtsrichtung erstreckt und einen spitzen Winkel mit einer Ebene senkrecht zu der Drehachse der Turbine bildet und sich (ii) in der Umfangsrichtung erstreckt und einen spitzen Winkel mit einer axialen Ebene bildet, die die Achse der Öffnung schneidet.
Anspruch[en]
A pyrometer mount and nozzle stage assembly for a closed-circuit thermal medium cooled gas turbine, comprising: a nozzle stage segment (10) having inner and outer bands (16, 18) with at least one nozzle vane (14) extending therebetween, said bands and said vane adapted to lie in a hot gas path of the turbine; characterised by a cover (22) spaced from said outer band (18) and lying on a side thereof remote from said vane, said cover and said outer band defining a plenum (24) for receiving the thermal medium; said outer band and said cover having openings (42, 44) therethrough in registration with one another; and a pyrometer boss (46) having an aperture (52) therethrough disposed in said registering openings (42, 44), said boss being welded to both said outer band and said cover to seal the cooling medium within the plenum without cooling medium leakage about the boss. An assembly according to Claim 1 wherein said boss (46) is electron beam-welded to said outer band (18). An assembly according to Claim 1 wherein said boss (46) is TIG-welded to said cover (22). An assembly according to Claim 1 wherein said boss (46) is electron beam-welded to said outer band (18) and TIG-welded to said cover (22). An assembly according to Claim 1 wherein said aperture (52) through said boss extends linearly between opposite ends thereof and along an axis (56) skewed from a rotary axis of the turbine. An assembly according to Claim 1 wherein said aperture (52) has a linearly extending axis (56) and a seat (57) for receiving an end of a linear tube (58) disposed coaxially within the aperture and into said boss. An assembly according to Claim 1 including an impingement plate (40) within said plenum and spaced between said outer band and said cover and an opening in said impingement plate in registration with the openings (42, 44) in said outer band and said cover for receiving the boss. An assembly according to Claim 1 wherein said nozzle stage is the second stage of a multi-stage turbine, said aperture (52) having a linearly extending axis (56), said boss (46) being disposed such that the linearly extending axis of said aperture extends into the gas path defined by a first stage of said multi-stage turbine. An assembly according to Claim 1 wherein said aperture (52) has a linear axis (56) which extends (i) in a forward direction and forms an acute angle with a plane normal to the axis of rotation of the turbine and (ii) in a circumferential direction and forms an acute angle with an axial plane intersecting the axis of said aperture.
Anspruch[fr]
Ensemble de fixation de pyromètre et d'étage distributeur pour turbine à gaz refroidie par milieu thermique en circuit fermé, comprenant : un segment d'étage distributeur (10) ayant des bandes intérieure et extérieure (16, 18) avec au moins une aube de distributeur (14) s'étendant entre elles, lesdites bandes et ladite aube étant adaptées pour se trouver dans un trajet de gaz chauds de la turbine ; caractérisé par un couvercle (22) espacé par rapport à ladite bande extérieure (18) et se trouvant sur un côté de celle-ci éloigné de ladite aube, ledit couvercle et ladite bande extérieure définissant un espace (24) destiné à recevoir le milieu thermique ; ladite bande extérieure et ledit couvercle comportant des ouvertures (42, 44) les traversant alignées entre elles ; et un bossage pour pyromètre (46) comportant une ouverture (52) le traversant disposé dans lesdites ouvertures alignées (42, 44), ledit bossage étant soudé à la fois sur ladite bande extérieure et sur ledit couvercle pour confiner le milieu de refroidissement à l'intérieur de l'espace sans fuite de milieu de refroidissement autour du bossage. Ensemble selon la revendication 1, dans lequel ledit bossage (46) est soudé par faisceau d'électrons sur ladite bande extérieure (18). Ensemble selon la revendication 1, dans lequel ledit bossage (46) est soudé par TIG sur ledit couvercle (22). Ensemble selon la revendication 1, dans lequel ledit bossage (46) est soudé par faisceau d'électrons sur ladite bande extérieure (18) et est soudé par TIG sur ledit couvercle (22). Ensemble selon la revendication 1, dans lequel ladite ouverture (52) traversant ledit bossage s'étend linéairement entre les extrémités opposées de celui-ci et suivant un axe (56) biaisé par rapport à un axe de rotation de la turbine. Ensemble selon la revendication 1, dans lequel ladite ouverture (52) a un axe s'étendant linéairement (56) et un siège (57) pour recevoir une extrémité d'un tube linéaire (58) disposé coaxialement à l'intérieur de l'ouverture et dans ledit bossage. Ensemble selon la revendication 1, comprenant une plaque de déviation (40) à l'intérieur dudit espace et espacée entre ladite bande extérieure et ledit couvercle et une ouverture dans ladite plaque de déviation en correspondance avec les ouvertures (42, 44) pratiquées dans ladite bande extérieure et dans ledit couvercle pour recevoir le bossage. Ensemble selon la revendication 1, dans lequel ledit étage distributeur est le deuxième étage d'une turbine à plusieurs étages, ladite ouverture (52) ayant un axe s'étendant linéairement (56), ledit bossage (46) étant disposé de telle manière que l'axe s'étendant linéairement de ladite ouverture s'étend dans le trajet de gaz défini par un premier étage de ladite turbine à plusieurs étages. Ensemble selon la revendication 1, dans lequel ladite ouverture (52) a un axe linéaire (56) qui s'étend (i) dans une direction avant et qui forme un angle aigu avec un plan perpendiculaire à l'axe de rotation de la turbine et (ii) dans une direction périphérique et qui forme un ange aigu avec un plan axial qui coupe l'axe de ladite ouverture.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com