PatentDe  


Dokumentenidentifikation EP1208640 26.10.2006
EP-Veröffentlichungsnummer 0001208640
Titel VERFAHREN UND VORRICHTUNG ZUM BETREIBEN VON FELDGESCHALTETEN MOTOREN UND MASCHINEN MIT FELDGESCHALTETEN MOTOREN
Anmelder Otis Elevator Co., Farmington, Conn., US
Erfinder HELLER, C., Marcus, D-13437 Berlin, DE;
MANN, Michael, D-12347 Berlin, DE;
ERNECKE, Christoph, D-14050 Berlin, DE
Vertreter Klunker, Schmitt-Nilson, Hirsch, 80797 München
DE-Aktenzeichen 60030738
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 12.07.2000
EP-Aktenzeichen 009453390
WO-Anmeldetag 12.07.2000
PCT-Aktenzeichen PCT/US00/18946
WO-Veröffentlichungsnummer 2001010009
WO-Veröffentlichungsdatum 08.02.2001
EP-Offenlegungsdatum 29.05.2002
EP date of grant 13.09.2006
Veröffentlichungstag im Patentblatt 26.10.2006
IPC-Hauptklasse H02P 6/00(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H02P 6/08(2006.01)A, L, I, 20051017, B, H, EP   H02P 21/00(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
FIELD OF THE INVENTION

This invention relates to field-commutated motors and machines incorporating such motors.

BACKGROUND OF THE INVENTION

FIGURE 1 shows a simple schematic of a field-commutated motor 10 powered by a power supply 12, and having a stator 16 and a rotor 20. The stator mounts excitation coils 17 (A-A', B-B', C-C' and D-D'), which are sequentially excited such that the coils act as magnets, having north and south poles, to generate forces on the permanent magnets 21 mounted on the rotor 20, thereby rotating the rotor 20. A knowledge of the position of the rotor magnets 21 relative to the coils 17 is necessary for the coils to be excited in the proper sequence and with the proper timing to provide the desired torque, speed or direction of rotation of the rotor 20. Typically, a sensor 22 provides raw data representative of the rotor angular position in a "sensor", or uncalibrated, coordinate system. However, this data must be used to determine the position of the magnets 21 relative to the coils 17. Initialization of the motor, as used herein, refers to determining the relationship between the uncalibrated coordinate system and a coordinate system having a known relationship to the excitation coils 17, such that the relationship of the magnets 21 to the coils can be determined from the raw, or uncalibrated, angular data. The raw data is initialized and the initialized data is used in sequencing and timing the excitation of the coils 17.

Initialization of the motor 10 can be rather straightforward if the motor 10 is accessible and not under load. Excitation of the stator 16 with a test voltage of a known orientation produces a known angular position of the rotor 20, because the load angle is zero. The raw data from the sensor 22, giving an angle in the uncalibrated coordinate system, can be related to a q-d rotor coordinate system, where d is the axis of the magnets 21 and q is the quadrature axis, such that the "error angle" between the uncalibrated and rotor coordinate system is determined. As the relationship between the q-d rotor coordinate system and the excitation coils 17 is known, the error angle is then used during operation of the motor to properly excite the coils 17 to obtain the desired performance of the motor 10. Accordingly, initialization is not necessarily a difficult problem at the motor factory.

However, initialization as above requires that motors shipped from the factory include the sensor 22 and be subsequently carefully handled such that the physical relationship between the sensor 22 and rotor 20 is not disturbed. Such motors are often installed in complex machinery, such as elevators, at the site where the machinery is to be installed. Installation provides yet another opportunity for the initialization to be disturbed. Initialization, or re initialization, of an installed motor is tedious. The motor 10 is typically under load, and the load (e.g., the elevator) must be manually manipulated, such by adjusting cables, to remove the load to allow the initialization procedure outlined above to be followed. Such manipulation can be time consuming and require additional personnel. Replacement in the field of a failed sensor 22 similarly requires removal of the load or installation of a new initialized motor including a new sensor 22. A simpler and more efficient initialization procedure would represent a useful advance in the art.

According to prior art reference "Detection of the Rotor Position of a Permanent Magnet Synchronous Motor at Standstill" ETEP Vol. 9, No. 1 January 1999 (1999-01)-February 1999 (1999-02), pages 43-47, XP000956214 by M. Steiblan et. al. it is known to determine the relative position of a rotor and stator at standstill by applying a first test voltage pulse is applied between the winding terminals U and V of the motor. The voltage response between terminals W and U is measured. A second voltage is applied between the winding terminals V and W of the motor. The voltage response between terminals U and V is measured. The initial rotor position is then obtained.

Accordingly, it is an object of the present invention to address one or more of the aforementioned deficiencies and disadvantages of the prior art.

Other objects will in part appear hereinafter and in part be apparent to one of ordinary skill in light of the disclosure herein.

SUMMARY OF THE INVENTION

The present invention addresses the above object by providing methods and apparatus for calibrating a field-commutated motor when the motor is under non-zero load. Accordingly, zeroing of the load on the motor can be avoided, saving time and effort otherwise expended in commissioning apparatus incorporating the motor therein, such as an elevator.

A method according to one aspect of the invention includes the steps of:

  • applying a first voltage of a first orientation and of a first magnitude to one of the rotor and the stator; determining a first rotor angle corresponding to application of the first voltage; applying a second voltage to the one of the rotor and the stator, the second voltage having an orientation substantially equal to the first orientation and a second magnitude different from the first magnitude, the second voltage being applied when the motor is under a load substantially equal to the load applied during the application of the first voltage; determining a second rotor angle corresponding to the application of the second voltage; and
  • determining an error angle, as a function of at least the first and second rotor angles, for allowing calibration of the motor. The first and second voltages, or one or both of the respective currents that respectively correspond thereto, are used in the determination of the error angle. As is understood by one of ordinary skill, in light of the disclosure herein, the stationary currents and voltages are related by the resistance of the stator.

In another aspect of the invention, apparatus is disclosed for initializing and operating a field-commutated motor in accordance with the methods disclosed herein. The apparatus can include a processor, a sensor for determining rotor angular position, and a power supply. The processor is in electrical communication with the sensor and power supply, and includes provision, such as a hardware configuration or appropriate programming with software, for performing the above initialization and operating the motor. Processor, as used herein, can refer to specialized processor for initializing motors to determine the error angle, or to a more general processor, that in addition to calibrating the motor, operates the motor for use of the apparatus in which the motor is installed.

These and other features of the invention are more fully set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the invention, reference is made to the following Detailed Description of the Preferred Embodiments and the accompanying drawings, in which:

  • FIGURE 1 is a schematic representation of a field-commutated motor and a power supply for providing power to the motor.
  • FIGURE 2 is a schematic representation of apparatus for initializing the motor of FIGURE 1, and includes a perspective view of the motor of FIGURE 1.
  • FIGURE 3 illustrates an uncalibrated coordinate system and the q-d rotor coordinate system of the motor of FIGURES 1 and 2, the error angle relating the coordinate systems, and rotor angles produced by test voltages applied to the stator as part of an initialization procedure according to the present invention.
  • FIGURE 4 is a flow chart illustrating the steps of an exemplary initialization procedure for initializing the motor to determine the error angle.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIGURES 1 and 2 illustrate a field-commutated motor 10. FIGURE 1 is a view of the motor 10 taken along the Z-Z axis of FIGURE 2, which illustrates the motor 10 in perspective. The field-commutated motor 10 includes a stator 16, mounting coils 17, indicated as A-A', B-B', C-C' and D-D', and a rotor 20 mounting permanent magnets 21. The power supply 12 provides power for exciting the coils 17 in a proper sequence and with the proper timing to rotate the rotor 20 about the Z axis, as indicated by the arrow 32, and in a desired direction and with a desired speed or torque. The sensor 22, which can include a fixed element 23 cooperating with indicia 24 mounted with the rotor 20, provides information regarding the angular position of the rotor 20 such that coils 17 can be excited in the proper sequence and with the proper timing. One sensor known in the art or suitable for use as the sensor 22 is referred to as a sine-cosine encoder. The power supply 12 is typically a pulse-width-modulated (PWM) supply. It is desired to determine the angle &xgr; of the rotor 20 in a stator coordinate system.

With reference to FIGURE 2, a load on the motor 10 is schematically illustrated by the weight 28 that is attached to a cable 30 wrapped around the rotor 20. The downward force 29 provided by the weight 28 produces a torque on the rotor 20. The weight 28 can be representative of the load placed on the motor 10 when the motor is used with apparatus such as an elevator. A processor 26 is in electrical communication with the power supply 12, the sensor 22, and a sensor (or sensors) 34 that can be included for measuring the currents and/or voltages provided to the excitation coils 17. The processor 26 can include provision for controlling the power supply 12 responsive to data received from the sensor 22 for operating the motor 10 to provide the desired torque, speed, direction of rotation, number of revolutions, etc. A user input element 35 can also be provided for allowing a user to provide instructions to the processor 26 for operating the motor. Many types of suitable user input elements are known in the art. The user input element 35 can be, for example, a keypad, a modem, or a pointing and selecting device, such as a mouse. The invention can also include a user output element (not shown), such as a video display, in electrical communication with the processor 26, for facilitating use of the pointing and selecting device or otherwise communicating with a user.

Initialization of the motor 10 according to the invention is now described with reference to FIGURES 3 and 4. FIGURE 3 illustrates the rotor coordinate system having the axes q and d, and the uncalibrated coordinate system of the sensor 22, indicated by the axes q* and d*. The two coordinate systems are related by the error angle &Dgr; &xgr;, and a knowledge of &Dgr; &xgr; is required to relate raw data from the sensor 22 to the rotor coordinate system q-d such that the position of the magnets 21 can be determined relative to the coils 17.

With reference to FIGURES 3 and 4, the error angle &Dgr;&xgr; can be determined, even when the motor 10 is under a non-zero load, such as the load represented schematically by the weight 28, as follows:

As indicated by reference numeral 52 in FIGURE 4, a voltage V1, having a first orientation and first magnitude, is applied to the stator coils 17. Orientation of the voltage refers to orientation of the fields produced by current I1 generated in at least one of the stator coils 17 by application of the voltage thereto. V1 and I1 are related by the resistance of the coil or coils to which the voltage is applied. The rotor rotates to the angle &xgr;1* as indicated by reference numeral 43 in FIGURE 3, where &xgr;1* refers to the raw angle produced by the sensor 22 and representing the angle of the rotor 20 in the uncalibrated coordinate system. As indicated by reference numerals 56 and 58 in FIGURE 4, the current I1 and the angle &xgr;1* are determined. The current and voltage can be determined by direct measurement, such as by voltage/current sensor 34 shown in FIGURE 2, or the current can be determined from the voltage and a knowledge of the resistance of the appropriate coil or coils 17. The power supply 10 can provide a selected voltage or current responsive to user input or instructions from the processor 26, and hence the voltage or current can be determined from a knowledge of the instructions.

Next, as indicated by reference numeral 60 of FIGURE 4, a second voltage, having a magnitude different from the magnitude of the voltage V1 and of substantially the same orientation as the first voltage V1, is applied to the stator coils. A second current I2 corresponding to V2 is produced, and the rotor rotates to a second angle &xgr;2* as illustrated by reference numeral 40 in FIGURE 3. As shown by reference numerals 62 and 64 in FIGURE 4, &xgr;2* and I2 are next determined. Note that the magnitude of the load applied to the rotor 20 of the motor 10 during the determination of &xgr;2* should be substantially the same as that applied during the determination of &xgr;1* such that it can be assumed that the components of the vectors I1 and I2 shown in FIGURE 3 along the q axis are equal.

Having determined &xgr;1* &xgr;2* and I1 and I2 (or alternatively V1 and V2 and the resistance of the appropriate coils 17), the error angle &Dgr;&xgr; can be determined in accordance with the following formula (referred to herein as Equation 1): &Dgr;&xgr; = &xgr; 2 * + arcsin { I 1 [ I 1 2 + I 2 2 2 I 1 I 2 cos ( &xgr; 2 * &xgr; 1 * ) ] 1 / 2 sin ( &xgr; 2 * &xgr; 1 * ) }

where:

  • &Dgr;&xgr; = the error angle
  • &xgr;2* = the second rotor angle
  • &xgr;1* = the first rotor angle
  • I1 = the first current, which corresponds to the first voltage
  • I2 = the second current, which corresponds to the second voltage.

I1 and I2 are related to the corresponding voltages V1 and V2 by Ohm's law, where R is the resistance of the appropriate coil or coils, such that: V 1 = I 1 / R V 2 = I 2 / R

Once &Dgr;&xgr; is determined, the initialized angle &xgr; of the rotor 20, that is, the angle of the rotor in a rotor coordinate system, is determined according to: &xgr; = &xgr; &Dgr; &xgr;

where: &xgr;* is an additional rotor angle in the uncalibrated coordinate system provided by the raw data from the sensor 22, and which typically represents the instantaneous position of the rotor during operation motor 10; and &Dgr;&xgr; is the error angle as determined above. The angle &xgr; is used to properly sequence and time the excitation of the coils 17 (A-A', B-B', C-C' and D-D') mounted by the stator to provide the desired operation of the motor 10 or apparatus incorporating the motor 10. Note that the number of coils shown in FIGURE 2 is merely exemplary.

As is understood by one of ordinary skill in the art, in light of the disclosure herein, the processor 26 can automatically conduct the above-described initialization, for example, according to instructions configured in processor hardware or programmed using software into a volatile or non-volatile memory of the processor 26. Such instructions can include the steps illustrated in FIGURE 4 and direct the appropriate communication of the processor 26 with the sensor 22, the power supply 12, and, optionally the current and/or voltage sensor 34. The processor 26 can be a dedicated processor or can be a personal computer appropriately configured or programmed. Furthermore, although the processor 26 and power supply 12 are depicted in FIGURE 2 as individual units, one of ordinary skill, in light of the disclosure herein, understands that the power supply 12 and processor 26 can be combined into a single unit. The processor can also operate the motor 10, or apparatus into which the motor 10 is incorporated, according to user input and/ or additional instruction provided by software programming or hardware configuration. For example, if the motor 10 is incorporated into an elevator, the processor 26 can be a controller for the elevator, which responds as understood in the art to user input for conveying persons or freight between floors in a building.

If the sensor 22 provides only relative indications of angular displacement, the above initialization routine can be performed as necessary, for example, each time the processor 26 is powered up, or at appropriate times or appropriate intervals therebetween.

It is thus seen that the object set forth above, as well as those made apparent by the above disclosure, are officially attained. Because certain changes may be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings be considered as illustrative and not in a limiting sense. For example, in the accompanying FIGURES the rotor 20 mounts the permanent magnets 21 and the stator 16 mounts coils 17. It is understood by those of ordinary skill, in light of the disclosure herein, that the stator 16 can mount the magnets and the rotor can mount the coils, and that the methods and apparatus of the present invention can also be useful with such a motor.

In addition, data regarding the angular position of the rotor need not be obtained via the use of a sensor 22 such as an encoder. It is known in the art to obtain such data via monitoring the back emf of coils associated with the motor 10. Such data may also be uncalibrated and require initializing the motor to relate the position of permanent magnets to excitation coils.


Anspruch[de]
Verfahren zum Initialisieren eines feldkommutierten Motors unter Last, wobei der Motor Maßnahmen zum Bestimmen des Rotorwinkels enthält, umfassend folgende Schritte: Anlegen einer ersten Spannung einer ersten Orientierung und eines ersten Betrags an den Rotor oder den Stator; Bestimmen eines ersten Rotorwinkels entsprechend dem Anlegen der ersten Spannung; Anlegen einer zweiten Spannung an den Rotor oder den Stator, wobei die zweite Spannung eine Orientierung besitzt, die im wesentlichen der ersten Orientierung entspricht, und einen zweiten, von dem ersten Betrag verschiedenen Betrag aufweist, wobei die zweite Spannung angelegt wird, wenn der Motor von einer Last belastet ist, die etwa der während des Anlegens der ersten Spannung vorhandenen Last entspricht; Bestimmen eines zweiten Rotorwinkels, der dem Anlegen der zweiten Spannung entspricht; und Bestimmen eines Fehlerwinkels als Funktion von zumindest dem ersten und dem zweiten Rotorwinkel, um eine Initialisierung des Motors zu ermöglichen. Verfahren nach Anspruch 1, bei dem zumindest der Schritt des Bestimmens des ersten Rotorwinkels und der Schritt des Bestimmens des zweiten Rotorwinkels das Bestimmen eines Rotorwinkels mit Hilfe eines den Rotorwinkel fühlenden Codierers erfolgt. Verfahren nach Anspruch 1, bei dem die Schritte des Anlegens einer ersten und einer zweiten Spannung das Anlegen einer ersten und einer zweiten Spannung an Statorspulen beinhaltet. Verfahren nach Anspruch 1, bei dem die Schritte des Anlegens der ersten und der zweiten Spannung das Anlegen der ersten und der zweiten Spannung an Rotorspulen beinhaltet. Verfahren nach Anspruch 1, bei dem der Schritt des Anlegens der zweiten Spannung den Schritt des Anlegens einer zweiten Spannung mit einem Betrag beinhaltet, der kleiner ist als derjenige der ersten Spannung. Verfahren nach Anspruch 1, enthaltend den Schritt des Bestimmens des Betrags eines ersten Stroms oder eines zweiten Stroms, die der ersten bzw. der zweiten Spannung entsprechen, wobei der Schritt des Bestimmens des Fehlerwinkels das Bestimmen des Fehlerwinkels zumindest als eine Funktion des ersten und des zweiten Rotorwinkels und des Betrags des ersten oder des zweiten Stroms beinhaltet. Verfahren nach Anspruch 6, bei dem der Schritt des Bestimmens des Betrags des ersten oder des zweiten Stroms das Bestimmen des Betrags des ersten bzw. des zweiten Stroms aus der ersten bzw. der zweiten Spannung und die Kenntnis des Widerstands des Stators oder des Rotors beinhaltet. Verfahren nach Anspruch 6, bei dem der Schritt des Bestimmens des ersten und/oder des zweiten Stroms das Bereitstellen eines Stromfühlers und das Messen des ersten und/oder des zweiten Stroms beinhaltet. Verfahren nach Anspruch 1, enthaltend die Schritte des Bestimmens des ersten und des zweiten Stroms entsprechend der ersten bzw. der zweiten Spannung, wobei der Schritt des Bestimmens des Fehlerwinkels das Bestimmen des Fehlerwinkels in der Weise beinhaltet, dass folgende Formel erfüllt ist: &Dgr; &xgr; = &xgr; 2 * + arcsin { I 1 [ I 1 2 + I 2 2 2 I 1 I 2 cos ( &xgr; 2 * - &xgr; 2 * ) ] 1 / 2 sin ( &xgr; 2 * - &xgr; 1 * ) }

wobei: &Dgr;&xgr; = Fehlerwinkel &xgr;2* = zweiter Rotorwinkel &xgr;1* = erster Rotorwinkel I1 = erster Strom entspreched der ersten Spannung II2 = zweiter Strom entsprechend der zweiten Spannung
Verfahren nach Anspruch 1, weiterhin umfassend die Schritte: Bestimmen eines dritten Rotorwinkels; Bestimmen eines initialisierten Rotorwinkels aus dem dritten Rotorwinkel und dem Fehlerwinkel; und Verwenden des initialisierten Winkels bei der Bereitstellung von Leistung für den Motor, um den Motor zum Betreiben der Vorrichtung zu drehen. Vorrichtung zum Initialisieren eines feldkommutierten Motors (10), der einen Rotor (20) und einen Stator (16) aufweist, umfassend: eine Motorenergiequelle (12) zum Bereitstellen von Energie für den Rotor (20) und/oder den Stator (16) des Motors (10); einen Fühler (22) zum Bestimmen des Rotorwinkels; einen Prozessor (26), elektrisch mit dem Fühler (22) und der Energiequelle (12) verbunden, wobei der Prozessor (26) enthält: eine Einrichtung zum Anlegen einer ersten Spannung einer ersten Orientierung und eines ersten Betrags an den Rotor (20) oder den Stator (16); eine auf den Fühler (22) ansprechende Einrichtung zum Bestimmen eines ersten Rotorwinkels entsprechend dem Anlegen der ersten Spannung; eine Einrichtung zum Anlegen einer zweiten Spannung an den Rotor (20) oder den Stator (16), wobei die zweite Spannung eine Orientierung besitzt, die im wesentlichen der ersten Orientierung gleicht, und einen von dem ersten Betrag verschiedenen zweiten Betrag aufweist; eine Einrichtung zum Bestimmen eines zweiten Rotorwinkels entsprechend dem Anlegen der zweiten Spannung; und eine Einrichtung zum Bestimmen eines Fehlerwinkels zum Ermöglichen der Initialisierung des Motors (10), wobei die Einrichtung den Fehlerwinkel bestimmt als eine Funktion mindestens des ersten und des zweiten Rotorwinkels; der ersten Spannung oder dem dieser entsprechenden Strom; und der zweiten Spannung oder des dieser entsprechenden Stroms. Vorrichtung nach Anspruch 11, weiterhin umfassend: eine Einrichtung zum Bestimmen eines initialisierten Rotorwinkels aus dem dritten Rotorwinkel und dem Fehlerwinkel derart, dass die Energiequelle (12) dem Stator (16) und/oder dem Rotor (20) Leistung zuführen kann, um den Rotor (20) in Gang zu setzen.
Anspruch[en]
A method of initializing a field-commutated motor when under load, the motor including provision for determining rotor angle, the method comprising the steps of: applying a first voltage of a first orientation and of a first magnitude to one of the rotor and the stator; determining a first rotor angle corresponding to application of the first voltage; applying a second voltage to one of the rotor and the stator, the second voltage having an orientation substantially equal to the first orientation and of second magnitude different from the first magnitude, the second voltage being applied when the motor is under a load substantially equal to the load applied during the application of the first voltage; determining a second rotor angle corresponding to the application of the second voltage; and determining an error angle as a function of at least the first and second rotor angles for allowing initialization of the motor. The method of claim 1 wherein at least one of the step of determining the first rotor angle and the step of determining the second rotor angle includes determining a rotor angle from an encoder for sensing rotor angle. The method of claim 1 wherein the steps of applying the first and second voltages include applying the first and second voltages to stator coils. The method of claim 1 wherein the steps of applying the first and second voltages include applying the first and second voltages to rotor coils. The method of claim 1 wherein the step of applying the second voltage includes the step of applying a second voltage having a magnitude that is less than the magnitude of the first voltage. The method of claim 1 including the step of determining the magnitude of a one of a first current and a second current corresponding, respectively, to the first and second voltages, and wherein the step of determining the error angle includes determining the error angle at least as a function of the first and second rotor angles and the magnitude of one of the first and second currents. The method of claim 6 wherein the step of determining the magnitude of one of the first and second currents includes determining the magnitude of the one of the first and second currents from one of the first and second voltages and knowledge of the resistance of one of the stator and the rotor. The method of claim 6 wherein the step of determining at least one of the first and second current includes providing a current sensor and measuring the at least one of the first and second currents. The method of claim 1 including the steps of determining first and second.currents corresponding to the first and second voltages, respectively, and wherein the step of determining the error angle includes determining the error angle such the following formula is satisfied: &Dgr; &xgr; = &xgr; 2 * + arcsin { I 1 [ I 1 2 + I 2 2 2 I 1 I 2 cos ( &xgr; 2 * &xgr; 1 * ) ] 1 / 2 sin ( &xgr; 2 * &xgr; 1 * ) }

where: &Dgr;&xgr; = the error angle &xgr;2* = the second rotor angle &xgr;1* = the first rotor angle I1 = the first current, which corresponds to the first voltage I2 = the second current, which corresponds to the second voltage.
The method of claim 1 further comprising the steps of: determining a third rotor angle; determining an initialized rotor angle from the third rotor angle and the error angle; and using the initialized angle in providing power to the motor for rotating the motor for operating the apparatus. Apparatus for initializing a field-commutated motor (10) having a rotor (20) and a stator (16), comprising: a motor power supply (12) for providing power to at least one of the rotor (20) and stator (16) of the motor (10); a sensor (22) for determining rotor angle; a processor (26) in electrical communication with said sensor (22) and said power supply (12), said processor (26) including; means for applying a first voltage of a first orientation and of a first magnitude to one of the rotor (20) and the stator (16); means, responsive to said sensor (22), for determining a first rotor angle corresponding to application of the first voltage; means for applying a second voltage to one of the rotor (20) and the stator (16), the second voltage having an orientation substantially equal to the first orientation and of second magnitude different from the first magnitude; means for determining a second rotor angle corresponding to the application of the second voltage; and means for determining an error angle for allowing initialization of the motor (10), said means determining the error angle of a function of at least the following: the first and second rotor angles; one of the first voltage and the current corresponding thereto; and one of the second voltage and the current corresponding thereto. The apparatus of claim 11 further comprising: means for determining an initialized rotor angle from the third rotor angle and the error angle, such that said power supply (12) can provide power to said at least one of the stator (16) and the rotor (20) for initiating the rotor (20).
Anspruch[fr]
Procédé d'initialisation d'un moteur à commutation de champs quand il est en charge, le moteur comprenant des moyens servant à déterminer un angle de rotor, le procédé comprenant les étapes consistant à : appliquer une première tension d'une première orientation et d'une première grandeur sur l'un d'entre le rotor et le stator ; déterminer un premier angle de rotor correspondant à l'application de la première tension ; appliquer une seconde tension sur l'un d'entre le rotor et le stator, la seconde tension ayant une orientation sensiblement égale à la première orientation et une deuxième grandeur différente de la première grandeur, la seconde tension étant appliquée quand le moteur est sous une charge sensiblement égale à la charge appliquée pendant l'application de la première tension ; déterminer un deuxième angle de rotor correspondant à l'application de la seconde tension ; et déterminer un angle d'erreur en fonction d'au moins les premier et deuxième angles de rotor de façon à permettre une initialisation du moteur. Procédé selon la revendication 1 dans lequel au moins une de l'étape de détermination du premier angle de rotor et de l'étape de détermination du deuxième angle de rotor comprend l'étape consistant à déterminer un angle de rotor à partir d'un encodeur afin de détecter un angle de rotor. Procédé selon la revendication 1, dans lequel les étapes d'application des première et seconde tensions comprennent les étapes consistant à appliquer les première et seconde tensions sur des bobines de stator. Procédé selon la revendication 1, dans lequel les étapes d'application des première et seconde tensions comprennent les étapes consistant à appliquer les première et seconde tensions sur des bobines de rotor. Procédé selon la revendication 1 dans lequel l'étape d'application de la seconde tension comprend l'étape consistant à appliquer une seconde tension ayant une grandeur qui est moins élevée que la grandeur de la première tension. Procédé selon la revendication 1, comprenant l'étape consistant à déterminer la grandeur de l'un d'entre un premier courant et un second courant correspondant, respectivement, aux première et seconde tensions, et dans lequel l'étape de détermination de l'angle d'erreur comprend l'étape consistant à déterminer l'angle d'erreur au moins en fonction des premier et deuxième angles de rotor et en fonction de la grandeur de l'un d'entre les premier et second courants. Procédé selon la revendication 6, dans lequel l'étape de détermination de la grandeur de l'un des premier et second courants comprend l'étape consistant à déterminer la grandeur de l'un d'entre les premier et second courants à partir de l'une d'entre les première et seconde tensions et d'une connaissance de la résistance de l'un d'entre le stator et le rotor. Procédé selon la revendication 6, dans lequel l'étape de détermination d'au moins un des premier et second courants comprend les étapes consistant à prévoir un détecteur de courant et à mesurer le au moins un des premier et second courants. Procédé selon la revendication 1, comprenant les étapes consistant à déterminer des premier et second courants correspondant aux première et seconde tensions, respectivement, et dans lequel l'étape de détermination de l'angle d'erreur comprend l'étape consistant à déterminer l'angle d'erreur de telle sorte que la formule suivante soit satisfaite : &Dgr; &zgr; = &zgr; 2 + arcsin { I 1 [ I 1 2 + I 2 2 2 I 1 I 2 cos ( &zgr; 2 &zgr; 1 ) ] 1 / 2 sin ( &zgr; 2 &zgr; 1 ) }

où : &Dgr;&zgr; = l'angle d'erreur &zgr;2* = le deuxième angle de rotor &zgr;1* = le premier angle de rotor I1 = le premier courant, qui correspond à la première tension I2 = le second courant, qui correspond à la seconde tension.
Procédé selon la revendication 1, comprenant en outre les étapes consistant à : déterminer un troisième angle de rotor ; déterminer un angle de rotor initialisé à partir du troisième angle de rotor et de l'angle d'erreur ; et utiliser l'angle initialisé pour fournir une puissance au moteur, adaptée pour faire tourner le moteur pour faire fonctionner l'appareil. Dispositif permettant d'initialiser un moteur à commutation de champs (10) ayant un rotor (20) et un stator (16), comprenant : une alimentation électrique de moteur (12) servant à fournir une puissance à au moins un d'entre le rotor (20) et le stator (16) du moteur (10) ; un détecteur (22) servant à déterminer un angle de rotor ; un processeur (26) en communication électrique avec ledit détecteur (22) et ladite alimentation électrique (12), ledit processeur (26) comprenant : des moyens servant à appliquer une première tension d'une première orientation et d'une première grandeur sur l'un d'entre le rotor (20) et le stator (16) ; des moyens, réactifs au dit détecteur (22), servant à déterminer un premier angle de rotor correspondant à l'application de la première tension ; des moyens servant à appliquer une seconde tension sur l'un d'entre le rotor (20) et le stator (16), la seconde tension ayant une orientation sensiblement égale à la première orientation et une deuxième grandeur différente de la première grandeur ; des moyens servant à déterminer un deuxième angle de rotor correspondant à l'application de la seconde tension ; et des moyens servant à déterminer un angle d'erreur de façon à permettre une initialisation du moteur (10), lesdits moyens déterminant l'angle d'erreur d'une fonction d'au moins ce qui suit : les premier et deuxième angles de rotor ; une d'entre la première tension et le courant correspondant à celle-ci ; et une d'entre la seconde tension et le courant correspondant à celle-ci. Dispositif selon la revendication 11 comprenant en outre : des moyens servant à déterminer un angle de rotor initialisé à partir du troisième angle de rotor et de l'angle d'erreur, de telle sorte que ladite alimentation électrique (12) puisse fournir une puissance à ledit au moins un d'entre le stator (16) et le rotor (20) dans le but d'exciter le rotor (20).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com