PatentDe  


Dokumentenidentifikation EP1138826 29.06.2006
EP-Veröffentlichungsnummer 0001138826
Titel Verwendung von fluorierten Verbindungen als Trennmittel
Anmelder Solvay Solexis S.p.A., Mailand/Milano, IT
Erfinder Carignano, Gabriella, 20020 Arese, Milano, IT;
De Dominicis, Mattia, 35100 Padova, IT
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60119818
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 13.02.2001
EP-Aktenzeichen 011032851
EP-Offenlegungsdatum 04.10.2001
EP date of grant 24.05.2006
Veröffentlichungstag im Patentblatt 29.06.2006
IPC-Hauptklasse D21H 21/14(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse D21H 19/12(2006.01)A, L, I, 20051017, B, H, EP   B05D 5/08(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to compounds to confer release properties to cellulose supports.

Specifically, the invention relates to the treatment of cellulose supports, such as paper, cardboard, etc., with particular fluorinated derivatives such as to confer release properties. With "release" the capability of the treated surface to allow an easy manual release of adhesives, such as for example labels, is meant.

It is known in the prior art that labels are commercialized on paper supports treated with high amounts of silicone polymers to confer release properties which imply an easy manual release of the labels from the paper supports. In EP 608,780 a fluorosilicone composition is described which applied to the surface of various substrata, such as for example, paper, synthetic textiles, after a suitable thermal crosslinking treatment at high temperature, causes the formation of a film which confers to the paper release properties towards adhesive substances. The drawback of the use of the above mentioned fluorosilicone compositions resides in that they require an application process wherein the treating composition is applied to the substratum dissolved in an organic solvent. The commonly used organic solvents are aromatic, aliphatic and halogenated hydrocarbons, which are generally flammable and/or toxic liquids. These treatments cannot therefore be carried out on line, (directly in paper mill), but they require specific plants. A further drawback consists in that after the solvent evaporation, a crosslinking phase of the silicone polymer at high temperature, in the range 100-150°C, is necessary.

When aqueous silicone dispersions are used, the conferred release properties are worsened with respect to the case when the silicone dispersions are dissolved in an organic solvent.

The need was felt to have available products capable to confer improved release properties, applicable from completely aqueous formulations or aqueous formulations containing reduced amounts of co-solvent, with the maximum value of 10% with respect to water, without requiring a crosslinking phase at high temperature.

The Applicant has unexpectedly and surprisingly found specific compounds able to overcome the above mentioned drawbacks of the prior art, improving the release properties conferred to cellulose supports when said compounds are applied from aqueous or prevailingly aqueous formulations.

An object of the present invention are therefore fluorinated compounds and their use to confer release properties to cellulose substrata, said fluorinated compounds being selected from the following structures:

  • (A)



            [Rf-CFY-L-O]mP(O) (O-Z+)3-m



  • (B)



            (O-Z+)2P(O) [O-L-YFC-O-Rf-CFY-L-O-P(O) (O-Z+)]m'-- [O-L-YFC-O-Rf-CFY-L-O]P(O) (O-Z+)2



  • (C) Fluorinated (meth)acrylic copolymers
  • (D)



            (Rt-CF2-SO2N (U1) (U2) -O] g-P (O) (OZ)3-g



in the compounds of structure (A) and (B) the following definitions mean:
  • m' is an integer from 0 to 20, preferably from 0 to 4;
  • L is an organic group selected from -CH2-(OCH2CH2)n-, -CO-NR'-(CH2)q-, with R'=H or C1-C4 alkyl group;
  • n=0-8, preferably 1-3, q=1-8, preferably 1-3;
  • Z= H, alkane metal or a NR4 group with R=H or C1-C4 alkyl group;
  • Y=F, CF3;
  • m=1,2,3, preferably 1,2;
  • Rf has a number average molecular weight in the range 350 - 8,000, preferably 500-3,000 and it comprises repeating units having at least one of the following structures, statistically placed along the chain:

    (CFXO), (CF2CF2O), (CF2CF2CF2O), (CF2CF2CF2CF2O),

    (CR4R5CF2CF2O), (CF (CF3) CF2O), (CF2CF (CF3) O),
wherein

X = F, CF3;

R4 and R5, equal to or different from each other, are selected from H, Cl, or perfluoroalkyl from 1 to 4 carbon atoms; in the structure (D) the following definitions mean:
  • Rt is a linear or branched when possible perfluorocarbon radical having from 1 to 20 carbon atoms, preferably from 6 to 10 carbon atoms;
  • U1, U2 equal to or different from each other, are selected from linear or branched C1-C8 alkyl groups, (CH2CH2O) Q ethylenoxide groups, wherein Q is in the range 1-20, preferably 1-4;
  • g is an integer in the range 1-3.

Mixtures of two or more of the compounds (A), (B), (C) and (D) can also be used.

In particular Rf in the structures (A) and (B) can have one of the following structures:

  1. 1) -



            (CF2O) a' - (CF2CF2O) b'-



    with a'/b' in the range 0.5-2, extremes included, a' and b' being integers such as to give the above mentioned molecular weight;
  2. 2)



            -(C3F6O)r-(C2F4O)b - (CFXO)t-



    with r/b = 0.5-2.0; (r+b)/t is in the range 10-30, b, r and t being integers such as to give the above mentioned molecular weight, X has the above mentioned meaning;
  3. 3)



            -(C3F6O)r,-(CFXO)t'-



    t' can be 0;

    when t' is different from 0 then r'/t' = 10-30,

    r' and t' being integers such as to give the above mentioned molecular weight; X has the above indicated meaning;
  4. 4)



            - (OCF2CF (CF3) )z-OCF2 (R' f)y-CF2O- (CF (CF3) CF2O) z-



    wherein z is an integer such that the molecular weight is the above mentioned one;

    y is an integer between 0 and 1 and R'f is a fluoroalkylene group having for example 1-4 carbon atoms;
  5. 5)



            - (OCF2CF2CR4R5)q-OCF2(R'f)y-CF2O- (CR4R5CF2CF2O)s-



    wherein:
    • q and s are integers such that the molecular weight is the above mentioned one;
    • R4, R5, R'f, y have the above mentioned meaning;
  6. 6)



            - (C3F6O)r'" (CFXO)t"', -OCF2 (R'f)y-CF2O(CF(CF3)CF2O)r'" (CFXO)t"'-



wherein r"'/t"' = 10-30,

r"' and t"' being integers such as to give the above mentioned molecular weight;

R'f and y having the above mentioned meaning.

In the above indicated formulas:

  • - (C3F6O)- can represent units of formula
  • - (CF (CF3)CF2O)- and/or - (CF2-CF3(CF)) O)-

In the structure (A) wherein Rf is monofunctional, the other end group is of the T-O- type, wherein T is a (per)-fluoroalkyl group selected from: -CF3, -C2F5, -C3F7, -CF2Cl, -C2F4Cl, -C3F6Cl; optionally one or two F atoms, preferably one, can be replaced by H.

Among the compounds of structure (A) the following compounds are already known for other applications:

  • m=2, Rf of structure 3) wherein t'=0, r'=1-8, Z=H, alkaline metals, optionally substituted ammonium ion, T= -C2F5, -C3F7;
  • m=1 and Rf having structure 1)-6), T= perfluorinated group optionally containing one chlorine atom.

The mentioned fluoropolyethers (A) and (B) are obtainable by the well known processes in the prior art, see for example the following patents: USP 3,665,041, 2,242,218, 3,715,378, and EP 239123. The functionalized fluoropolyethers having hydroxyl termination are for example obtained according to EP 148482, USP 3,810,874.

The preparation of the monofunctional (per)fluoropolyether phosphates of structure (A) can be carried out by reacting the corresponding hydroxy-terminated (per)fluoroalkylenoxides with POCl3. To obtain the monoester derivative (m=1) it is necessary to use a molar ratio POCl3/hydroxy-terminated compound in the range 2/1-10/1, preferably 6/1-8/1. The reaction is carried out by slowly dropping the hydroxy-terminated compound in POCl3, at a temperature between 50 and 1-00°C, preferably between 70° and 80°C, removing the HCl vapours in a KOH trap. The POCl3 excess is removed by distillation while the formed adduct is hydrolysed by H2O. The separation of the obtained product takes place by extraction with a suitable organic solvent, such as for example ethyl acetate. The product of structure (A) with m=1 is separated from the organic phase according to known techniques, for example by solvent evaporation.

To obtain the biester derivative (m=2) of formula (A) one proceeds as in the monoester case with the difference that after the POCl3 removal, the reaction adduct is furtherly reacted with an equimolar amount of hydroxy-terminated compound. Subsequently hydrolysis is carried out and one proceeds as above described.

To obtain the triester derivative (m=3) of formula (A) one proceeds as in the monoester case with the difference that after the POCl3 removal, the reaction adduct is furtherly reacted with a bimolar amount of hydroxy-terminated compound. Subsequently hydrolysis is carried out and one proceeds as above described.

The preparation of the bifunctional (per)fluoropolyether phosphates of structure (B) can be carried out by reacting the corresponding di-hydroxy-terminated (per)fluoroalkylenoxides with POCl3. To obtain the derivative with m'=0, it is necessary to use a molar ratio POCl3/di-hydroxy-terminated compound in the range 4/1-20/1, preferably 12/1-16/1.

The reaction is carried out by slowly dropping the hydroxy-terminated compound in POCl3, at a temperature between 50 and 100°C, preferably between 70° and 80°C, removing the HCl vapours in a KOH trap. The POCl3 excess is removed by distillation while the formed adduct is hydrolysed by H2O. The separation of the product (B) with m'=0 takes place by extraction with a suitable organic solvent, such as for example ethyl acetate. The product is separated from the organic phase according to known techniques, for example by solvent evaporation.

To obtain the product of structure (B) with m'>0, one proceeds as in the case m'=0 with the difference that after the POCl3 removal, the reaction adduct is furtherly reacted with variable amounts of the di-hydroxy-terminated compound. Subsequently hydrolysis is carried out and the above described procedure is performed.

The compound (C) used in the present invention is formed by (meth)acrylic monomers comprising perfluoroalkyl groups having C3-C30 chain, linear or branched, or perfluoropolyether groups having chain from 4 to 30 carbon atoms; optionally one or more sulphonamide groups, hydrogenated (meth)acrylic monomers and cation and/or anion (meth)acrylic ionomer monomers.

As examples of these monomers reference is preferably made to the formulas (I), (II), (III) and (IV) reported hereunder, wherein the substituents have the mentioned meanings.

These fluoro(meth)acrylated copolymers are for example described in USP 2,803,615, 2,839,513, 2,995,542, 3,814,741, 3,356,628, 3,536,749, 4,525,423, 4,529,658, EP 622,653 and EP 870,778 as precursor acrylic monomers.

Said copolymers can be prepared for example by emulsion polymerization, in the presence of an emulsifier, catalyst and chain transfer agent as described for example in USP 4,525,423. For example the fluoroacrylated copolymers (C) can be obtained by using the following monomers in the indicated amounts:

  • a) from 1 to 30% by weight of monomers or monomer mixtures of formula



            R1O (R2O) nII [C (O)CH2O] mIICOCH=CH2     (II)



    wherein

    R1 is a C1-C20 alkyl, cycloalkyl, haloalkyl, halocycloalkyl group, (halo = Cl, Br);

    R2 is a C1-C6 alkylene or haloalkylene group, each group R2 can be equal to or different from other R2 groups, at least one R1 or R2 group contains one halogen atom, nII is an integer from zero to 10, with the proviso that when n is zero R1 is a C1-C16 haloalkyl or halocycloalkyl group ;

    mII is zero or 1;
  • b) from 60 to 80% of monomers or monomer mixtures of formula



            (RfI)pIQOCOCH=CH2     (I)



    wherein

    RfI is a fluoroalkyl radical having C3-C30, preferably C3-C20, carbon atoms, or it is a perfluoropolyether radical PFPE containing the above mentioned units and having a number of carbon atoms in the range C5-C30;

    pI is 1 or 2;

    Q is a polyvalent binding bridge, C1-C12 divalent from 1 to 12 carbon atoms, or an aromatic radical C3-C12. Q can optionally contain heteroatoms as N, O, S, or carbonylimino, sulphonylimino or carbonyl groups; Q can be unsubstituted or it can contain halogen atoms, hydroxyl groups, C1-C6 alkyl radicals and preferably it does not contain double or triple bonds; preferably Q is -CH2-, -C2H4-, -SO2N(R5)C2H4-, -SO2N(R5)CH2CH(CH3)-, -C2H4SO2N(R5)-C4H8-, R5 is H or a C1-C4 alkyl group;
  • c) from 0 to 15%, preferably from 1 to 15% of monomers or monomer mixtures of formula wherein R3 is H or methyl;
  • d) from 1 to 6% of cation and/or anion monomers, or mixtures thereof, of formula



            CH2=C(R4)ZIVYIVX     (IV)



    wherein R4 is H or methyl,

    the group ZIV has a carbonyl or aromatic group or one oxygen or sulphur atom directly bound to the vinylidene radical of the monomer; the group ZIV can be preferably selected from the following:
    • -COOCH2CH(OH)CH2-, -COO(CH2)kIV-, -CONH(CH2)kIV, wherein kIV is an integer from 2 to 6;
    • YIV can be of the cation type YIV + and it is preferably selected from: (a) pyridinium ion, (b) N+(R6)3 ion wherein each R6 is independently H or a C1-C4 alkyl group, or two of any R6 combine to form a C4-C5 alkylene group, or two of any R6 are - (CH2)2- and combine with one oxygen atom to give the structure - (CH2)2-O- (CH2)2-, (c) phosphonium ions and (d) sulphonium ions; preferably YIV + is N+ (R6)3 wherein
    • R6 is as above defined;
    • x is of anion type X-, when YIV is of cation type and it is preferably an halide (Cl, Br, I) or an alkyl sulphate;
    • YIV can be of anion type YIV and it is preferably selected from carboxyl and sulphonic groups;
    • X is of cation type X+, when YIV is of anion type and it is preferably H, alkaline metal, ammonium, or cations deriving from primary and secondary amines;
  • e) from 0 to 20% of monomers containing at least a double bond, such as for example maleic anhydride, acrylonitrile, vinyl acetate, vinyl chloride, vinyl fluoride, vinyliden fluoride, vinyliden cyanide, vinyl chloroacetate, vinyl silicone, ethylene, styrene, alkyl styrenes, halogenated styrenes, methacrylonitrile, N-vinyl carbazole, vinyl pyridine, vinyl alkyl ethers, vinyl alkyl ketones, isoprene, butadiene, chloroprene, fluoroprene, and mixtures thereof.

The preferred monomers of group a) are the esters alkyl, cycloalkyl, haloalkyl, halocycloalkyl (halo = Cl, Br) from 1 to 20 carbon atoms of the acrylic or methacrylic acid.

The preferred monomers of group b) are those containing C4-C12 perfluoroalkyl chains, still more preferably containing the sulphonamide group, such as for example C8F17SO2N(CH3)CH2CH2OCOCH=CH2; when RfI is based on PFPE, T'O(C3F6O)r'(CF2O)t, CF2CH2OCH2CH2OCOC(CH3)=CH2 can be mentioned,

wherein

T' = C1-C3 perfluoroalkyl, optionally one or more F atoms of T', generally one F atom, are substituted by H and/or Cl; r' and t' as above defined.

The monomers usable in group b) can also have the structures corresponding to the general formula:



        T' O- (CF2CF2O) b, (CF2O)a, -CF2-Aq,,,-T0



wherein T', a' and b' have the above defined meaning;

q''' is an integer from 0 to 1, A is a bivalent radical, preferably of linear aliphatic type (CH2)m' 0 wherein m' 0 is an integer from 1 to 20, or (alkylen)cycloaliphatic, (alkylen)-aromatic type.

The bivalent radical A can optionally contain heteroatoms in the ring or in the alkylene chain, or it can be both a linear and branched polyalkylenoxy chain, in particular containing repeating units of the CH2CH2O, CH2CH(CH3)O, (CH2)3O, (CH2)4O type. A can also contain groups of amide, ester, ether, COO, sulphur, imine type; the number of carbon atoms of the cycloaliphatic compounds being from 3 to 20, for the aromatic ones from 5 to 20; the group A can also be a combination of the indicated types; the bond group of A with the perfluoromethylene group of the fluorinated chain can be for example: -C-, -O-, -CONR- (R is H, alkyl, cycloaliphatic or aromatic groups with less than 15 carbon atoms), -CO2-, -COS-, -CO-, one heteroatom, or the triazinic, or the heterocyclic aromatic groups having 5 or 6 atoms containing 2 or more heteroatoms equal to or different from each other; T0 is -COOCH=CH2, -COOCH2CH=CH2.

The compound (C) used in the present invention is available on the market under the form of aqueous dispersions of fluoroacrylates, for example as Scotchgard® , Scotchban® by 3M.

The compounds of the invention are used in aqueous formulations, optionally in the presence of a co-solvent having a concentration lower than 10% by weight. The co-solvent is selected from aliphatic alcohols having from 1 to 6 carbon atoms; aliphatic glycols having from 2 to 8 carbon atoms, optionally having an esterified hydroxyl; ketones or esters having from 3 to 10 carbon atoms.

When the compounds of the invention are used alone in the application phase, the treating aqueous solution has a concentration in the range 0.1-30% by weight, preferably 1-10% by weight, and it is applied by the techniques mentioned below.

To obtain good release properties the amount of the applied compound for treated surface unit is in the range 0.01-10 g/m2, preferably 0.1-2 g/m2.

The preferred compounds of the invention are those having structure (B).

The described products having structure (A), (B), (C) and (D), preferably the compound of structure (B), are also usable as release additives of formulations for various applications in the manufacture of papers, for example special papers.

The compounds of the invention are for example usable as release additives of aqueous silicone emulsions in coating applications of papers in confectionery, where the release property of the paper with respect to the food is important or in the label field where the release property of the paper - with respect to the glue is important.

Another example of application of the products of the invention relates to their use as release additives of acrylic or silicone thermoweldable aqueous dispersions. The paper at present used in packaging is often coupled with a polyethylene film which forms a barrier towards the absorption of oils and greases and at the same time it allows the paper thermoweldability to obtain bags of different size and shape. By the products of the invention, silicone or acrylic aqueous dispersions can directly be used in paper mill to obtain thermoweldable coatings which allow the paper recycle. In fact the invention products allow, when additived with the above mentioned thermoweldable coatings to avoid the tackiness thereof at room temperature while allowing to maintain the weldability features unchanged at a temperature in the range 100-170°C.

The compounds of the invention, when used as release additives, are used in a ratio by weight in the range 1:1-1:50, preferably 1:3-1:30, with respect to the hydrogenated and/or silicone and/or acrylic polymer.

The compositions containing the additives or the compounds of the invention as such show release properties and give coatings having stable release properties with respect to tacky substances, for example pressure-sensitive adhesives, for example of silicone or acrylic type.

The additived formulation can be applied by coating, dipping or spraying starting from aqueous solutions having a concentration in the range 1%-50% by weight, preferably 10-30% by weight. The amount of the additive applied for treated surface unit is the same as that utilized when compounds as such are used.

The following Examples are given for illustrative purposes of the invention and they are not limitative of the scope of the same.

EXAMPLES EXAMPLE 1

In this Example paper samples having a basis weight equal to 65 g/m2 and 8x5 cm sizes, have been treated by an aqueous formulation having a concentration equal to 10% by weight which is a mixture of the structures reported hereunder:

  1. 1)



            (NH4O)2(O)PO(C2H4O)pCH2CF2O (C2F4O)n(CF2O)mCF2CH2(OC2H4)p--OP(O)(ONH4)2



  2. 2)



            [(NH4O)2(O) PO (C2H4O) pCH2CF2O (C2F4O) n (CF2O) mCF2CH2 (OC2H4) pO]2--P(O)ONH4



wherein p=1-4, n=2-4, m=2-6.

The structure 2) represents about 40% by moles with respect to the 1) one.

The product application has been carried out at room temperature, placing on the edge of the paper samples the treating solution by syringe and subsequently uniformly spreading the product using a little aluminum bar. After the application, the paper samples are placed in a stove at the temperature of T=80°C for 10 minutes so as to eliminate the absorbed water.

The evaluation of the given release properties is carried out by a test called "test release" described hereinafter: - on the paper sample an adhesive tape (label) having 1x5 cm sizes is applied on which an uniform pressure is exerted by an aluminum weight equal to 70 grams. Such pressure is exerted for 5 minutes. After said time, the weight is removed and the force necessary for the release of the adhesive tape from the paper sample is measured by a dynamometer. For each sample at least three measurements have been carried out. The measured force is expressed in grams and the reported value represents the average value of the three tests.

The experimental data obtained by applying known amounts of the product (expressed in g/m2) are described in Table 1, where for comparison the release force referred to the untreated paper sample is reported (first line): TABLE 1 Applied amount (g/m2) Release force (g) 160 0.58 1.1 1.23 0.7 1.37 0.8 3.12 0
It is observed that a good label release is obtained also at a very low concentration of deposited product.

EXAMPLE 2

The same paper samples described in Example 1 are treated with an aqueous formulation having a concentration equal to 10% by weight which is a mixture of the structures reported hereunder:

  1. 1) (NH4O)2(O)PO (C2H4O)pCH2CF2O (C2F4O)n(CF2O)mCF2CH2(OC2H4)p--OP(O)(ONH4)2
  2. 2) [(NH4O)2(O)PO(C2H4O)pCH2CF2O(C2F4O)n(CF2O)mCF2CH2(OC2H4)pO]2--P(O)ONH4
wherein p=1-4, n=2-4, m=2-6

The structure 2) represents about 10% by moles with respect to the 1) one.

The evaluation of the given release properties is carried out as described in Example 1. The results are reported in Table 2. TABLE 2 Applied amount (g/m2) Release force (g) 0.88 1.25 2.12 0

EXAMPLE 3

The same paper samples are treated likewise to what described in Example 1 with an aqueous formulation of a commercial fluoroacrylate SCOTCHBAN® FC866 (3M) having a dry product concentration equal to 10% by weight.

The evaluation of the given release properties is carried out as described in Example 1. The results are reported in Table 3. TABLE 3 Applied amount (g/m2) Release force (g) 1.53 66.6 2.99 0.84
In this case an amount of product of about 3 g/m2 is necessary to obtain good release properties.

EXAMPLE 4

The same paper samples are treated likewise to what described in Example 1 with an aqueous formulation having a concentration equal to 10% by weight of the monofunctional perfluoropolyether phosphate having structure:



        [Cl (C3F6O)pCF2CH2O (CH2CH2O)n]mP (O) (ONH4)m-3



with p=2-5, n=1-4, m=1-3.

The evaluation of the given release properties is carried out as described in Example 1. The obtained results are reported in Table 4. TABLE 4 Applied amount (g/m2) Release force (g) 0.4 5 1.53 2.2

EXAMPLE 5

The same paper samples have been treated as described in Example 1, using an aqueous formulation of a commercial fluorinated phosphate SCOTCHBAN® FC807A (3M) at a concentration equal to 10% by weight.

The release test has been carried out under the same conditions described in Example 1. The obtained results are reported in Table 5. TABLE 5 Applied amount (g/m2) Release force (g) 1.73 19.2 2.57 0.8

EXAMPLE 6 (comparative)

The same paper samples are treated with a formulation of a monofunctional perfluoropolyether polyethoxy having the structure reported below, at a concentration equal to 10% by weight.



        Cl (C3F6O) pCF2C (O)NHC3H6 (C2H4O)22CH3



The treatment of the paper and the evaluation of the given release properties have been carried out as described in Example 1. Table 6 shows the obtained results. TABLE 6 Applied amount (g/m2) Release force (g) 0.86 95 1.73 83 4.15 72
It is observed how, in this case, even with high amounts of the applied product (about 4g/m2), good release properties are not given to the paper.

EXAMPLE 7

An aqueous formulation containing 49% by weight of a hydrogenated acrylic polymer with thermoweldable properties (Crodacoat® 59-598 produced by CRODA) is additived to the aqueous solution of the ammonium salt of the bifunctional perfluoropolyether phosphate described in Example 1, so as to obtain final ratios by weight acrylic polymer/phosphate PFPE equal to 3:1; 9:1; 15:1 and 30:1. The total dry product concentration (acrylic polymer + phosphate PFPE) is equal to 30% by weight. Paper samples having a basis weight equal to 65 g/m2 and 8x5 cm sizes, have been treated with the above described mixture so as to apply a final amount of product equal to 5 g/m2.

The product application and the release test have been carried out under the same conditions described in Example 1. The applied amount of product has resulted equal to 5 g/m2.

The obtained results are reported in Table 7, where, for comparison, the measured release force referred to the paper sample treated only with the aqueous formulation of the hydrogenated acrylic polymer (last line), is reported. TABLE 7 Used product Ratio by weight Release force (g) Acrylic polymer/phosphate PFPE 3:1 1 Acrylic polymer/phosphate PFPE 9:1 1 Acrylic polymer/phosphate PFPE 15:1 2 Acrylic polymer/phosphate PFPE 30:1 3 Acrylic polymer - > 200

EXAMPLE 8

An aqueous formulation containing 49% by weight of a hydrogenated acrylic polymer with thermoweldable properties (Crodacoat® ) is additived to the aqueous solution of the ammonium salt of the bifunctional perfluoropolyether phosphate of Example 2 under the same conditions described in Example 7. Paper samples are treated with the obtained mixture.

The product application and the release test have been carried out under the same conditions described in Example 1. The obtained results are reported in Table 8. TABLE 8 Used product Ratio by weight Release force (g) Acrylic polymer/phosphate PFPE 3:1 5 Acrylic polymer/phosphate PFPE 6:1 23 Acrylic polymer/phosphate PFPE 9:1 28

EXAMPLE 9

An aqueous formulation containing 49% by weight of a hydrogenated acrylic polymer with thermoweldable properties (Crodacoat® ) is additived to the aqueous solution of the ammonium salt of the monofunctional perfluoropolyether phosphate described in Example 4 under the same conditions described in Example 7.

The product application and the release test have been carried out under the same conditions described in Example 1. The applied amount of the product has resulted equal to 5 g/m2. The obtained results are reported in Table 9. TABLE 9 Acrylic polymer/ phosphate PFPE Release force (g) 3:1 43 9:1 45


Anspruch[de]
Verwendung von fluorierten Verbindungen, um Cellulosesubstraten Ablöseeigenschaften zu verleihen, wobei die fluorierten Verbindungen aus den folgenden Strukturen ausgewählt werden: (A)



        [Rf-CFY-L-O]mP(O) (O-Z+) 3-m



(B)



        (O-Z+)2P(O)[O-L-YFC-O-Rf-CFY-L-O-P(O)(O-Z+)]m'-[O-L-YFC-O-Rf-CFY-L-O]P(O)(O-Z+)2



(C) fluorierten (Meth)acrylcopolymeren (D)



        [Rt-CF2-SO2N(U1) (U2) -O]g-P(O) [OZ)3-g



wobei

m' eine ganze Zahl von 0 bis 20, vorzugsweise von 0 bis 4 ist;

L eine organische Gruppe ist, die ausgewählt ist aus -CH2-(OCH2CH2)n-, -CO-NR'-(CH2)q-, wobei R' = H oder C1-C4-Alkylgruppe;

n = 0-8, vorzugsweise 1-3, q = 1-8, vorzugsweise 1-3;

Z = H, Alkanmetall oder eine NR4-Gruppe mit R = H oder C1-C4-Alkyl-Gruppe;

Y = F, CF3;

m = 1, 2, 3, vorzugsweise 1, 2;

Rf ein Zahlenmittel des Molekulargewichts im Bereich von 350-8000, vorzugsweise 500-3000 besitzt und sich wiederholende Einheiten mit mindestens einer der folgenden Strukturen umfasst, wobei diese entlang der Kette statistisch angeordnet sind:

(CFXO), (CF2CF2O), (CF2CF2CF2O), (CF2CF2CF2CF2O), (CF4R5CF2CF2O), (CF(CF3)CF2O), (CF2CF(CF3)O),

wobei X = F, CF3; R4 und R5 gleich oder voneinander verschieden sind und ausgewählt sind aus H, Cl oder Perfluoralkyl mit 1 bis 4 Kohlenstoffatomen;

Rt ein linearer oder, wenn möglich, verzweigter Perfluorkohlenstoffrest mit 1 bis 20 Kohlenstoffatomen, vorzugsweise mit 6 bis 10 Kohlenstoffatomen ist;

U1, U2 gleich oder voneinander verschieden sind und ausgewählt sind aus linearen oder verzweigten C1-C8-Alkylgruppen (CH2CH2O)o-Ethylenoxidgruppen, wobei o im Bereich von 1-20, vorzugsweise 1-4 liegt;

g eine ganze Zahl im Bereich von 1-3 ist.
Verwendung nach Anspruch 1, wobei Rf in den Strukturen (A) und (B) ausgewählt ist aus: 1)



        -(CF2O)a' - (CF2CF2O)b'-



mit a'/b' im Bereich von 0,5-2, Extrema eingeschlossen, wobei a' und b' ganze Zahlen sind, die derart sind, dass das oben erwähnte Molekulargewicht erhalten wird;
2)



        - (C3F6O)r- (C2F4O)b- (CFXO)t-



mit r/b = 0,5-2,0; (r+b)/t liegt im Bereich von 10-30; b, r und t sind ganze Zahlen, die derart sind, dass das oben erwähnte Molekulargewicht erhalten wird; X besitzt die oben erwähnte Bedeutung;
3)



        -(C4F6O)r'-(CFXO)t'-



wenn t' verschieden von 0 ist, dann ist r'/t' = 10-30; r' und t' sind ganze Zahlen, die derart sind, dass das oben erwähnte Molekulargewicht erhalten wird; X besitzt die oben erwähnte Bedeutung;
4)



        -(OCF2CF(CF3))z-OCF2(R'f)y-CF2O-(CF(CF3)CF2O)z-



wobei z eine ganze Zahl ist, die derart ist, dass das Molekulargewicht das oben erwähnte ist; y ist eine ganze Zahl zwischen 0 und 1 und R'f ist eine Fluoralkylengruppe mit 1-4 Kohlenstoffatomen;
5)



        -(OCF2CF2CR4R5)q-OCF2(R'f)y-CF2O-(CR4R5CF2CF2O)o-



wobei q und s ganze Zahlen sind, die derart sind, dass das Molekulargewicht das oben erwähnte ist; R4, R5, R'f, y besitzen die oben erwähnten Bedeutungen;
6)



        -(C3F6O)r"'(CFXO)t"'-OCF2(R'f)y-CF2O(CF(CF3)CF2O)r"'-(CFXO)t"'-



wobei r"'/t"' = 10-30; r"' und t"' sind ganze Zahlen, die derart sind, dass das oben erwähnte Molekulargewicht erhalten wird; R'f und y besitzen die oben erwähnten Bedeutungen.
Verwendung nach den Ansprüchen 1-2, wobei in der Struktur (A) die andere Endgruppe vom Typ T-O- ist, wobei T eine (Per)fluoralkylgruppe ist, die ausgewählt ist aus: -CF3, -C2F5, -C3F7, -CF2Cl, -C2F4Cl, -C3F6Cl; wobei gegebenenfalls ein oder zwei F-Atome, vorzugsweise eines, durch H ersetzt sein können. Verwendung nach Anspruch 1, wobei das fluorierte (Meth)acrylcopolymer (C) von (Meth)acrylmonomeren abstammt, die Perfluoralkylgruppen mit linearen oder verzweigten C3-C30-Ketten oder Perfluorpolyethergruppen mit Ketten von 4 bis 30 Kohlenstoffatomen umfassen; gegebenenfalls einer oder mehreren Sulfonamidgruppen, hydrierten (Meth)acrylmonomeren und Kationen- und/oder Anionen-(Meth) acrylionomermonomeren. Verwendung nach Anspruch 4, wobei die fluorierten Copolymere (C) aus den folgenden Monomeren in den erwähnten Mengen erhalten werden: a) von 1 bis 30 Gew.-% an Monomeren oder Monomermischungen der Formel



        R1O(R2O)nII[C(O)CH2O]mIICOCH=CH2     (II)



wobei

R1 eine C1-C20-Alkyl-, Cycloalkyl-, Halogen-alkyl-, Halogencycloalkylgruppe ist, (Halogen = Cl, Br);

R2 eine C1-C6-Alkylen- oder Halogenalkylengruppe ist, wobei jede Gruppe R2 gleich anderer R2-Gruppen oder von denen verschieden sein kann und mindestens eine R1- oder R2-Gruppe ein Halogenatom enthält;

nII eine ganze Zahl von 0 bis 10 ist, mit der Vorgabe, dass, wenn n gleich 0 ist, R1 eine C1-C16-Halogenalkyl- oder Halogencycloalkylgruppe ist;

mII gleich 0 oder 1 ist;
b) von 60 bis 80 % an Monomeren oder Monomermischungen der Formel



        (RfI)pIQOCOCH=CH2     (I)



wobei

RfI ein Fluoralkylrest mit C3-C30-, vorzugsweise C3-C20-Kohlenstoffatomen ist oder dieser ein Perfluorpolyetherrest PFPE ist, der die oben erwähnten Einheiten enthält und eine Anzahl an Kohlenstoffatomen im Bereich von C5-C30 aufweist;

pI gleich 1 oder 2 ist;

Q eine Brücke mit polyvalenter Bindung, C1-C12-zweiwertig von 1 bis 12 Kohlenstoffatomen oder ein aromatischer C3-C12-Rest ist; Q gegebenenfalls Heteroatome wie N, O, S oder Carbonylimino, Sulfonylimino oder Carbonylgruppen enthält; Q gegebenenfalls substituiert ist oder Halogenatome, Hydroxylgruppen, C1-C6-Alkyklreste enthält und vorzugsweise keine Doppel- oder Dreifachbindungen enthält; Q vorzugsweise -CH2-, -C2H4-, -SO2N(R5)C2H4-, -SO2N(R5)CH2CH(CH3)-, -C2H4SO2N(R5)C4H8- ist, R5 gleich H oder eine C1-C4-Alkylgruppe ist;
c) von 0 bis 15 % vorzugsweise von 1 bis 15 % an Monomeren oder Monomermischungen der Formel wobei R3 gleich H oder Methyl ist; d) von 1 bis 6 % an Kationen- und/oder Anionenmonomeren oder deren Mischungen der Formel



        CH2=C(R4)ZIVYIVX     (IV)



wobei R4 gleich H oder Methyl ist,

die Gruppe ZIV eine Carbonyl- oder aromatische Gruppe oder ein Sauerstoff- oder Schwefelatom, die oder das direkt an den Vinylidenrest des Monomers gebunden ist, aufweist; die Gruppe ZIV aus den Folgenden ausgewählt ist: -COOCH2CH(OH)CH2-, -COO(CH2)kIV-, -CONH(CH2)kIV, wobei kIV eine ganze Zahl von 2 bis 6 ist; YIV vorzugsweise das Kation vom Typ YIV+ ist und es vorzugsweise ausgewählt ist aus: (a) Pyridiniumion, (b) N+(R6)3-Ion, wobei jedes R6 unabhängig H oder eine C1-C4-Alkylgruppe ist oder zwei der R6 unter Ausbildung einer C4-C5-Alkylengruppe kombiniert sind oder zwei der R6 gleich -(CH2)2-sind und mit einem Sauerstoffatom kombiniert sind, um die Struktur -(CH2)2-O-(CH2)2- zu ergeben, (c) Phosphoniumionen und (d) Sulfoniumionen; YIV+ vorzugsweise gleich N+(R6)3 ist, wobei R6 wie oben definiert ist; X ein Anion vom Typ X- ist, wenn YIV vom Typ eines Kations ist und es vorzugsweise ein Halogenid (Cl, Br, I) oder ein Alkylsulfat ist; YIV, wenn es vom Typ eines Anions YIV- ist, ausgewählt ist aus Carboxyl- und Sulfongruppen; X vom Typ eines Kations X+ ist, wenn YIV vom Typ eines Anions ist und es vorzugsweise H, Alkalimetall, Ammonium oder von primären und sekundären Aminen stammende Kationen ist;
e) von 0 bis 20 % an Monomeren, die mindestens eine Doppelbindung enthalten, wie Maleinsäureanhydrid, Acrylnitril, Vinylacetat, Vinylchlorid, Vinylfluorid, Vinylidenfluorid, Vinylidencyanid, Vinylchloracetat, Vinylsilicon, Ethylen, Styrol, Alkylstyrole, halogenierte Styrole, Methacrylnitril, N-Vinylcarbazol, Vinylpyridin, Vinylalkylether, Vinylalkylketone, Isopren, Butadien, Chloropren, Fluoropren und deren Mischungen.
Verwendung nach Anspruch 5, wobei die Monomere der Gruppe a). die Alkyl-, Cycloalkyl-, Halogenalkyl-, Halogencycloalkylester (Halogen = Cl, Br) mit 1 bis 20 Kohlenstoffatomen der Acryl- oder Methacrylsäure sind;

die Monomere der Gruppe b) C4-C12-Perfluoralkylketten enthalten, welche vorzugsweise die Sulfonamidgruppe wie C8F17SO2N(CH3)CH2CH2OCOCH=CH2 enthalten;

wobei RfI auf PFPE basiert, es vorzugsweise T'O(C3F6O)r'(CF2O)t'CF2CH2OCH2CH2OCOC(CH3) = CH2 ist, wobei T' = C1-C3-Perfluoralkyl, wobei gegebenenfalls ein oder mehrere F-Atome von T', im Allgemeinen ein F-Atom, substituiert sind durch H und/oder Cl;

r' und t' wie oben definiert sind; oder

die Monomere der Gruppe b) ausgewählt sind aus den Strukturen, die der folgenden allgemeinen Formel entsprechen:



        T'O-(CF2CF2O)b'(CF2O)a'-CF2-Aq"'-T0



wobei T', a' und b' die oben definierten Bedeutungen besitzen;

q"' eine ganze Zahl von 0 bis 1 ist, A ein zweiwertiger Rest ist, vorzugsweise vom linearen aliphatischen Typ (CH2)m'0, wobei m'0 eine ganze Zahl von 1 bis 20 ist, oder vom (alkylen)cycloaliphatischen, (alkylen)aromatischen Typ;

der zweiwertige Rest A gegebenenfalls Heteroatome im Ring oder in der Alkylenkette enthält oder sowohl eine lineare als auch verzweigte Polyalkylenoxykette ist, die insbesondere sich wiederholende Einheiten des Typs CH2CH2O, CH2CH(CH3)O, (CH2)3O, (CH2)4O enthält;

A gegebenenfalls Amid-, Ester-, Ether-, COO-, Schwefel-, Imingruppen enthält, wobei die Anzahl an Kohlenstoffatomen der cycloaliphatischen Verbindungen von 3 bis 20, für die aromatischen von 5 bis 20 reicht; die Gruppe A auch eine Kombination der angegebenen Typen sein kann; die Bindungsgruppe von A mit der Perfluormethylengruppe der fluorierten Kette ausgewählt ist aus: -C-, -O-, -CONR- (R ist gleich H, Alkyl, cycloaliphatische oder aromatische Gruppen mit weniger als 15 Kohlenstoffatomen), -CO2-, -COS-, -CO-, einem Heteroatom oder den triazinischen oder den heterocyclischen aromatischen Gruppen mit 5 oder 6 Atomen, die zwei oder mehrere gleiche oder voneinanderverschiedene Heteroatome enthalten; T0 gleich -COOCH=CH2, -COOCH2CH=CH2 ist.
Verwendung nach den Ansprüchen 1-6, wobei die Verbindungen in wässrigen Zubereitungen verwendet werden, gegebenenfalls in der Gegenwart eines Colösungsmittels mit einer Konzentration von weniger als 10 Gew.-%. Verwendung nach Anspruch 7, wobei das Colösungsmittel ausgewählt ist aus aliphatischen Alkoholen mit 1 bis 6 Kohlenstoffatomen, aliphatischen Glycolen mit 2 bis 8 Kohlenstoffatomen, die gegebenenfalls ein verestertes Hydroxyl besitzen; Ketonen oder Estern mit 3 bis 10 Kohlenstoffatomen. Verwendung nach den Ansprüchen 7-8, wobei die wässrige Behandlungslösung eine Konzentration im Bereich von 0,1-30 Gew.-%, vorzugsweise 1-10 Gew.-% besitzt. Verwendung nach den Ansprüchen 1-9, wobei die Menge der aufgebrachten Verbindung für eine behandelte Oberflächeneinheit im Bereich von 0,01-10 g/m2, vorzugsweise 0,1-2 g/m2 liegt. Verwendung nach den Ansprüchen 1-10, wobei die verwendete Verbindung die Struktur (B) besitzt. Verwendung nach den Ansprüchen 1-11, wobei die Verbindungen (A), (B), (C) und (C) als Ablöseadditive für Zubereitungen bei der Papierherstellung verwendet werden. Verwendung nach Anspruch 12, wobei die Zubereitungen für die Papierherstellung folgende sind: - wässrige Siliconemulsionen zur Papierbeschichtung auf dem Gebiet der Konfektionierung oder der Etikettierung; - thermisch schweißbare Acryl- oder wässrige Silicondispersionen auf dem Gebiet der Verpackung. Verwendung nach den Ansprüchen 12-13, wobei die Verbindungen in einem Gewichtsverhältnis im Bereich 1:1-1:50, vorzugsweise 1:3-1:30 bezogen auf das hydrierte Silicon- und/oder Acrylpolymer verwendet werden. Verwendung nach den Ansprüchen 12-14, wobei die mit Additiven versetzte Zubereitung ausgehend von wässrigen Lösungen aufgebracht wird, die eine Konzentration im Bereich von 1-50 Gew.-%, vorzugsweise 10-30 Gew.-% besitzen. Verwendung nach den Ansprüchen 1-15, wobei die Verbindungen als solche oder als Additive durch Beschichten, Eintauchen oder Sprühen aufgebracht werden.
Anspruch[en]
Use of fluorinated compounds to confer release properties to cellulose substrata, said fluorinated compounds being selected from the following structures: (A) [Rf-CFY-L-O]mP(O) (O-Z+)3-m (B) (O-Z+)2P(O)[O-L-YFC-O-Rf-CFY-L-O-P(O)(O-Z+)]m'-- [O-L-YFC-O-Rf-CFY-L-O] P(O) (O-Z+)2 (C) Fluorinated (meth)acrylic copolymers (D) [Rt-CF2-SO2N (U1) (U2)-O]g-P(O)(OZ)3-g wherein: m' is an integer from 0 to 20, preferably from 0 to 4; L is an organic group selected from -CH2-(OCH2CH2)n-, -CO-NR' - (CH2)q-, with R'=H or C1-C4 alkyl group; n=0-8, preferably 1-3, q=1-8, preferably 1-3; Z= H, alkane metal or a NR4 group with R=H or C1-C4 alkyl group; Y=F, CF3; m=1,2,3, preferably 1,2; Rf has a number average molecular weight in the range 350-8,000, preferably 500-3,000 and it comprises repeating units having at least one of the following structures, statistically placed along the chain: (CFXO), (CF2CF2O), (CF2CF2CF2O),(CF2CF2CF2CF2O), (CR4R5CF2CF2O), (CF (CF3) CF2O),(CF2CF (CF3)O), wherein X = F, CF3 ; R4 and R5, equal to or different from each other, are selected from H, Cl, or perfluoroalkyl from 1 to 4 carbon atoms; - Rt is a linear or branched when possible perfluorocarbon radical having from 1 to 20 carbon atoms, preferably from 6 to 10 carbon atoms; - U1, U2 equal to or different from each other, are selected from linear or branched C1-C8 alkyl groups, (CH2CH20)Q ethylenoxide groups, wherein Q is in the range 1-20, preferably 1-4; - g is an integer in the range 1-3. Use according to claim 1, wherein Rf in the structures (A) and (B) is selected from: 1)



        - (CF2O)a'- (CF2CF2O)b'-



with a'/b' in the range 0.5-2, extremes included, a' and b' being integers such as to give the above mentioned molecular weight;
2)



        - (C3F6O)r- (C2F4O)b- (CFXO)t-



with r/b = 0.5-2.0; (r+b)/t is in the range 10-30, b, r and t being integers such as to give the above mentioned molecular weight, X has the above mentioned meaning;
3)



        -(C3F6O)r, - (CFXO)t, -



when t' is different from 0 then r'/t' = 10-30; r' and t' being integers such as to give the above mentioned molecular weight; X has the above indicated meaning;
4)



        -(OCF2CF(CF3) )z-OCF2(R'f)y-CF2O- (CF(CF3)CF2O)z-



wherein z is an integer such that the molecular weight is the above mentioned one;

y is an integer between 0 and 1 and R' f is a fluoroalkylene group having 1-4 carbon atoms;
5)



        - (OCF2CF2CR4R5) q-OCF2 (R' f )y-CF2O- (CR4R5CF2CF2O) o-



wherein: q and s are integers such that the molecular weight is the above mentioned one; R4, R5, R'f, y have the above mentioned meaning;
6)



        - (C3F6O)r"' (CFXO) t"' -OCF2 (R'f)y-CF2O(CF(CF3)CF2O)r"' -(CFXO)t"'-



wherein r"'/t"' = 10-30,

r"' and t"' being integers such as to give the above mentioned molecular weight;

R'f and y having the above mentioned meaning.
Use according to claims 1-2, wherein in the structure (A) the other end group is of the T-O- type, wherein T is a (per)fluoroalkyl group selected from: -CF3, -C2F5, -C3F7, -CF2Cl, -C2F4Cl, -C3F6Cl; optionally one or two F atoms, preferably one, can be replaced by H. Use according to claim 1, wherein the fluorinated (meth)-acrylic copolymer (C) derives from (meth)acrylic monomers comprising perfluoroalkyl groups having C3-C30 chain, linear or branched, or perfluoropolyether groups having chain from 4 to 30 carbon atoms; optionally one or more sulphonamide groups, hydrogenated (meth)acrylic monomers and cation and/or anion (meth)acrylic ionomer monomers. Use according to claim 4, wherein the fluorinated copolymers (C) are obtained from the following monomers in the mentioned amounts: a) from 1 to 30% by weight of monomers or monomer mixtures of formula



        R1O (R2O)nII[C(O) CH2O]mIICOCH=CH2     (II)



wherein

R1 is a C1-C20 alkyl, cycloalkyl, haloalkyl, halocycloalkyl group, (halo = Cl, Br);

R2 is a C1-C6 alkylene or haloalkylene group, each group R2 equal to or different from other R2 groups, at least one R1 or R2 group contains one halogen atom,

nII is an integer from zero to 10, with the proviso that when n is zero R1 is a C1-C16 haloalkyl or halocycloalkyl group;

mII is zero or 1;
b) from 60 to 80% of monomers or monomer mixtures of formula



        (RfI)pIQOCOCH=CH2     (I)



wherein

RfI is a fluoroalkyl radical having C3-C30, preferably C3-C20, carbon atoms, or it is a perfluoropolyether radical PFPE containing the above mentioned units and having a number of carbon atoms in the range C5-C30;

pI is 1 or 2;

Q is a polyvalent binding bridge, C1-C12 divalent from 1 to 12 carbon atoms, or a C3-C12 aromatic radical; Q optionally contains heteroatoms as N, O,

S, or carbonylimino, sulphonylimino or carbonyl groups; Q is optionally substituted or it contains halogen atoms, hydroxyl groups, C1-C6 alkyl radicals and preferably it does not contain double or triple bonds; preferably Q is -CH2-, -C2H4-, -SO2N(R5)C2H4-, -SO2N(R5)CH2CH (CH3) -, -C2H4SO2N(R5)C4H8-, R5 is H or a C1-C4 alkyl group;
c) from 0 to 15%, preferably from 1 to 15% of monomers or monomer mixtures of formula wherein R3 is H or methyl; d) from 1 to 6% of cation and/or anion monomers, or mixtures thereof, of formula



        CH2=C(R4)ZIVYIVX     (IV)



wherein R4 is H or methyl,

the group ZIV has a carbonyl or aromatic group or one oxygen or sulphur atom directly bound to the vinylidene radical of the monomer; the group ZIV is selected from the following: - COOCH2CH(OH)CH2-, -COO (CH2) kIV-, -CONH (CH2) kIV, wherein kIV is an integer from 2 to 6; YIV preferably of the cation type YIV + and it is preferably selected from: (a) pyridinium ion, (b) N+ (-R6)3 ion wherein each R6 is independently H or a C1-C4 alkyl group, or two of any R6 combine to form a C4-C5 alkylene group, or two of any R6 are -(CH2)2- and combine with one oxygen atom to give the structure - (CH2) 2-O- (CH2) 2-, (c) phosphonium ions and (d) sulphonium ions; preferably YIV + is N+ (R6)3 wherein R6 is as above defined; X is of anion type X-, when YIV is of cation type and it is preferably an halide (Cl, Br, I) or an alkyl sulphate; YIV when is of anion type YIV - is selected from carboxyl and sulphonic groups; X is of cation type X+, when YIV is of anion type and it is preferably H, alkaline metal, ammonium, or cations deriving from primary and secondary amines;
e) from 0 to 20% of monomers containing at least a double bond, such as maleic anhydride, acrylonitrile, vinyl acetate, vinyl chloride, vinyl fluoride, vinyliden fluoride, vinyliden cyanide, vinyl chloroacetate, vinyl silicone, ethylene, styrene, alkyl styrenes, halogenated styrenes, methacrylonitrile, N-vinyl carbazole, vinyl pyridine, vinyl alkyl ethers, vinyl alkyl ketones, isoprene, butadiene, chloroprene, fluoroprene, and mixtures thereof.
Use according to claim 5, wherein the monomers of group a) are the esters alkyl, cycloalkyl, haloalkyl, halocyclo-alkyl (halo = Cl, Br) from 1 to 20 carbon atoms of the acrylic or methacrylic acid;

the monomers of group b) contain C4-C12 perfluoroalkyl chains, preferably they contain the sulphonamide group, such as C8F17SO2N(CH3)CH2CH2OCOCH=CH2;

when RfI is based on PFPE, it is preferably T'O(C3F6O)r'-(CF2O)t,CF2CH2OCH2CH2OCOC(CH3)=CH2 wherein T' = C1-C3 perfluoroalkyl, optionally one or more F atoms of T', generally one F atom, are substituted by H and/or Cl; r' and t' as above defined; or

the monomers of group b) are selected from the structures corresponding to the general formula:



        T' O- (CF2CF2O)b' (CF2O)a' -CF2-Aq"' -T0



wherein T', a' and b' have the above defined meaning;

q''' is an integer from 0 to 1, A is a bivalent radical, preferably of linear aliphatic type (CH2)m'0 wherein m' 0 is an integer from 1 to 20, or (alkylen)cycloaliphatic, (alkylen)aromatic type;

the bivalent radical A optionally contains heteroatoms in the ring or in the alkylene chain, or it is both a linear and branched polyalkylenoxy chain, in particular containing repeating units of the CH2CH2O, CH2CH(CH3)O, (CH2)3O, (CH2)4O type;

A optionally contains groups of amide, ester, ether, COO, sulphur, imine type; the number of carbon atoms of the cycloaliphatic compounds being from 3 to 20, for the aromatic ones from 5 to 20; the group A can also be a combination of the indicated types; the bond group of A with the perfluoromethylene group of the fluorinated chain is selected from: -C-, -O-, -CONR- (R is H, alkyl, cycloaliphatic or aromatic groups with less than 15 carbon atoms), -CO2-, -COS-,-CO-, one heteroatom, or the triazinic, or the heterocyclic aromatic groups having 5 or 6 atoms containing 2 or more heteroatoms equal to or different from each other; T0 is -COOCH=CH2,-COOCH2CH=CH2.
Use according to claims 1-6, wherein the compounds are used in aqueous formulations, optionally in the presence of a co-solvent having a concentration lower than 10% by weight. Use according to claim 7, wherein the co-solvent is selected from aliphatic alcohols having from 1 to 6 carbon atoms; alipahtic glycols having from 2 to 8 carbon atoms, optionally having an esterified hydroxyl; ketones or esters having from 3 to 10 carbon atoms. Use according to claims 7-8, wherein the treating aqueous solution has a concentration in the range 0.1-30% by weight, preferably 1-10% by weight. Use according to claims 1-9, wherein the amount of the applied compound for treated surface unit is in the range 0.01-10 g/m2, preferably 0.1-2 g/m2. Use according to claims 1-10, wherein the used compound has structure (B). Use according to claims 1-11, wherein the compounds (A), (B), (C) and (D), are used as release additives of formulations in the paper manufacture. Use according to claim 12, wherein the formulations for the paper manufacture are: - aqueous silicone emulsions for paper coating in confectionery field or in the label field; - thermoweldable acrylic or silicone aqueous dispersions in the packaging field. Use according to claims 12-13, wherein the compounds are used in a ratio by weight in the range 1:1-1:50, preferaably 1:3-1:30, with respect to the hydrogenated silicone and/or acrylic polymer. Use according to claims 12-14, wherein the additived formulation is applied starting from aqueous solutions having a concentration in the range 1%-50% by weight, preferably 10-30% by weight. Use according to claims 1-15, wherein the compounds as such or as additives are applied by coating, dipping or spraying.
Anspruch[fr]
Utilisation de composés fluorés pour conférer des propriétés anti-adhésives à des substrats en cellulose, lesdits composés fluorés étant choisis parmi les structures suivantes : (A) [Rf-CFY-L-O]mP(O) (O-Z+)3-m (B) (O-Z+)2P(O)[O-L-YFC-O-Rf-CFY-L-O-P(O)(O-Z+)]m--[O-L-YFC-O-Rf-CFY -L-O]P(O)(O-Z+)2 (C) les copolymères (méth)acryliques fluorés (D) [Rf-CF2-SO2N(U1)(U2)-O]g-P(O)(OZ)3-g dans lesquelles : m' est un entier de 0 à 20, de préférence de 0 à 4 ; L est un groupe organique choisi parmi -CH2-(OCH2CH2)n-, -CO-NR'-(CH2)q-, avec R' = H ou un groupe alkyle en C1-C4 ; n = 0 à 8, de préférence 1 à 3, q = 1 à 8, de préférence 1 à 3 ; Z = H, un métal alcane ou un groupe NR4 avec R = H ou un groupe alkyle en C1-C4 ; Y=F,CF3; m = 1, 2, 3, de préférence 1, 2 ; Rf a une masse moléculaire moyenne en nombre située dans la plage allant de 350 à 8000, de préférence de 500 à 3000, et comprend des motifs répétitifs ayant au moins l'une des structures suivantes, placées statistiquement le long de la chaîne : (CFXO), (CF2CF2O), (CF2CF2CF2O), (CF2CF2CF2CF2O), (CR4R5CF2CF2O), (CF(CF3)CF2O), (CF2CF(CF3)O), où X = F, CF3 ; et R4 et R5, mutuellement identiques ou différents l'un de l'autre, sont choisis parmi H, Cl ou un radical perfluoroalkyle ayant de 1 à 4 atomes de carbone ; Rt est un radical perfluorocarboné linéaire ou ramifié lorsque c'est possible, ayant de 1 à 20 atomes de carbone, de préférence de 6 à 10 atomes de carbone ; U1 et U2, mutuellement identiques ou différents l'un de l'autre, sont choisis parmi les groupes alkyle en C1-C8 linéaires ou ramifiés, les groupes oxyéthylène (CH2CH2O)q où q est situé dans la plage allant de 1 à 20, de préférence de 1 à 4 ; g est un entier situé dans la plage allant de 1 à 3. Utilisation selon la revendication 1, dans laquelle Rf, dans les structures (A) et (B), est choisi parmi : 1)



        -(CF2O)a'-(CF2CF2O)b'-



où a'/b' est situé dans la plage allant de 0,5 à 2, bornes comprises, a' et b' étant des entiers tels qu'on obtienne la masse moléculaire susmentionnée ;
2)



        -(C3F6O)r-(C2F4O)b-(CFXO)t-



où r/b = 0,5 à 2,0 ; (r+b)/t est situé dans la plage allant de 10 à 30, b, r et t étant des entiers tels qu'on obtienne la masse moléculaire susmentionnée, X a la signification susmentionnée ;
3)



        -(C3FeO)r'-(CFXO)t'-



quand t' est différent de 0, alors r'/t' = 10 à 30 ; r' et t' étant des entiers tels qu'on obtienne la masse moléculaire susmentionnée ; X a la signification indiquée ci-dessus ;
4)



        -(OCF2CF(CF3))z-OCF2(R'f)y-CF2O-(CF(CF3)CF2O)z-



où z est un entier tel que la masse moléculaire soit celle susmentionnée ;

y est un entier compris entre 0 et 1 et R'f est un groupe fluoroalkylène ayant de 1 à 4 atomes de carbone ;
5)



        -(OCF2CF2CR4R5)q-OCF2(R'f)y-CF2O-(CR4R5CF2CF2O)s-



où q et s sont des entiers tels que la masse moléculaire soit celle susmentionnée ;

R4, R5, R'f, y ont la signification susmentionnée ;
6)



        -(C3F6O)r"'(CFXO)t"'-OCF2(R'f)y-CF2O(CF(CF3)CF2O)r"'-(CFXO)t"'-



où r"'/t"' = 10 à 30,

r"' et t"' étant des entiers tels que l'on obtienne la masse moléculaire susmentionnée ; R'f et y ayant la signification susmentionnée.
Utilisation selon les revendications 1 et 2, dans laquelle, dans la structure (A), l'autre groupe terminal est du type T-O-, où T est un groupe (per)fluoroalkyle choisi parmi : -CF3, -C2F5, -C3F7, -CF2Cl, -C2F4Cl, -C3F6Cl ; éventuellement un ou deux atomes de F, de préférence un seul, peuvent être remplacés par H. Utilisation selon la revendication 1, dans laquelle le copolymère (méth)acrylique fluoré (C) dérive de monomères (méth)acryliques comprenant des groupes perfluoroalkyle ayant une chaîne en C3-C30, linéaire ou ramifiée, ou des groupes perfluoropolyéther ayant une chaîne de 4 à 30 atomes de carbone ; éventuellement un ou plusieurs groupes sulfonamide, monomères (méth)acryliques hydrogénés et monomères ionomères (méth)acryliques cationiques et/ou anioniques. Utilisation selon la revendication 4, dans laquelle les copolymères fluorés (C) sont obtenus à partir des monomères suivants, en les quantités mentionnées : a) 1 à 30 % en poids de monomères ou de mélanges de monomères de formule



        R1O(R2O)nII[C(O)CH2O]mIICOCH=CH2     (II)



dans laquelle

R1 est un groupe alkyle, cycloalkyle, halogénoalkyle, halogénocycloalkyle en C1-C20 (halogéno = Cl, Br) ;

R2 est un groupe alkylène ou halogénoalkylène en C1-C6, chaque groupe R2 étant identique aux autres groupes R2 ou différent de ceux-ci,

au moins un groupe R1 ou R2 contient un atome d'halogène,

nII est un entier de zéro à 10, sous réserve que, lorsque n vaut zéro, alors R1 est un groupe halogénoalkyle ou halogénocycloalkyle en C1-C16 ;

mII vaut zéro ou 1 ;
b) de 60 à 80 % de monomères ou de mélanges de monomères de formule



        (RfI)pIQOCOCH=CH2     (I)



dans laquelle

RfI est un radical fluoroalkyle ayant de 3 à 30, de préférence de 3 à 20, atomes de carbone, ou est un radical perfluoropolyéther PFPE contenant les motifs susmentionnés et ayant un nombre d'atomes de carbone situé dans la plage allant de 5 à 30 ;

pI vaut 1 ou 2 ;

Q est un pont de liaison polyvalent, un radical divalent C1-C12 ayant de 1 à 12 atomes de carbone, ou un radical aromatique en C3 à C12 ; Q contient éventuellement des hétéroatomes tels que N, O, S, ou des groupes carbonylimino, sulfonylimino ou carbonyle ;

Q est éventuellement substitué ou contient des atomes d'halogène, des groupes hydroxyle, des radicaux alkyle en C1-C6, et de préférence il ne contient pas de doubles ou triples liaisons ;

de préférence Q est -CH2-, -C2H4-, -SO2N(R5)C2H4-, - SO2N(R5)CH2CH(CH3)-,

-C2H4SO2N(R5)C4H8-, R5 est H ou un groupe alkyle en C1-C4 ;
c) de 0 à 15 %, de préférence de 1 à 15 % de monomères ou de mélanges de monomères de formule dans laquelle R3 est H ou le radical méthyle ; d) de 1 à 6 % de monomères cationiques et/ou anioniques, ou leurs mélanges, de formule



        CH2=C(R4)ZIVYIVX     (IV)



dans laquelle R4 est H ou le radical méthyle,

le groupe ZIV a un groupe carbonyle ou aromatique ou bien un atome d'oxygène ou de soufre directement lié au radical vinylidène du monomère ; le groupe ZIV est choisi parmi les suivants :

-COOCH2CH(OH)CH2-, -COO(CH2)kIV-, -CONH(CH2)kIV où kIV est un entier de 2 à 6 ;

YIV est de préférence du type cationique YIV+ et est de préférence choisi parmi : (a) l'ion pyridinium, (b) l'ion N+(-R6)3 où chaque R6 est indépendamment H ou un groupe alkyle en C1-C4, ou bien deux R6 quelconques se combinent pour former un groupe alkylène en C4-C5, ou bien deux R6 quelconques sont -(CH2)2- et se combinent avec un atome d'oxygène pour former la structure -(CH2)2-O-(CH2)2-, (c) les ions phosphonium et (d) les ions sulfonium ; de préférence YIV + est N+(R6)3 où R6 est tel que défini ci-dessus ;

X est du type anionique X- quand YIV est du type cationique et est de préférence un halogénure (Cl, Br, I) ou un alkylsulfate ;

YIV, quand il est du type anionique YIV-, est choisi parmi les groupes carboxyle et sulfoniques ;

X est du type cationique X+ quand YIV est du type anionique et est de préférence H, un métal alcalin, l'ammonium, ou des cations dérivant d'amines primaires et secondaires ;
e) de 0 à 20 % de monomères contenant au moins une double liaison, tels que l'anhydride maléique, l'acrylonitrile, l'acétate de vinyle, le chlorure de vinyle, le fluorure de vinyle, le fluorure de vinylidène, le cyanure de vinylidène, le chloroacétate de vinyle, le vinylsilicone, l'éthylène, le styrène, les alkylstyrènes, les styrènes halogénés, le méthacrylonitrile, le N-vinylcarbazole, la vinylpyridine, les vinylalkyléthers, les vinylalkylcétones, l'isoprène, le butadiène, le chloroprène, le fluoroprène, et leurs mélanges.
Utilisation selon la revendication 5, dans laquelle

les monomères du groupe a) sont les esters alkyliques, cycloalkyliques, halogénoalkyliques, halogénocycloalkyliques (halogéno = Cl, Br) ayant de 1 à 20 atomes de carbone de l'acide acrylique ou méthacrylique ;

les monomères du groupe b) contiennent des chaînes perfluoroalkyle en C4-C12, de préférence contiennent le groupe sulfonamide, tels que C8F17SO2N(CH3)CH2CH2OCOCH=CH2 ;

quand RfI est à base de PFPE, il s'agit de préférence de T'O(C3F6O)r'-(CF2O)t'CF2CH2OCH2CH2OCOC(CH3)=CH2 où T' est un radical perfluoroalkyle en C1-C3, éventuellement un ou plusieurs atomes F de T', généralement un seul atome F, sont remplacés par H et/ ou Cl ; r' et t' sont tels que définis ci-dessus ; ou

les monomères du groupe b) sont choisis parmi les structures correspondant à la formule générale :



        T'O-(CF2CF2O)b'(CF2O)a'-CF2-Aq'''-T0



dans laquelle T', a' et b' ont la signification définie ci-dessus ; q"' est un entier de 0 à 1, A est un radical divalent, de préférence du type aliphatique linéaire (CH2)m'0 où m'0 est un entier de 1 à 20, ou de type (alkylène)cycloaliphatique, (alkylène)aromatique ;

le radical divalent A contient éventuellement des hétéroatomes sur le cycle ou sur la chaîne alkylène, ou bien est une chaîne polyalkylène-oxy à la fois linéaire et ramifiée, en particulier contenant des motifs répétitifs de type CH2CH2O, CH2CH(CH3)O, (CH2)3O, (CH2)4O ;

A contient éventuellement des groupes de type amide, ester, éther, COO, soufre, imine ; le nombre d'atomes de carbone des composés cycloaliphatiques étant de 3 à 20, celui pour les aromatiques de 5 à 20 ; le groupe A peut aussi être une combinaison des types indiqués ; le groupe de liaison de A avec le groupe perfluorométhylène de la chaîne fluorée est choisi parmi : -C-, -O-, -CONR- (R est H ou les groupes alkyles, cycloaliphatiques ou aromatiques ayant moins de 15 atomes de carbone), -CO2-, -COS-, -CO-, un hétéroatome, ou les groupes triaziniques ou hétérocycliques aromatiques ayant 5 ou 6 atomes contenant 2 hétéroatomes ou plus mutuellement identiques ou différents l'un de l'autre ; T0 est -COOCH=CH2, -COOCH2CH=CH2.
Utilisation selon les revendications 1 à 6, dans laquelle les composés sont utilisés dans des formulations aqueuses, éventuellement en présence d'un co-solvant ayant une concentration inférieure à 10 % en poids. Utilisation selon la revendication 7, dans laquelle le co-solvant est choisi parmi les alcools aliphatiques ayant de 1 à 6 atomes de carbone ; les glycols aliphatiques ayant de 2 à 8 atomes de carbone, portant éventuellement un radical hydroxyle estérifié ; les cétones ou esters ayant de 3 à 10 atomes de carbone. Utilisation selon les revendications 7-8, dans laquelle la solution aqueuse de traitement a une concentration située dans la plage allant de 0,1 à 30 % en poids, de préférence de 1 à 10 % en poids. Utilisation selon les revendications 1 à 9, dans laquelle la quantité du composé appliqué pour une unité de surface traitée est située dans la plage allant de 0,01 à 10 g/m2, de préférence de 0,1 à 2 g/m2. Utilisation selon les revendications 1 à 10, dans laquelle le composé utilisé a la structure (B). Utilisation selon les revendications 1 à 11, dans laquelle les composés (A), (B), (C) et (D) sont utilisés en tant qu'additifs anti-adhésifs de formulations dans la fabrication du papier. Utilisation selon la revendication 12, dans laquelle les formulations pour la fabrication du papier sont : - les émulsions aqueuses de silicone pour le couchage du papier dans le domaine de la confiserie ou le domaine des étiquettes ; - les dispersions aqueuses de silicone ou acryliques thermosoudables dans le domaine de l'emballage. Utilisation selon les revendications 12 et 13, dans laquelle les composés sont utilisés en un rapport en poids situé dans la plage allant de 1/1 à 1/50, de préférence de 1/3 à 1/30, par rapport au polymère acrylique et/ ou de silicone hydrogéné. Utilisation selon les revendications 12 à 14, dans laquelle la formulation additivée est appliquée à partir de solutions aqueuses ayant une concentration située dans la plage allant de 1 à 50 % en poids, de préférence de 10 à 30 % en poids. Utilisation selon les revendications 1 à 15, dans laquelle les composés, tels quels ou sous forme d'additifs, sont appliqués par revêtement, immersion ou pulvérisation.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com