PatentDe  


Dokumentenidentifikation EP1513160 15.02.2007
EP-Veröffentlichungsnummer 0001513160
Titel Nichtflüchtiger Flash-Speicher
Anmelder Macronix International Co. Ltd., Hsinchu, TW
Erfinder Yeh, Chih-Chieh, Hsinchu, TW;
Chen, Hung-Yueh, Hsinchu, TW;
Tsai, Wen-Jer, Hsinchu, TW;
Lu, Tao-Cheng, Hsinchu, TW
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 602004004017
Vertragsstaaten DE, FR, GB, IT, NL
Sprache des Dokument EN
EP-Anmeldetag 02.02.2004
EP-Aktenzeichen 040022378
EP-Offenlegungsdatum 09.03.2005
EP date of grant 03.01.2007
Veröffentlichungstag im Patentblatt 15.02.2007
IPC-Hauptklasse G11C 16/04(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse G11C 16/26(2006.01)A, L, I, 20051017, B, H, EP   G11C 16/34(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
Field of the Invention

This invention is in general related to a flash memory, and more particularly, to data patterns and sensing schemes of flash memory cells.

Background of the Invention

Memory devices for non-volatile storage of information have been widely in use. Examples of such memory devices include read only memory (ROM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), and flash EEPROM.

A flash memory generally refers to a flash EEPROM, which may be erased in blocks of data instead of one byte at a time. Many modern PCs have their BIOS stored on a flash memory chip so that the BIOS can easily be updated if necessary. Such a BIOS is sometimes called a flash BIOS. Flash memory is also popular in devices such as modems because a flash memory allows these devices to be updated to support, for example, new protocols as they become standardized.

A flash memory device generally includes an array of memory cells arranged in rows and columns. Each memory cell includes a MOS transistor structure having a gate, a drain, a source, and a channel defined between the drain and the source. The gate corresponds to a word line and the drain and the source correspond to bit lines of the memory array. The gate of a conventional memory cell is generally a dual-gate structure, including a control gate and a floating gate, wherein the floating gate is sandwiched between two dielectric layers to trap carriers such as electrons, thereby "program" the cell. In other words, in a conventional cell, a first dielectric layer is formed over the channel, the floating gate is formed over the first dielectric layer, a second dielectric layer is formed over the floating gate, and the control gate is finally formed over the second dielectric layer.

During programming, a set of programming biases are applied to selected word lines and bit lines. One or more memory cells corresponding to the selected word lines and bit lines are biased in the programming state. For a single memory cell, different biases applied to the source and drain thereof creates an electric field along the channel thereof, through which electrons gain enough energy. Such hot electrons then tunnel through the first dielectric layer into the floating gate and become stored therein. As a result of the stored electrons in the floating gate, the threshold voltage of the memory cell is modified. The changing of the threshold voltage determines whether the memory cell is programmed.

To read a memory cell, reading biases are applied and a sensing device reads a current passing through the memory cell. If a memory cell is programmed, or has electrons stored in its floating gate, its current level is different from those memory cells which are not programmed. Therefore, based on the measured current level, the sensing device is capable of determining the state of each memory cell.

To erase the information stored in a flash memory, erasing biases are applied thereto to force the stored electrons to tunnel out of the floating gate, through a well-known mechanism in Fowler-Nordheim (F-N) tunneling.

However, certain problems are associated with a conventional flash memory, such as high power consumption, program and read disturbances. High power consumption is due to high program and erasure voltages required to induce electron tunneling for program and erase operations. Program and read disturbances relate to current leakage occurring to the non-selected neighboring memory cells while programming or reading a certain memory cell.

A disturbance in a flash memory array generally refers to a phenomenon when one selected cell in the memory array is being read or programmed, another programmed memory cell sharing the same word line or bit line may experience current leakage caused by electron tunneling of the selected cell, and a loss of electrons stored in the floating gate may result in a change of status from "programmed" to "erased". The read disturbance may be explained with reference to Fig. 1, which shows a flash memory array comprising conventional floating gate memory cells.

Referring to Fig. 1, a flash memory array 100 includes a plurality of word lines WL1, WL2, ... WL6, and a plurality of bit lines BL1, BL2, ... , BL5. Each intersection of the word lines and bit lines define a memory cell. Each of the memory cells also includes a floating gate (not shown). As indicated, a memory cell A corresponding to word line WL3 and bit lines BL2 and BL3 is selected by biasing the corresponding word line and bit lines. For example, word line WL3 is biased at 3V, bit line BL2 is biased at 0.3V, and bit line BL3 is biased at 1.5V. Word lines WL1, WL2, WL4, WL5, and WL6 are grounded (0V), and bit lines BL1, BL4, and BL5 are unbiased, or floating (F). Under such biasing conditions, the information stored in cell A may be read.

Meanwhile, the memory cells sharing the same word line or bit line with cell A are also under certain biases. For example, cell B shares the same word line WL3 and bit line BL2 with cell A. Therefore, assuming bit line BL2 corresponds to the drain of cell B, an electric field exists between the gate and the drain of cell B, which induces a leakage current through cell B. The leakage current through cell B depends on the threshold voltage thereof, which depends upon the electron density in the floating gate thereof. A lower threshold voltage will result in a higher leakage current. Similarly, cells C and D may experience current leakages due to the biases at bit line BL2 and bit line BL3, respectively. The leakage currents through the neighboring cells, e.g., cells B, C, and D, will flow through bit lines BL2 and BL3, and may generate sensing errors of cell A.

A prior art flash memory using programming by hot hole injection nitride electron storage is disclosed in " PHINES : a novel low power program/erase small pitch, 2-bit per cell flash memory," Yeh C.C. et al, IEDM, pages 931-934 , December 2002.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a method for programming a plurality of memory cells and sensing one of the memory cells according to claim 1.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects and embodiments of the invention and, together with the description, serve to explain the objects, advantages, and principles of the invention.

In the drawings,

Fig. 1 is a circuit diagram of a conventional flash memory array and illustrates a leakage problem associated with a conventional flash memory array;

Fig. 2 shows a memory cell

Fig. 3 shows a first data pattern for a memory array consistent with the present invention; and

Fig. 4 shows a second data pattern for a memory array consistent with the present invention.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to the preferred aspects and embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

There is provided a flash memory device in a "programming by hot hole injection nitride electron storage" (PHINES) cell and method thereof, wherein the memory device may comprise a memory array including a matrix of memory cells.

Fig. 2 shows the cell structure of an exemplary PHINES memory cell 200. Referring to Fig. 2, there is provided a semiconductor substrate 202 with two diffused regions, a source 204 and a drain 206, formed therein. Semiconductor substrate 202 may comprise any conventional semiconductor material, such as silicon. A channel region 208 is defined as the region of semiconductor substrate 202 between source 204 and drain 206. A multilayer gate structure 210 is formed over the channel region, including a first insulating layer 212, a trapping layer 214, a second insulating layer 216, and a control gate 218. First insulating layer 212 may be comprised of silicon oxide, trapping layer 214 may be comprised of silicon nitride, second insulating layer 216 may be comprised of silicon oxide, and control gate 218 may be comprised polycrystalline silicon, a metal, metal silicide, or a combination thereof.

In one aspect, control gate 218 corresponds to a word line of the memory array, and source 204 and drain 206 correspond to bit lines of memory array. Therefore, each memory cell has a corresponding word line and a pair of corresponding bit lines, or a first bit line and a second bit line.

Fig. 2 shows a distribution profile of electrons in trapping layer 214 before memory cell 200 is programmed. It is to be understood that the electron profile shown in Fig. 2 is not drawn to scale. It is also to be understood that a MOS structure is generally symmetrical and the source and drain are interchangeable. Therefore, in the above and following descriptions, the source and drain of memory cell 200, or the first and second bit lines, may be interchanged without affecting the functions thereof.

The operations of memory cell 200 are next explained with reference to Fig. 2. During programming, a set of programming biases are applied to the word line and bit lines. Specifically, the word line, or control gate 218, is biased at a high negative voltage, e.g., -5V, the first bit line of memory cell 200, or source 204, is grounded, and the second bit line of memory cell 200, or drain 206, is biased at a high positive voltage, e.g., +5V. Under such biasing conditions, a horizontal electric field is created along channel 208 and a vertical electric field is created across structure 210. The horizontal electric field draws positively-charged holes out of drain 206 toward source 204. The holes are accelerated by the horizontal electric field, attaining a higher energy. When the holes have attained enough energy to break the barrier potential of first dielectric layer 212, and with the inducement of the vertical electric field, some holes will be "injected" or tunnel through first dielectric layer 212 and into trapping layer 214, and are trapped therein. Specifically, the holes are injected into the right side of trapping layer 214. The left side of trapping layer 214 is generally absent of holes. Therefore, the charge distribution in trapping layer 214 is modified by the trapped holes.

It is to be understood that a different set of bias voltages may be applied to the word line and first and second bit lines to program the memory cell, as long as the biasing conditions provide the requisite electric fields to allow holes to gain sufficient energy to tunnel through first dielectric layer 212 into trapping layer 214.

To read memory cell 200, a bias of 3V is applied to the word line, or control gate 218, while drain 206 is grounded. A bias of 1.5V is applied to source 204. As a result, a channel is generated in channel region 208. A sensing circuit (not shown) external to memory cell 200 then senses the current passing through the channel due to the bias difference between source 204 and drain 206. If memory cell 200 is programmed, trapping layer 214 includes trapped positively-charged holes. Therefore, compared to an un-programmed memory cell 200, the threshold voltage of a programmed memory cell 200 is lower because of the trapped holes, and consequently the current sensed by the sensing circuit is higher for a programmed memory cell 200 than an un-programmed memory cell 200.

If a state of "1" denotes a state having a higher sensing current and a state of "0" denotes a state having a lower sensing current, then a programmed memory cell 200 has a state of "1" and an non-programmed memory cell 200 has a state of "0".

To erase memory cell 200, the word line, or control gate 218, is biased at a high negative voltage, e.g., -8V, and both of the first bit line and the second bit line of memory cell 200, or source 204 and drain 206, are biased at high positive voltages, e.g., +10V. A strong vertical electric field is formed between control gate 218 and source 204 and drain 206, and electrons in control gate 218 are "pulled" or tunnel through second oxide layer 216 into trapping layer 214. The electrons and positively-charged holes are recombined or compensated in trapping layer 214. As a result, trapping layer 214 is restored to the pre-programming status and the threshold voltage of memory cell 200 is raised to a higher level, which corresponds to the "0" state.

Similarly, the applicable biases for reading and erasing memory cell 200 are not limited to those exemplary biases described above. Different sets of voltages may be applied so long as the desired reading and erasing results are obtained.

Accordingly, the operations of memory cell 200, as described above, are low power operations, and are suitable for mass storage applications. Also a plurality of memory cells 200 may be arranged to form a memory array. In one aspect, the memory array is formed as a virtual ground array, wherein the bit lines are buried diffusion areas, and the word lines are gate contacts, such as polycrystalline silicon stripes. Memory cells in a column may share the same bit lines or buried diffusion areas, and memory cells in a row may share the same word line. Thus, the memory array is contact-less and does not require any field isolation. Therefore a very high density memory device may be realized.

Also in accordance with the present invention, there are provided novel data patterns of a flash memory device that have a reduced read disturbance. Fig. 3 shows a first embodiment of a data pattern that reduces the read disturbance. Fig. 4 shows a second embodiment of a data pattern that reduces the read disturbance.

Referring to Fig. 3, a flash memory array 300 includes a plurality of word lines WL1, WL2 ... WL6, and a plurality of bit lines BL1, BL2 ... BL5. The intersections of word lines and bit lines define a plurality of memory cells, each of which corresponds to a word line and a pair of bit lines. Fig. 3 also indicates a data pattern wherein consecutive columns of memory cells are programmed in alternating sides of the trapping layers. Specifically, for example, a first column of memory cells located between bit lines BL1 and BL2 are programmed on the right side of the trapping layer, a second column of memory cells located between bit lines BL2 and BL3 are programmed on the left side of the trapping layer, and a third column of memory cell located between bit lines BL3 and BL4 are programmed to the right side of the trapping layer. A memory cell is defined as having been "programmed on the right side" when hot holes tunnel into the right side of the trapping layer of the memory cell and are stored therein. Similarly, a memory cell is defined as having been "programmed on the left side" when hot holes tunnel into the left side of the trapping layer of the memory cell and are stored therein.

However, it is to be understood that "left side" and "right side" are only relative terms that depend on the disposition of the memory cell, and the terms may be interchanged without affecting the functions of the memory cell.

Referring again to Fig. 3, a memory cell A corresponding to word line WL3 and bit lines BL2 and BL3 is selected by biasing the corresponding word line and bit lines. Specifically, word line WL3 is biased at 3V, bit line BL2 is biased at 0.3V, and bit line BL3 is biased at 1.5V. Word lines WL1, WL2, WL4, WL5, and WL6 are grounded, and bit lines BL1, BL4, and BL5 are unbiased, or floating. Under such biasing conditions, the information stored in cell A may be read.

The trapping layer of cell B is programmed on the right side. Therefore, the electron distribution in the trapping layer is low on the right side but high on the left side. Because bit line BL1 corresponding to the left side of cell B is floating, the electric field in cell B is not sufficient to cause leakage current between bit lines BL1 and BL2 through cell B. Similarly, cell C does not have a high electron density in the right side of the trapping layer, and therefore also has a reduced leakage current.

Because the leakage current of the memory cells between bit lines BL1 and BL2 is reduced, memory cell A may be read by measuring or sensing the current through bit line BL2 instead of bit line BL3 to reduce sensing error. In other words, a memory cell may be read by sensing the current that flows through a bit line that is located on the same side of the "programmed" side of the memory cell. For example, in Fig. 3, cell A is programmed to the left side, and may be read by sensing the current present on bit line BL2, which is also on the left side of cell A.

A second embodiment of method and array of the present invention is shown in Fig. 4, which indicates a different data pattern, wherein all of the memory cells in a memory array 400 are programmed to the same side, e.g., the left side. For the reasons already discussed above, current leakage may be reduced for memory cells not selected for reading. Similarly, cell A may be read by sensing the current through bit line BL3 instead of bit line BL2 to reducesensing error. In other words, a memory cell may be read by sensing a current that flows through a bit line located on the opposite side from the programmed side of the memory cell. For example, in Fig. 4, cell A is programmed to the left side, and may be read by sensing the current on bit line BL3, which is on the right side of cell A.

As described above, by sensing the current through a bit line that has a reduced current leakage, the sensing methods consistent with the present invention provides a reduced read disturbance.


Anspruch[de]
Ein Verfahren zum Programmieren einer Vielzahl von Speicherzellen und zum Wahrnehmen einer (A) der Speicherzellen, wobei jede Speicherzelle mit nur einem Bit programmiert wird, wobei das Verfahren umfasst: Bereitstellen eines Speicherarrays, welcher eine Vielzahl von Speicherzellen beinhaltet, wobei jede Speicherzelle umfasst: eine Charge Trapping-Schicht; ein Steuerungsgatter, welches über der Charge Trapping-Schicht angeordnet ist; und eine Source und ein Drain, welche auf beiden Seiten des Steuerungsgatters angeordnet sind, wobei die Steuerungsgatter der Speicherzellen Wörterlinien (WL) bilden und in Reihen angeordnet sind, und die Sources und die Drains der Speicherzellen Bitlinien (BL) bilden und in Spalten angeordnet sind; Programmieren der Speicherzellen durch Injizieren elektrischer Löcher in einen Seitenbereich der Charge Trapping-Schicht neben der Source oder den Drain; und Wahrnehmen einer ausgewählten Speicherzelle (A), durch Anwenden einer positiven Vorspannung auf den Drain oder die Source, der ausgewählten Speicherzelle, und noch einer positiven Vorspannung auf das Steuerungsgatter der ausgewählten Speicherzelle und Relozieren der Bitlinien des Speicherarrays, anders als die Bitlinien, welche mit den ausgewählten Speicherzelle verbunden sind, worin, wenn in dem Speicherarray alle Speicherzellen mit einem Bit auf einer hiervon gleichen Seite der Trapping-Schichten programmiert werden, wird ein Strom, der durch die ausgewählte Bitlinie (BL3 in Fig. 4) der Speicherzelle fliest, welche auf gegenüberliegender Seite zu dem Seitenbereich der Trapping-Schichten angeordnet ist, welche mit den elektrischen Löchern injiziert wird, wahrgenommen; und wenn, in dem Speicherarray, die Speicherzellen mit der ausgewählten Speicherzelle in derselben Spalte angeordnet sind, mit Bits auf einer gleichen Seite der Trapping-Schichten entsprechend programmiert werden und die Speicherzellen, die in den benachbarten Spalten angeordnet sind, mit Bits auf der gegenüberliegenden Seite der Trapping-Schichten programmiert werden, wird ein Strom, der durch die Bitlinie der ausgewählten Speicherzelle fließt (BL2 in Fig.3), welche sich auf der gleichen Seite befindet, auf welcher der Seitenbereich der Trapping-Schichten, injiziert mit den elektrischen Löchern, wahrgenommen. Das Programmierungs- und Wahrnehmungs-Verfahren nach Anspruch 1, wobei die Bitlinie, durch die der wahrgenommene Strom durchfließt, mit einer positiven Vorspannung versorgt wird. Das Programmierungs- und Wahrnehmungs-Verfahren nach Anspruch 1, wobei ein Seitenbereich den Charge Trapping-Schichten, gegenüberliegend zu der Seite, auf der die elektrischen Löcher injiziert werden, nicht programmiert wird.
Anspruch[en]
A method for programming a plurality of memory cells and sensing one (A) of the memory cells, wherein each memory cell is programmed with only one fit, the method comprising: providing a memory array including a plurality of memory cells, each memory cell comprising: a charge trapping layer; a control gate, disposed over the charge trapping layer; and a source and a drain, disposed on either side of the control gate, wherein the control gates of the memory cells form wordlines (WL) and are arranged in rows, and the sources and the drains of the memory cells form bitlines (BL) and are arranged in columns; programming the memory cells by injecting electrical holes into a side portion of the charge trapping layers proximate to the source or the drain; and sensing one selected memory cell (A) by applying a positive bias on the drain or the source of the selected memory cell and another positive bias on the control gate of the selected memory cell and floating the bitlines of the memory array other than the bitlines connected to the selected memory cell, wherein when, in the memory array, all memory cells are programmed with one bit at a same side of the trapping layers thereof a current flowing through the selected memory cell's bitline (BL3 in Fig. 4) located on opposite side to the side portion of the trapping layers injected with the electrical holes is sensed; and

when, in the memory array, the memory cells arranged with the selected memory cell in the same column are programmed with bits at a same side of the trapping layers respectively and the memory cells arranged in the neighboring columns are programmed with bits at the opposite side of the trapping layers, a current flowing through the selected memory cell's bitline (BL2 in Fig.3) located on the same side where the side portion of the trapping layers injected with the electrical holes is sensed.
The programming and sensing method according to claim 1, wherein the bitline which the sensed current flows through is supplied with a positive bias. The programming and sensing method according to claim 1, wherein a side portion of the charge trapping layers opposite to the side where the electrical holes are injected is not programmed.
Anspruch[fr]
Une méthode pour la programmation d'une pluralité de cellules à mémoire et pour la détection de l'une (A) des cellules à mémoire, méthode dans laquelle chaque cellule à mémoire est programmée avec un bit seulement, cette méthode comprenant les étapes consistant à : - créer une zone de mémoire comportant une pluralité de cellules à mémoire, chaque cellule à mémoire comprenant

une couche de piégeage de charge ;

une gate de contrôle disposée au-dessus de la couche de piégeage de charge ; et

une source et un écoulement disposés sur l'un ou l'autre côté de la gate de contrôle, les gates de contrôle des cellules à mémoire formant des lignes de mot (WL) et étant réparties en rangées, tandis que les sources et les écoulements des cellules à mémoire forment des lignes de bit (BL) et sont réparties en colonnes ;
- programmer les cellules à mémoire en injectant des trous électriques dans une portion latérale des couches de piégeage de charge à proximité de la source ou de l'écoulement ; et - détecter une cellule à mémoire sélectionnée (A) en appliquant une polarisation positive sur l'écoulement ou la source de la cellule à mémoire sélectionnée et une autre polarisation positive sur la gate de contrôle de la cellule à mémoire sélectionnée et en laissant flotter les lignes de bit de la zone de mémoire autres que les lignes de bit connectées à la cellule à mémoire sélectionnée, de telle sorte que : quand, dans la zone de mémoire, toutes les cellules à mémoire sont programmées avec un bit du même côté que les couches de piégeage de celle-ci, un courant traversant la ligne de bit de la cellule à mémoire sélectionnée (BL3 sur la figure 4) située du côté opposé à la portion latérale des couches de piégeage où sont injectés les trous électriques est détecté ; et quand, dans la zone de mémoire, les cellules à mémoire situées dans la même colonne que la cellule à mémoire sélectionnée sont programmées avec des bits sur le même côté que les couches de piégeage, respectivement, et que les cellules à mémoire disposées dans des colonnes voisines sont programmées avec des bits du côté opposé aux couches de piégeage, un courant traversant la ligne de bit de la cellule à mémoire sélectionnée (BL2 sur la figure 3) située du même côté que la portion latérale des couches de piégeage où sont injectés les trous électriques est détecté.
La méthode de programmation et de détection selon la revendication 1, dans laquelle à la ligne de bit que traverse le courant détecté est appliquée une polarisation positive. La méthode de programmation et de détection selon la revendication 1, dans laquelle une portion latérale des couches de piégeage de charge opposée au côté où sont injectés les trous électriques n'est pas programmée.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com