Warning: fopen(111data/log202005262306.log): failed to open stream: No space left on device in /home/pde321/public_html/header.php on line 107

Warning: flock() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 108

Warning: fclose() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 113
Befestigung einer Quadratwicklung in einer dynamoelektrischen Maschine - Dokument EP0915558
 
PatentDe  


Dokumentenidentifikation EP0915558 08.03.2007
EP-Veröffentlichungsnummer 0000915558
Titel Befestigung einer Quadratwicklung in einer dynamoelektrischen Maschine
Anmelder General Electric Co., Schenectady, N.Y., US
Erfinder Wright, Kamron Mark, Fort Wayne, Indiana 46819, US;
Molnar, David Thomas, Cuyahoga Falls, Ohio 4421-2919, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69836889
Vertragsstaaten DE, IT
Sprache des Dokument EN
EP-Anmeldetag 05.11.1998
EP-Aktenzeichen 983090481
EP-Offenlegungsdatum 12.05.1999
EP date of grant 17.01.2007
Veröffentlichungstag im Patentblatt 08.03.2007
IPC-Hauptklasse H02K 29/12(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H02K 3/20(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

This invention relates generally to dynamoelectric machines and more particularly to a quadrature winding retention apparatus for a dynamoelectric machine.

Dynamoelectric machines, in the form of electric motors, have numerous applications, such as for an air handler, washing machine and compressor motors. An important part of the utility of such motors is the ease of manufacturability. Manufacturers require inexpensive, yet reliable and efficient motors for appliances or other tightly packaged machines. Thus, manufacturers see a need for a motor that can be rapidly and economically manufactured without sacrificing package space, manufacturing cost efficiency, and operating cost efficiency.

Dynamoelectric machines also need to be commutated such that the controller alternates the direction of the electrical current inducing rotor rotation when the back electromotive force and motor current are at the proper phase relationship. This ensures that the machine does not waste electrical energy by switching the current direction too early or too late and working against the momentum of the motor. To commutate a dynamoelectric motor properly, accurate rotor position information is essential and readily available through various rotor position sensors. Without information from position sensors, electronically commutated dynamoelectric motors will not operate.

Quadrature winding technology offers a promising, low cost alternative to a Hall Effect sensor. Quadrature windings sense rotor position for commutation, but are :nore appealing than Hall Effect sensors because they provide more accurate information and can be added to a sealed motor system with a minimal number of wiring leads and connectors.

A quadrature winding comprises a single insulated conductor oriented in a channel in the center of the radially inner end of a stator tooth, wound to an adjacent tooth end, and oriented again in a center channel of the adjacent stator tooth end. Channels are added to the stator tooth ends to keep the rotor from striking the conductor and to minimise the gap size caused by sensing devices between the stator and rotor. In the past, production motor designs did not incorporate quadrature winding technology because of poor manufacturability and high labor costs. Operators experience difficulty hand winding the quadrature because the wire required constant tension while wound to ensure that the previous windings did not loosen. Hand winding was unattractive for production motors because automated winding techniques yield faster, less expensive, and more accurate results.

JP 05 103454 A is an example of a disclosure of a quadrature winding.

The present invention is defined by the features of the independent claim. Preferred embodiments of the invention are defined in the accompanying dependent claims.

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:

  • FIG. 1 is a top cross sectional view of an electric motor with a quadrature winding and wire retaining means;
  • FIG. 2 is an end elevational view of a stator with wire a retaining means;
  • FIG. 3 is a fragmentary perspective view of the stator with wire retaining means;
  • FIG. 4 is a fragmentary perspective view of a single stator tooth with wire retaining means.
  • FIG. 5 is an end elevational view of the stator with a wire retaining means and an alternate winding configuration.
  • FIG. 6 is a fragmentary perspective view of the upper motor end cap.
  • FIG. 7 is a fragmentary perspective view of the lower motor end cap.

Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.

Referring now to the drawings, and more particularly to Fig. 1, apparatus of the present invention for retaining a quadrature winding in a dynamoelectric machine is indicated in its entirety by the reference numeral 21. The dynamoelectric machine comprises a rotor, generally indicated at 23, a shaft 25, a stator, generally indicated at 27, a quadrature winding 29, and stator end caps 31 functioning as wire retaining means.

The rotor 23 is generally cylindrical in shape and comprises a sequential array of permanent magnets spaced equidistant about the circumference of the rotor. The permanent magnets are magnetized in alternate magnetic orientations. The permanent magnets are arranged such that the polarity of the radially outward portion of each magnet is either north or south polarity. The rotor 23 mounts centrally to a rotatable shaft 25. The shaft 25 and the rotor 23 share the same central, longitudinal axis. The shaft 25 rotates within two bearing assemblies 33 located on the top and bottom of the dynamoelectric machine 21.

Referring now to Figs. 2-5, the stator 27 is generally cylindrical in shape having a central cylindrical opening for receiving the rotor 23 and shaft 25 assembly. The stator 27 is formed of several horizontal layers 35 of ferromagnetic material. The layers 35 are identical in shape and when placed against the face of each other, form the body of the stator 27. The stator 27 body has teeth 37 extending radially inward from radially outer portions of the stator core. The teeth 37 are located at regular angular intervals along the circumference of the stator 27.

Channels 39 are formed at the radially inner portion of the stator teeth 37. The channels 39 run longitudinally from the top to the bottom of each tooth 37 along its center. The channel allows the quadrature winding 29 to pass down the front of each tooth 37 set back from the radially inner surface of the tooth such that the quadrature winding does not decrease the clearance between the rotor 23 and the stator 27. Adequate spacing between adjacent teeth 37 allows the main winding 41 of the dynamoelectric machine 21 to wind several times around each stator tooth. When charged with alternating electrical current, this main winding 41 induces rotation of the rotor 23 relative to the stator 27.

The main winding 41 comprises a single wire strand wound repeatedly around each stator tooth 37 and then passed to the adjacent stator tooth for winding in the opposite direction. The main winding 41 carries an alternating current along its length, creates magnetic fields between each pair of stator teeth, and thereby induces the rotation of the rotor 23. The main winding 41 is wound around the stator teeth 37 before the routing of the quadrature winding 29 about the stator. However, it is envisioned that the quadrature axis winding 29 may be wound on the stator prior to the main winding 41.

The quadrature winding 29 comprises a single insulated conductor through which current passes. The rotation of the rotor 23 induces a current in the quadrature winding 29. As the alternating magnetic fields of the rotor 23 magnets pass the quadrature winding 29, the moving magnetic fields generate current perpendicular to the magnetic field, or parallel to the quadrature winding. Because the polarity of the rotor 23 magnet seen by each tooth alternates between north and south proportional to rotor rotation, the position of the rotor can be calculated from the induced alternating current within the quadrature winding 29.

The quadrature winding 29 passes through the center channel 39 of a radially inner portion of each stator tooth 37. The main winding 41 and quadrature winding 29 are electrically insulated from one another so that the current in the quadrature winding 29 represents only rotor position. The rotating rotor 23 creates an array of moving electromagnetic fields as it passes each segment of the quadrature winding 29. These electromagnetic fields induce the current within the quadrature winding 29. By monitoring the current, rotor 23 angular position is calculated.

From one stator tooth 37 to the next adjacent tooth, the quadrature winding 29 can follow two prescribed paths. Referring now to Figs. 2-3, in a first embodiment, the quadrature winding 29 passes directly from the top radially inner end of one stator tooth 37 to the top radially inner end of an adjacent stator tooth. The quadrature winding 29 then passes down the radially inner end to the bottom of the stator tooth 37 where it passes directly to the bottom radially inner end of the next stator tooth. This winding pattern continues around the entire inner circumference of the stator 27.

Referring now to Fig. 5, in a second embodiment, the quadrature winding 29 is wound from one stator tooth 37 to an adjacent tooth by traveling radially outwardly along the top of the tooth to the radially outer portion of the stator 27. The quadrature winding 29 then travels along the outer circumference of the stator 27 to the next tooth 37 position. Finally, the quadrature winding 29 runs radially inwardly along the top of the tooth 37 to the inner tooth end where the quadrature winding passes into the center channel 39 of the stator tooth. This path is then repeated along the bottom portion of the next adjacent stator tooth 37. This winding pattern continues around the entire circumference of the stator 27. In either winding pattern of the quadrature winding 29, the terminal ends of the winding are received in terminal fixtures 51 capable of receiving an insulation penetrating connectors 53 for use in connecting the quadrature winding to a motor control (not shown). However, it is envisioned that the terminal ends of the quadrature winding 29 could be placed together with the terminal ends of the main winding 41 in a harness (not shown) for connection to the control.

Referring now to Figs. 6-7, before the routing of either the main winding 41 or quadrature winding 29 about the stator 27, a stator end cap 31 is affixed to the top and bottom of the stator. The stator end caps 31 facilitate the anchoring of the quadrature winding 29 to the stator 27 and the insulation of the quadrature winding from the stator. The stator end cap 31 comprises wire retaining means 43 that receive and fixedly retain the quadrature winding 29 at the radially inner end of each tooth 37. Because both longitudinal ends of the stator 27 have an end cap 31 and corresponding retention means, the quadrature winding 29 is held fixedly when passing through the channel 39 in the stator tooth 37.

The wire retention means 43 comprise nubs 45 spaced apart a distance less than the quadrature winding 29 diameter. The nubs 45 are sized and shaped for frictional engagement with the quadrature winding 29. The nubs 45 are spaced apart a distance less than the quadrature winding 29 diameter such that an interference fit exists, holding the quadrature winding in place during automated (or manual) winding and operation of the dynamoelectric machine 21. Several recesses 47 on the radially inner portion of the end cap 31 are in registration with the corresponding channels 39 on the teeth 37. The quadrature winding 29 runs through the recess 47 and is held in place by the nubs 45 disposed on opposite sides of the recess on the portion of the end cap 31 farthest from the stator 27.

The stator end cap 31 comprises polymeric material such that the nubs 45 are formed integrally with the end cap. The polymeric material also functions as an additional insulator between the stator 27, the main winding 41, and the quadrature winding 29.

The remainder of the dynamoelectric machine 21 components do not substantially deviate from prior art dynamoelectric machine components and their discussion is not essential for an understanding of this invention.


Anspruch[de]
Dynamoelektrische Maschine (21), die: einen Rotor (23) mit wenigstens einem Permanentmagneten und des weiteren aufweist: einen Stator (27) mit einem Statorkern mit einer Zentralöffnung, von der der Rotor aufgenommen ist, wobei der Statorkern sich radial nach innen in die Zentralöffnung erstreckende Zähne (37) und eine Wicklung aufweist, die um wenigstens einen der Zähne (37) des Statorkerns gewickelt ist, eine Quadrantenwicklung (29), die so angeordnet ist, dass sie ein Ausgangssignal erzeugt, das für die Winkelposition des Rotors repräsentativ ist, wobei die Quadrantenwicklung (29) einen Draht aufweist, der sich längs des Statorkerns entlang der inneren Enden von wenigstens einigen der Statorzähne (37) erstreckt, sowie, kennzeichnenderweise, Drahthaltemittel (43), die wenigstens einigen der Statorzähne zugeordnet sind, um mit der Quadrantenwicklung in Eingriff zu kommen und diese festzuhalten, um die Quadrantenwicklung in dem Statorkern am Platz zu halten, wobei das Drahthaltemittel (43) ein Paar Nasen (45) aufweist, die in einem Abstand zueinander angeordnet sind, der geringer ist als der Durchmesser des Quadrantenwicklungsdrahts, so dass der Draht zwischen den Nasen (45) in Presspassung aufgenommen ist, wobei das Drahthaltemittel im Wesentlichen an den radial inneren Enden der wenigstens einigen Statorzähne (37) angeordnet ist. Dynamoelektrische Maschine nach Anspruch 1, bei der das Drahthaltemittel (43) an beiden Längsenden des Statorkerns angeordnet und dazu eingerichtet ist, den Draht der Quadrantenwicklung (29) im Wesentlichen an dem radial inneren Ende der wenigstens einigen Statorzähne (37) aufzunehmen und festzuhalten. Dynamoelektrische Maschine nach Anspruch 1 oder 2, bei der das Paar Nasen (45) ein erstes Nasenpaar bildet, wobei die dynamoelektrische Maschine außerdem ein zweites Nasenpaar für jedes erste Nasenpaar aufweist, wobei jedes zweite Nasenpaar im Wesentlichen benachbart zu den radial äußeren Enden der Zähne (37) und in radialer Übereinstimmung mit dem entsprechenden ersten Nasenpaar angeordnet ist. Dynamoelektrische Maschine nach einem der vorausgehenden Ansprüche, außerdem aufweisend Endkappen (32), die aus Polymermaterial ausgebildet sind, und Zähne aufweisen, die den Zähnen (37) des Statorkerns entsprechen, wobei die Endkappen an entsprechenden Enden des Statorkerns montiert sind, wobei die Nasen (45) mit den Endkappen einstückig ausgebildet sind. Dynamoelektrische Maschine nach einem der vorausgehenden Ansprüche, wobei die wenigstens einigen Zähne (37) jeweils einen Kanal in ihren radialen inneren Enden aufweisen, der sich längs zu dem Statorkern erstreckt, wobei die Kanäle in sich die Quadrantenwicklung aufnehmen. Dynamoelektrische Maschine nach Anspruch 4, bei der die Endkappen (31) jeweils eine Ausnehmung aufweisen, die in Übereinstimmung mit einem entsprechenden Kanal von einem der wenigstens einigen Statorzähne (37) steht, wobei die Nasen (45) an einander gegenüber liegenden Seiten der Ausnehmung angeordnet sind. Statorendkappe (31) zur Verwendung in einer dynamoelektrische Maschine (21) nach einem der vorausgehenden Ansprüche zur Befestigung einer Quadrantenwicklung (29), die zur Erfassung der Drehposition eines permanentmagnetischen Rotors (23) genutzt und innerhalb eines Statorkerns der dynamoelektrischen Maschine angeordnet ist, wobei die Statorendkappe gekennzeichnet ist durch: einen Außenringabschnitt mit einem äußeren Durchmesser, der einem Außendurchmesser des Statorkerns entspricht, und mit einem Innenumfang und einer Zentralöffnung, Zähne (37), die von dem Innenumfang des Ringabschnitts radial nach innen in die Zentralöffnung der Endkappe hinein vorstehen, Drahtbefestigungsmittel (43), die im Wesentlichen an den radial inneren Enden der wenigstens einigen Zähne (37) angeordnet sind, um den Quadrantenwicklungsdraht, der die Quadrantenwicklung bildet, aufzunehmen und festzuhalten, wobei das Drahtbefestigungsmittel (43) aus einem Paar Nasen (45) besteht, die in einem Abstand zueinander angeordnet sind, der kleiner ist als der Durchmesser des Quadrantenwicklungsdrahts, so dass der Draht zwischen den Nasen (45) in einem Presssitz aufgenommen ist, wobei das Drahtbefestigungsmittel (43) im Wesentlichen an den radial inneren Enden der wenigstens einigen Zähne angeordnet ist. Statorendkappe nach Anspruch 7, wobei das Paar Nasen (45) ein erstes Nasenpaar bildet, die Statorendkappe (31) außerdem ein zweites Nasenpaar für jedes erste Nasenpaar aufweist, wobei jedes zweite Nasenpaar an dem Ringabschnitt im Wesentlichen zu den radial äußeren Enden der Zähne (37) und in radialer Ausrichtung zu dem entsprechenden ersten Nasenpaar angeordnet ist. Statorendkappe nach Anspruch 7 oder 8, wobei die Endkappe (31) aus Polymermaterial und die Nasen (45) mit der Endkappe einstückig ausgebildet sind. Statorendkappe nach einem der Ansprüche 7 bis 9, außerdem aufweisend eine an dem radial inneren Ende jedes der wenigstens einigen Zähne (37) angeordneten Ausnehmung, wobei die Nasen (45) an einander gegenüber liegenden Seiten der Ausnehmung angeordnet sind.
Anspruch[en]
A dynamoelectric machine (21) comprising: a rotor (23) including at least one permanent magnet, comprising : a stator(27) including a stator core having a central opening in which the rotor is received, the stator core having teeth (37) extending radially inwardly into the central opening, and a winding wound around at least some of the teeth (37) of the stator core; a quadrature winding (29) positioned for generating an output signal representative of rotor angular position, the quadrature winding (29) including wire extending longitudinally of the stator core along radially inner ends of at least some of the stator teeth (37); and characterised by: wire retaining means (43) associated with at least some of the stator teeth for engaging and fixedly retaining the quadrature winding wire to secure the quadrature winding in on the stator core; said wire retaining means (43) comprising a pair of nubs (45) spaced apart a distance less than the diameter of the quadrature winding wire such that the wire is received between the nubs (45) with an interference fit, said wire retaining means located generally at the radially inner ends of said at least some stator teeth (37). A cynamoelectric machine as set forth in claim 1, wherein said wire retaining means (43) is disposed at both longitudinal ends of the stator core, and is constructed to receive and fixedly retain the quadrature winding (29) wire generally at the radially inner end of said at least some stator teeth (37). A dynamoelectric machine as set forth in claim 1 or 2, wherein the pairs of nubs (45) constitute first pairs of nubs, the dynamoelectric machine further comprising a second pair of nubs for each of the first pairs of nubs, each second pair of nubs being located generally adjacent radially outer ends of the teeth (37) and in radial alignment with a corresponding one of the first pairs of nubs. A dynamoelectric machine as set forth in any preceding claim, further comprising end caps (31) formed of polymeric material and having teeth corresponding to the teeth (37) of the stator core, the end caps being mounted on respective ends of the stator core, the nubs (45) being formed integrally with the end caps. A dynamoelectric machine as set forth in any preceding claim, wherein said at least some teeth (37) each have a channel in their radially inner ends extending longitudinally of the stator core, the channels receiving the quadrature winding wire therein. A dynamoelectric machine as set forth in claim 4, wherein the end caps (31) each have a recess in registration with a corresponding channel on one of said at least some stator teeth (37), the nubs (45) being disposed on opposite sides of the recess. A stator end cap (31) for use in a dynamoelectric machine (21) as claimed in any preceding claim to retain a quadrature wingding (29) employed for detecting the rotational position of a permanent magnet rotor (23) located within a stator core of the dynamoelectric machine, the stator end cap characterised by: an outer ring portion having an outer diameter corresponding to an outer diameter to the stator core, an inner diameter and a central opening; teeth (37) projecting from the inner diameter of the ring portion radially inwardly into the central opening of the end cap; wire retaining means (43) located generally at radially inner ends of at least some of the teeth (37) for receiving and fixedly retaining quadrature winding wire forming the quadrature winding; said wire retaining means (43) comprising a pair of nubs (45) spaced apart a distance less than the diameter of the quadrature winding wire such that the wire is receivable between the nubs (45) with an interference fit, said wire retaining means (43) located generally at the radially inner ends of said at least some teeth. A stator end cap as set forth in claim 7, wherein the pairs of nubs (45) constitute first pairs of nubs, the stator end cap (31) further comprising a second pair of nubs for each of the first pairs of nubs, each second pair of nubs being located generally on the ring portion adjacent radially outer ends of the teeth (37) and in radial alignment with a corresponding one of the said first pairs of nubs. A stator end cap as set forth in claim 7 or 8, wherein the end cap (31) is formed of polymeric material and the nubs (45) are formed integrally with the end cap. A stator end cap as set forth in any of claims 7 to 9, further comprising a recess located at the radially inner end of each of said at least some teeth (37), the nubs (45) being disposed on opposite sides of the recess.
Anspruch[fr]
Machine dynamoélectrique (21) comprenant : un rotor (23) comportant au moins un aimant permanent, comprenant : un stator (27) comportant un noyau de stator ayant une ouverture centrale dans laquelle est placé le rotor, le noyau de stator ayant des dents (37) qui s'étendent radialement vers l'intérieur dans l'ouverture centrale, et un enroulement enroulé autour d'au moins certaines des dents (37) du noyau de stator ; un enroulement en quadrature (29) positionné de manière à produire un signal de sortie représentatif de la position angulaire du rotor, l'enroulement en quadrature (29) comportant du fil métallique qui s'étend dans le sens longitudinal du noyau de stator le long des extrémités radialement intérieures d'au moins certaines des dents de stator (37) ; et caractérisée par: un moyen de retenue de fil (43) associé à au moins certaines des dents de stator pour accrocher et retenir de manière fixe le fil d'enroulement en quadrature pour immobiliser l'enroulement en quadrature sur le noyau de stator ; ledit moyen de retenue de fil (43) comprenant une paire d'ergots (45) séparés par une distance inférieure au diamètre du fil d'enroulement en quadrature, de sorte que le fil est logé entre les ergots (45) en ajustement avec serrage, ledit moyen de retenue de fil étant situé généralement aux extrémités radialement intérieures desdites au moins certaines dents de stator (37). Machine dynamoélectrique selon la revendication 1, dans laquelle ledit moyen de retenue de fil (43) est placé aux deux extrémités longitudinales du noyau de stator, et est conçu pour recevoir et retenir de manière fixe le fil de l'enroulement en quadrature (29) généralement à l'extrémité radialement intérieure desdites au moins certaines dents de stator (37). Machine dynamoélectrique selon la revendication 1 ou 2, dans laquelle les paires d'ergots (45) constituent des premières paires d'ergots, la machine dynamoélectrique comprenant en outre une deuxième paire d'ergots pour chacune des premières paires d'ergots, chaque deuxième paire d'ergots étant en position généralement adjacente aux extrémités radialement extérieures des dents (37) et en alignement radial avec une paire correspondante parmi les premières paires d'ergots. Machine dynamoélectrique selon l'une quelconque des revendications précédentes, comprenant en outre des obturateurs d'extrémité (31) en matériau polymère et ayant des dents correspondant aux dents (37) du noyau de stator, les obturateurs d'extrémité étant montés sur les extrémités respectives du noyau de stator, les ergots (45) étant formés d'un seul tenant avec les obturateurs d'extrémité. Machine dynamoélectrique selon l'une quelconque des revendications précédentes, dans laquelle lesdites au moins certaines dents (37) ont chacune un canal dans leurs extrémités radialement intérieures s'étendant dans le sens longitudinal du noyau de stator, les canaux recevant le fil d'enroulement en quadrature. Machine dynamoélectrique selon la revendication 4, dans laquelle les obturateurs d'extrémité (31) ont chacun un évidement en correspondance avec un canal correspondant de l'une desdites au moins certaines dents de stator (37), les ergots (45) étant disposés sur des côtés opposés de l'évidement. Obturateur d'extrémité de stator (31) pour une machine dynamoélectrique (21) conforme à l'une quelconque des revendications précédentes pour retenir un enroulement en quadrature (29) utilisé pour détecter la position angulaire d'un rotor à aimant permanent (23) situé dans un noyau de stator de la machine dynamoélectrique, l'obturateur d'extrémité de stator étant caractérisé par : une partie bague extérieure ayant un diamètre extérieur qui correspond à un diamètre extérieur du noyau de stator, un diamètre intérieur et une ouverture centrale ; des dents (37) faisant saillie depuis le diamètre intérieur de la partie bague radialement vers l'intérieur dans l'ouverture centrale de l'obturateur d'extrémité ; un moyen de retenue de fil (43) situé généralement aux extrémités radialement intérieures d'au moins certaines des dents (37) pour recevoir et retenir de manière fixe le fil d'enroulement en quadrature qui forme l'enroulement en quadrature ; ledit moyen de retenue de fil (43) comprenant une paire d'ergots (45) séparés par une distance inférieure au diamètre du fil d'enroulement en quadrature, de sorte que le fil peut être logé entre les ergots (45) en ajustement avec serrage, ledit moyen de retenue de fil (43) étant situé généralement aux extrémités radialement intérieures desdites au moins certaines dents. Obturateur d'extrémité de stator selon la revendication 7, dans lequel les paires d'ergots (45) constituent des premières paires d'ergots, l'obturateur d'extrémité de stator (31) comprenant en outre une deuxième paire d'ergots pour chacune des premières paires d'ergots, chaque deuxième paire d'ergots étant située généralement sur la partie bague, en position adjacente aux extrémités radialement extérieures des dents (37) et en alignement radial avec une paire correspondante parmi les premières paires d'ergots. Obturateur d'extrémité de stator selon la revendication 7 ou 8, dans lequel l'obturateur d'extrémité (31) est en matériau polymère et les ergots (45) sont formés d'un seul tenant avec l'obturateur d'extrémité. Obturateur d'extrémité de stator selon l'une quelconque des revendications 7 à 9, comprenant en outre un évidement situé à l'extrémité radialement intérieure de chacune desdites au moins certaines dents (37), les ergots (45) étant disposés sur des côtés opposés de l'évidement.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com