PatentDe  


Dokumentenidentifikation EP1519121 19.04.2007
EP-Veröffentlichungsnummer 0001519121
Titel Träger für eine vertikale hydroponische Pflanzenmatrix
Anmelder Air Quality Solutions Ltd., Guelph, Ontario, CA
Erfinder Darlington, Alan Blake, Guelph, Ontario N1E 4H6, CA
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 602004005118
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LI, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 16.09.2004
EP-Aktenzeichen 040220642
EP-Offenlegungsdatum 30.03.2005
EP date of grant 07.03.2007
Veröffentlichungstag im Patentblatt 19.04.2007
IPC-Hauptklasse F24F 13/32(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse A01G 31/00(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

This invention relates to treatment of indoor air by passing the air over and through the roots of plants (see for example UK Patent Application GB-A-2297087). The invention is a development of the technology as disclosed in patent publication CA-2,388,583, to which attention is directed.

As disclosed in '583, the plants are placed in what may be termed a vertical hydroponic configuration. The roots of the plants are enmeshed in a sheet of preferably fibrous non-biodegradable plastic matrix material. Generally, the preferred matrix is woven and matted loosely enough that the fibrous matrix has only a small structural strength - especially given that, in operation of the apparatus, the sheet of fibrous matrix hangs as a vertical sheet.

The sheet of fibrous material may be storeys high in some cases. That being so, the fibrous matrix has to be attached to a backing structure. A preferred aspect of the present invention relates to the backing structure.

As disclosed in '583, a plenum chamber is provided behind the matrix. Air is drawn into the plenum chamber through the roots of the plants embedded in the sheet of fibrous matrix. Colonies of microbes on the roots act to break down the contaminants in the air. Although a single pass-through might not be enough to clean the air significantly, if the air is enclosed (as in a room) and the air is recirculated through the matrix and roots repeatedly, impressive reductions in airborne organic contaminants can be achieved.

A preferred aspect of the present invention relates to combining the matrix backing structure with the chamber, pockets, ducts, etc of the air circulation system.

Exemplary embodiments of the invention will now be described with reference to the accompanying drawings, in which:

  • Fig 1 is sectioned side-elevation of a hydroponic air-treatment apparatus that embodies the invention.
  • Fig 2 is a pictorial view of a ribbed-form component of the apparatus of Fig 1.
  • Figs 3,4 are front and plan elevations respectively of the component of Fig 2.
  • Fig 5 is a side-elevation of the component, in the same view as Fig 1.
  • Fig 6 is a close-up of the area A of Fig 2.
  • Fig 7 is a plan view of another apparatus that embodies the invention.
  • Fig 8 is a side elevation of the apparatus of Fig 7.
  • Fig 9 is a plan view of another apparatus that embodies the invention.
  • Fig 10 is a plan view of another apparatus that embodies the invention.
  • Fig 11 is a front view of another apparatus that embodies the invention.
  • Fig 12 is a sectioned side-view of the apparatus of Fig 11.

The apparatuses shown in the accompanying drawings and described below are examples. The scope of the protection sought is defined by the accompanying claims, as amended.

In Fig 1, the apparatus 20 includes a backing structure 23, which comprises a shaped plastic form 24 and a plain plastic sheet 25. The form 24 is vacuum-formed over a mould to the shape as shown in Figs 2,3,4,5. The form is generally that of a corrugated sheet, having longitudinal ribs 26. The form may be constructed in other ways, for example as a rotation-moulding.

The plain sheet 25 is glued, or welded, or secured with fasteners, to the areas 27 of the form 24. Thus, air passageways 28 are created inside and behind the ribs 26 of the form 24. The sides and ends of the form 24 are enclosed and sealed by suitable means. A manifold 29 is provided at the top ends of the passageways 28, and a fan 30 draws air through the manifold 29, so the pressure in the passageways 28, i.e within the plenum chamber, is less than the atmospheric pressure in the room.

The structure 20 is disposed vertically, and is attached to the wall 32 of the room in which the air is to be treated. The fibrous matrix 34, which will hold the roots of the plants, is fixed to the crests 35 of the ribs 26 of the form 24 using suitable fasteners 36. The plants to be added are typically pre-grown in pots and are transplanted into the fibrous matrix 34 after the matrix and the rest of the structure 20 have been attached in place on the wall 32. Moving the apparatus 20 with the plants embedded therein is not preferred.

The water supply and circuit of the vertical hydroponic apparatus are added, including a trickle-pipe 37, having nozzles, on top of the matrix, and a collecting trough 38 at the bottom. Water from the nozzles trickles down through the matrix 34, preferably constantly. The nutrients for the plants are supplied via the water, using hydroponic apparatus (not shown), preferably as described in the said CA-2,388,583. The fibrous matrix 34 preferably is biologically inert.

The fibrous matrix 34 comprises loosely woven or matted fibres of plastic material. The fibres are held together with glue. The designer should select the materials of the fibres and the glue on the basis that the matrix 34 should not deteriorate over a long service life -- which may be several years. The plants themselves may also last that long, although periodic maintenance of the botanical aspects of the apparatus should be scheduled.

Preferably, the fibres should be of fibreglass, and free of toxic resins and glues. The hard fibres should be matted to form a bulk material having a density between 0.02 and 0.05 grams per cc. The fibre diameter should be between 0.15mm and 0.4mm, being between 400 and 800 denier. At least most of the fibres in the matrix should be at least five cm long.

The fibrous mat should be 1.5cm to four cm thick. At that, the preferred mat material can be compressed with the fingers, and springs back slowly when released. The mat, i.e the fibres of the mat, can be pulled apart with a strong hand pull. The fibres may be eased apart by finger manipulation to allow the insertion of plant roots. The preferred mat has some rigidity, in itself; that is to say, a small piece of two-cm thick mat, say S sq.m., is self-supporting. A larger sheet (say more than one sq.m.) of the mat is floppy and not self supporting.

The preferred mat has a water holding capacity of between 0.02 and 0.1 grams of water per cc of the matrix mat. The preferred mat, containing plants, and with water flowing over and through the mat, has a resistance to airflow of between 0.2 and 0.5 inches (0.51 and 1.27 cm) of head under an airflow of 0.2 m/s (which equates to 1.2 litres of air per sq.cm. of mat area, per minute).

It is not essential that the material in which the plants are mounted be fibrous, so long as it accepts plant roots. Thus, the material can be e.g a foam. The foam can be flexible, but preferably is rigid; the fitters affix the plants to the foam by poking a hole in the foam, and inserting the roots into the holes. The foam should be of the interconnected-cell type, for conducting the hydroponic water.

The matrix mat is non-structural per se. Or rather, the matrix material may be regarded as semi-structuiral, in the sense that the mat is able to support itself, and the plants embededded within it, provided the mat is supported by fasteners that are arranged in a grid-pattern. The invention is advantageous because there is no inexpensive material that can accept and support plants, and that can also support itself and the plants when configured as a vertical panel.

It is recognised that fibrous materials, as described, and foams, do have enough structural integrity to support themselves between fasteners, if the fasteners are pitched on a grid of such spacing that no point in the matrix-mat is more than about S metre, preferably, away from one of the fasteners, and preferably is no more than about R metre. lf the fasteners are further apart than that, the mat might stretch and sag, and not support the plants properly, and might even start to fall apart.

In Fig 1, the matrix material is strong enough to be picked up and handled as a sheet of material (typically, the matrix 34 is two or three cm thick), but by itself the matrix is not strong enough to support the embedded plants. Thus, the matrix should be attached to the support structure 23 using a grid of many suitable fasteners 36, attached to the crests 35 of the ribs.

The support structure 23 as shown lends itself very well to the application. The ribs 26 preferably are disposed vertically, whereby the structure is easily able to support a large weight of plants. (The ribs should not go horizontally, because then the weight of the plants would be acting across the ribs rather than along the ribs.)

The corrugated or ribbed form 24 is provided in four-by-eight-feet (1.2x2.4m) sheets. Installations vary from just one sheet to a wall of sheets. The wall 32 may be dozens of square metres, in the case of a foyer of a large hotel or public building, for example. (It is stressed that the apparatuses as described herein are intended for indoor use, in a location where the body of air to be treated can circulate and recirculate through the fibrous matrix.) The sheets are assembled together, and fixed to the wall, in such manner that the final result presents a large unbroken area of plants. The designer must also see to the hydroponic water processing components, the air fan, etc, but it is simple enough to engineer the apparatus such that these are not visible, or not obtrusive.

As mentioned, the vertical wall of plants will usually be nourished hydroponically. The water flows downwards through the matrix material, at such a rate as to keep the roots of the plants more or less saturated all the time. The water flowrate should be rapid enough that substantially no water is lost per down-pass, so the bottom plants are just as wet as the plants at the top of the panel. But over time, water is lost through evaporation, and provision should be made for make-up water to be added, preferably automatically. Similarly, nutrient levels in the water should be monitored, and made up as required.

Some benefits of providing the matrix support structure 23 as a moulded-plastic corrugated or ribbed form 24, the ribs 26 being disposed vertically, are that such a support structure:-

  • is inexpensive, yet very adequate for the task of physically supporting its own weight plus the weight of the matrix and plants;
  • is simple to attach to an existing wall, using just a few fasteners into the wall;
  • the relatively-fragile matrix can easily be pre-attached to the ribbed structure using many fasteners on a close-spaced grid;
  • is easily adaptable for the task of forming a plenum, and for collecting and conveying air that has passed through the matrix;
  • is inert and non-biodegradable, and is unaffected by high humidity;
  • provides an effective barrier for preventing the hydroponic water from ever touching the wall and/or any metal or other degradable materials that might be used to attach the structure to the wall;
  • is of modular design, in that a large plant area, and large plenum, can be created simply by aggregating several 4ftx8ft panels (1.2x2.4m).

One problem that can arise when plant roots are embedded in a loosely matted matrix 34 of the kind as described herein is that, as the plants (and their roots) expand and become established, the resistance to the through-flow of air through the matrix and roots can change. Thus, of the whole matrix area of plants, a plant might have died in one area of the matrix, whereby that zone might present, at least temporarily, a reduced resistance to airflow; the roots might be more dense in another zone of the matrix, whereby the airflow resistance there would be higher. The different resistances might be expected to change over time, as plants flourish and then fade and die.

A large wide plenum chamber would act to equalise the air pressure over the whole area of the panel of plants, and that might not be ideal in the case where the flow resistance can vary, It is preferred, therefore, to equalise the airflow rate through the whole area of the matrix, rather than to equalise the air pressure. The ribbed form 24 can assist in promoting equal air flowrates.

The rear air passageways 28 created by the ribbed form 24 are connected directly to the manifold 29. Thus, air is drawn along the passageways 28 towards the fan 30. The front pockets 40 created by the ribbed form 24 are connected to the passageways 28 by means of holes 42 through the corrugated walls of the ribs of the form 24. Thus, air is drawn laterally through the matrix into the front pockets 40, and thence through the holes 42, into the rear passageways 28.

The holes 42 determine the flowrate of air from the front pockets 40 to the passageways 28. It is a simple matter to make all the holes 42 identical, whereby the resistance to airflow through the holes is identicalas to both time and area. Moreover, the airflow resistance of the holes 42 is comparable to, or greater than, the airflow resistance of the matrix 34. Therefore, if the airflow resistance should decrease over a small area of the matrix (due to one of the plants dying, for instance), the flowrate through that local area does not rise so much as it would if the whole matrix were backed by one large plenum, and one plant died.

The structure 20 lends itself to the configuration where the airflow passing through the matrix and roots enters one of many air-collection pockets, where the pockets are more or less separated from each other, and where the pockets have each an identical degree of communication with other air passageways, leading to the fan. That being so, the rate of airflow into and through any one of the pockets 40 cannot increase all that much (as compared with the other pockets), even through the airflow resistances of different areas of the matrix/roots complex might differ significantly.

Thus, if the matrix were to be mounted in such a manner that all the air passing through the matrix were collected all directly into a single wide open plenum, that would not be preferred, especially for large installations, because then it might happen that there could be large differences in flowrates through the different areas of the matrix.

The ribbed form 24 is specially vacuum-moulded, whereby cross-passageways 43 and other useful details can be built into the moulded form, as shown. If standard plain corrugated plastic sheeting were used, such refinements would not be enabled.

However, standard plain corrugated plastic sheeting is inexpensively available on a mass market basis, in a number of different thicknesses, pitches, materials, etc, and it would be desirable to use it for that reason. Figs 7,8 show an example of the use of standard corrugated sheeting. Here, the corrugated sheeting 45 (again glued to a plain backing sheet 25) is supplemented by a facing sheet 46. The supplemental sheet 46 is specially vacuum-moulded, but now the supplemental sheet has no role in physically supporting the matrix and plants, and so the supplemental sheet 46, though specially moulded, can be of thin flimsy (inexpensive) plastic material.

The supplemental sheet 46 is moulded with many individual pockets 47. Each pocket has an identical air connection (holes 48) with the front chambers 49. Each front chamber 49 has an identical airflow connection (holes 50) with the rear chambers 52. If the holes 48 are open enough, both the front and rear chambers 49,52 may be regarded as forming the plenum. In the Figs 7,8 structure, the flowrates through the many pockets 47 are significantly less variable than they would be if the whole matrix area were connected directly to a large common plenum.

In an installation where the air circulation fan is above the matrix, as in e.g Fig 9, it is better for the air to transfer laterally, i.e horizontally, out of the front pockets 60 that are directly in contact with the matrix, and into the rear chambers 62, before moving vertically. Apertures 63 provide for such horizontal transfer. That it is say, it is better that the air should not be drawn vertically directly from the front pockets 60.

Fig 10, however, shows an arrangement in which the air is drawn vertically directly it passes through the matrix and enters the front pockets 60. There are no apertures connecting the front pockets 60 with the rear spaces 64. The disadvantage in Fig 10 is that there might be a tendency for the air in the pockets nearest the fan to be sucked through the matrix more vigorously. By having the air pass horizontally through the front pockets 60, and then vertically through the rear chambers 62 (Fig 9), this tendency can be minimised. Again, in Fig 9, the apertures 63 between the front pockets 60 and the rear chambers 62 should be small enough that the flow rates can be focused and directed in this manner. If the apertures 63 were very large, it would be as if the different chambers and pockets were not differentiated.

The directional control of airflow and flowrates as described would probably only need to be used on the larger installations. On small installations, Fig 10 could be adequate. It should be noted that if plant root density were to become depleted in a local area, the hydroponic environment should cause the plants and roots around that area to fill in the gaps, and restore the more nearly uniform air resistance over the whole area of the matrix. Also, the plants should be selected for their ability to quickly fill in open areas of the matrix.

It is on the medium sized (i.e where the area of the matrix is more than e.g ten square metres), and larger, installations that the designer might find it worthwhile to take steps to minimise the funnelling-through effect resulting from the inevitable local reductions in airflow resistance over a small area of the matrix.

Of course, there will always be some inequalities in the airflow resistance over different areas of the matrix, and the airflow will be greater through the less dense areas. The flowrate through an area A could be made more independent of density changes in an area B if the areas were sealed off from each other and if air were drawn through the areas A and B by separate fans. It is recognised, however, that sealed off areas and separate fans are not required, even in the larger installations (over e.g fifty square metres); it is recognised that local funnelling-through can be effectively minimised by channelling and directing the airflows by means of the chambers and pockets, etc, as described.

In Figs 9 and 10 the matrix material is supported by being attached to simple corrugated plastic sheeting 65. In Fig 10, there is no airflow in the spaces 64 behind the corrugated sheeting. In Fig 9, a backing sheet 67 is required, to define the rear chambers or ducts 62.

In the Figs 11,12 apparatus, which again is suitable for a small installation, just one single open plenum 70 is provided. The plenum is defined by a simple rectangular framework made of wooden studs 72. The matrix in this case is fastened to a netting mesh 73, of plastic or stainless steel, using fasteners 74,75 arranged in a grid formation. The side-edge fasteners 75 not only hold the matrix 34 to the mesh 73, but also hold the mesh to the studs 72. A plain sheet of plastic 75 defines the back side of the plenum 70.

The plastic (or stainless steel) mesh 73 has no ability to contain air, and is present simply to provide mechanical support for the matrix material, in the central area away from the studs. In fact, in the other designs, as shown, a similar mesh may be used to provide support for the matrix. If a mesh is provided, the grid of fasteners may be provided between the matrix and the mesh, and then the mesh (being stronger than the matrix material) can be attached to (i.e hung from) the mechanical supports at just a small number of attachment points.

As mentioned, the materials used in the apparatus preferably should be unaffected by humidity, and of course wood does not meet that requirement. Therefore, in order for the construction shown in Figs 11,12 to be contemplated, the designer should ensure that at least the exposed surfaces be made watertight. Mere painting probably would not be good enough; spraying with e.g an epoxy sealant is preferred. Again, the materials should be such that they do not degrade over a long service life under the adverse conditions in which the apparatus is operated, and similarly the materials should be inert with respect to (i.e they should not affect) the biological processes that take place in the apparatus.

Given that it is possible to seal wood very effectively by the use of plastic sprays etc, the designer might wish to consider wooden studs, plywood sheets, etc, for use in especially custom deigns, where, for example, the wall to which the apparatus is to be applied is not a plain open rectangle, but includes recesses, corners, pillars, windows, or the like, or is otherwise unsuitable for treatment using the described standardised plastic forms.

The plants should not be added to the matrix until the matrix has been suspended in its final position. On the other hand, it is preferred that much of the construction of the mechanical support for the plants be prepared beforehand, preferably in a factory. The manner of construction of the apparatus as described herein lends itself to pre-manufacture and assembly - as compared with, say, making up the apparatus from wooden studs, plywood sheets, steel angles, etc, on an in-situ, custom-made-from-scratch basis. Generally, indoor walls of (air-conditioned) buildings are not built to withstand high humidity and microbiological action, and the surface of the wall itself should not be directly exposed thereto.

(In this specification, it should be noted that the vertical configuration of the apparatus, as referred to, includes cases where the apparatus is inclined at a small angle to the true geometric vertical, as an aid to the even distribution and flow of the hydroponic water.)


Anspruch[de]
Vorrichtung für das mechanische Tragen von Zuchtpflanzen in einer vertikaler Ausrichtung, wobei: [2] die Vorrichtung eine Matrix-Matte (34) für das Tragen von Pflanzen einschließt; [3] die Vorrichtung ein Mittel für das Tragen der Matte (23) einschließt; [4] die Vorrichtung einen Satz Fixiermittel (36) einschließt, durch welche die Matrix-Matte mechanisch an dem Mittel für das Tragen der Matte fixiert ist; [5] die Fixiermittel auf einem Gitter in solchen Abständen angeordnet werden, dass kein Punkt der Matrix-Matte mehr als eine Distanz L von einem der Fixiermittel entfernt ist; [6] das Material der Matrix-Matte eine solche Struktur und eine solche Dicke aufweist, dass: [7] (a) die Wurzeln einer Pflanze in die Matrix-Matte eingebracht werden können und dass bei vertikaler Ausrichtung der Matrix-Matte die Pflanze mechanisch fest in der und durch die Matte gestützt ist; und [8] (b) das Material inhärent sich selbst und die darin zwischen den Fixiermitteln eingebrachten Pflanzen Tragen kann, wenn die Fixiermittel auf diesem Raster angeordnet sind; [9] die Vorrichtung Mittel für das Befestigen der Abstützung (32) einschließt, um die Mittel für das Tragen der Matte mit der darauf fixierten Matrix-Matte in einer vertikalen Ausrichtung zu befestigen; wobei die Vorrichtung dadurch gekennzeichnet ist, dass: [10] die Materialien der Vorrichtung mit Hinblick auf Feuchtigkeit in einer Innenumgebung nicht abbaubar und inert und mit Hinblick auf Pflanzenwachstum und assoziierter biologischer Tätigkeit biologisch nicht abbaubar sind; und [11] das Material der Matrix-Matte faserig ist und die Pflanzen durch Teilung der Fasern und Dazwischendrücken der Wurzeln in das Material eingebracht werden können. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass L nicht mehr als ungefähr S Meter und bevorzugt nicht mehr als ungefähr R Meter beträgt. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass die Vorrichtung ein hydroponisches Bewässerungssystem einschließt, das ein Mittel für die Wasserabgabe, ein Mittel für das Wassersammeln und ein Mittel für die Wasserzirkulation umfasst. Vorrichtung gemäß Anspruch 3 in Kombination mit mehreren Pflanzen, ferner gekennzeichnet dadurch, dass: [2] die Matrix-Matte in einer vertikalen Ausrichtung liegt; [3] die Pflanzen mit ihren Wurzeln in das Material der Matrix-Matte eingebracht wurden; [4] das Mittel für die Wasserabgabe des hydroponischen Bewässerungssystems so strukturiert ist, um Wasser an einer höheren Stelle der Matrix-Matte abzugeben, sodass das Wasser durch die Matrix-Matte nach unten rinnen kann, wobei die Wurzeln der mehreren Pflanzen befeuchtet werden; [5] das Mittel für das Wassersammeln des hydroponischen Bewässerungssystems so strukturiert ist, um Wasser, das an einer unteren Stelle der Matrix-Matte austritt, zu sammeln; und [6] das Mittel für die Wasserzirkulation des hydroponischen Bewässerungssystems so strukturiert ist, um das in dem Mittel für das Wassersammeln gesammelte Wasser zu dem Mittel für die Wasserabgabe rückzuführen. Vorrichtung gemäß Anspruch 4, ferner gekennzeichnet dadurch, dass: [2] die vertikal ausgerichtete Matrix-Matte mit den befestigten Pflanzen für einen horizontal durchströmenden Luftstrom durchlässig ist. [3] die Vorrichtung ein Mittel für die Luftzirkulation einschließt, um die Luft horizontal durch die Matrix-Matte zu bewegen; und [4] die Anordnung der Vorrichtung derart ist, dass die durch die Matte hindurchströmende Luft über und durch die befeuchteten Wurzeln der eingebrachten Pflanzen strömt. Vorrichtung gemäß Anspruch 1 in Kombination mit einer vertikalen Wand, ferner gekennzeichnet dadurch, dass: [2] die Kombination Hängebefestigungen einschließt, durch welche das Mittel für das Tragen der Matte an der Wand befestigt wird. [3] die Anordnung der Kombination derart ist, dass die Oberfläche der Wand nicht direkt der Luft, die durch die Matrix-Matte geströmt ist, ausgesetzt ist. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass: [2] das Material der Matrix-Matte Fasern von biologisch inertem und nicht abbaubarem Plastik aufweist und frei von giftigen Harzen und Klebstoffen ist; [3] die Fasern verfilzt sind, um ein Füllgut mit einer Dichte von zwischen 0,02 und 0,05 Gramm pro cm3 zu bilden; [4] der Faserdurchmesser zwischen 0,15 mm und 0,4 mm oder zwischen 400 und 800 Denier liegt. [5] die meisten Fasern in der Matte zumindest fünf cm lang sind; [6] die faserige Matrix-Matte zwischen 1,5 cm und 4 cm dick ist, wobei die Matrix-Matte mit den Fingern zusammengedrückt werden kann und nach dem Loslassen langsam zurückfedert; [7] die Matrix-Matte ein Wasserspeichervermögen von zwischen 0,02 und 0,1 Gramm Wasser pro cm3 der Matrix-Matte aufweist; und [8] die Pflanzen enthaltende Matrix-Matte mit über und durch die Matrix-Matte fließendem Wasser eine Resistenz gegenüber Luftströmen von zwischen 0,51 und 1,27 cm Druckhöhe bei einem Luftstrom von 0,2 m/s aufweist. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass die Matrix-Matte aus einer Vielzahl von Einzelteilen aus faserigem Mattenmaterial gebildet wird, wobei jedes davon eine Fläche von zwischen zwei und zehn Quadratmetern aufweist. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass: [2] die Matrix-Matte innen, in einem Raum, und derart angeordnet ist, dass die durch die Matrix-Matte durchströmende Luft Luft aus dem Raum ist; [3] das Mittel für die Luftzirkulation eine Luftkammer hinter der Matrix-Matte einschließt und wirksam ist, um Luft durch die Matrix-Matte in die Luftkammer zu ziehen und folglich in den Raum rückzuführen; [4] wodurch die Luft in dem Raum kontinuierlich zirkuliert und durch die Matrix-Matte rückgeführt wird. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass: [2] die Vorrichtung eine Vorderplatte einschließt; [3] die Anordnung der Matrix-Matte und der Vorderplatte derart ist, dass in einer Seitenansicht der Matrix-Matte (a) die Matrix-Matte in Kontaktbereichen der Matrix-Matte die Vorderplatte berührt und (b) in den kontaktfreien Bereichen der Matrix-Matte die Matrix-Matte von der Vorderplatte entfernt ist; [4] in den Kontaktbereichen die Kontaktbereiche im Wesentlichen Luft lokal daran hindern, durch die Matrix-Matte zu strömen; [5] die Anordnung der Matrix-Matte und der Vorderplatte derart ist, dass in einer Vorderansicht die Kontaktbereiche die entsprechenden kontaktfreien Bereiche absondern; [6] die Luftkammer hinter der Matrix-Matte entsprechende, gesonderte luftenthaltenden Taschen einschließt, wobei die luftenthaltenden Taschen durch die entsprechenden kontaktfreien Bereiche definiert werden; [7] das Mittel für die Luftzirkulation so angeordnet ist, um Luft durch die kontaktfreien Bereiche der Matrix-Matte und in die entsprechenden luftenthaltenden Taschen zu ziehen. Vorrichtung gemäß Anspruch 10, ferner gekennzeichnet dadurch, dass: [2] die Vorderplatte mit entsprechenden Öffnungen gebildet ist, die die luftenthaltenden Taschen mit einer Sammelkammer verbinden, die hinter den luftenthaltenden Taschen angebracht ist; [3] das Mittel für die Luftzirkulation wirksam ist, um Luft seitlich durch diese Öffnungen von den luftenthaltenden Taschen in die Sammelkammer strömen zu lassen; [4] die Öffnungen klein genug sind, sodass während des Betriebs des Mittels für die Luftzirkulation ein Druckdifferential zwischen den luftenthaltenden Taschen und der Sammelkammer besteht. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass die Fixiermittel Klammern umfassen, die Löcher in dem Mittel für das Tragen der Matte und in der Matrix-Matte durchgreifen. Vorrichtung gemäß Anspruch 1, ferner gekennzeichnet dadurch, dass das Mittel für das Tragen der Matte eine gewellte Kunststoffbahn einschließt.
Anspruch[en]
Apparatus for mechanically supporting growing plants in a vertical orientation, wherein: [2] the apparatus includes a plant-supporting matrix-mat (34); [3] the apparatus includes a mat-support-means (23); [4] the apparatus includes a set of fasteners (36), by which the matrix-mat is mechanically fastened to the mat-support-means; [5] the fasteners are pitched on a grid of such spacing that no point in the matrix-mat is more than a distance L away from one of the fasteners; [6] the material of the matrix-mat is of such structure, and of such thickness, that:- [7] (a) the roots of a plant can be inserted into the matrix-mat, and, when the matrix-mat is orientated vertically, the plant is mechanically firmly supported in and by the mat; and [8] (b) the material is inherently capable of supporting itself and the plants inserted therein, between the fasteners, when the fasteners are pitched on the said grid; [9] the apparatus includes support-attachment-means (32), for attaching the mat-support-means, with the matrix-mat fastened thereto, in a vertical orientation; the apparatus characterized in that: [10] the materials of the apparatus are non-degradable in an indoor environment with respect to humidity and are inert and non-biodegradable with respect to plant growth and associated biological action; and [11] the material of the matrix-mat is of a fibrous nature, and the plants can be inserted into the material by parting the fibres and pressing the roots therebetween. Apparatus of claim 1, further characterised in that L is no more than about S metre, and preferably is no more than about R metre. Apparatus of claim 1, further characterised in that the apparatus includes a hydroponic watering system, comprising a water-deposition means, a water-collection means, and a water-circulation means. Apparatus of claim 3, in combination with several plants, further characterised in that:- [2] the matrix-mat lies in a vertical orientation; [3] the plants have been inserted by their roots into the material of the matrix-mat; [4] the water-deposition means of the hydroponic watering system is structured to so deposit water onto an upper location of the matrix-mat that the water trickles down through the matrix-mat, wetting the roots of the several plants; [5] the water-collection means of the hydroponic watering system is structured to collect water that emerges from a lower location of the matrix-mat; and [6] the water-circulating means of the hydroponic watering system is structured to circulate the water collected in the water-collecting means back to the water-deposition means. Apparatus of claim 4, further characterised in that: [2] the vertically oriented matrix-mat, with the plants attached, is permeable to a flow of air passing horizontally therethrough; [3] the apparatus includes an air-circulation means for moving air horizontally through the matrix-mat; and [4] the arrangement of the apparatus is such that air passing through the mat passes over and through the wetted roots of the inserted plants. Apparatus of claim 1, in combination with a vertical wall, further characterised in that: [2] the combination includes hanging fixtures, by which the mat-support-means is affixed to the wall; [3] the arrangement of the combination is such that the surface of the wall is not exposed directly to air that has passed through the matrix-mat. Apparatus of claim 1, further characterised in that: [2] the material of the matrix-mat has fibres of biologically inert and non-degradable plastic, and is free of toxic resins and glues; [3] the fibres are matted to form a bulk material having a density between 0.02 and 0.05 grams per cc; [4] the fibre diameter is between 0.15mm and 0.4mm, or is between 400 and 800 denier; [5] most of the fibres in the mat are at least five cm long; [6] the fibrous matrix-mat is between 1.5cm and 4cm thick, whereby the matrix-mat can be compressed with the fingers, and springe back slowly when released; [7] the matrix-mat has a water holding capacity of between 0.02 and 0.1 grams of water per cc of the matrix-mat; and [8] the matrix-mat, containing plants and with water flowing over and through the matrix-mat, has a resistance to airflow of between 0.51 and 1.27 cm of head under an airflow of 0.2 m/s. Apparatus of claim 1, further characterised in that the matrix-mat is formed from a plurality of single pieces of fibrous mat material, each having an area of between two and ten sq.metres. Apparatus of claim 1, further characterised in that: [2] the matrix-mat is located indoors, inside a room, and is so arranged that air passing through the matrix-mat is air from the room; [3] the air-circulation-means includes an air-chamber located behind the matrix-mat, and is effective to draw air through the matrix-mat, into the air-chamber, and to circulate the air thence back into the room; [4] whereby the air in the room continually circulates and recirculates through the matrix-mat. Apparatus of claim 1, further characterised in that: [2] the apparatus includes a front panel; [3] the arrangement of the matrix-mat and of the front panel is such that, in side view of the matrix-mat, (a) in touching-areas of the matrix-mat the matrix-mat touches the front panel, and (b) in non-touching-areas of the matrix-mat the matrix-mat is spaced away from the front panel; [4] in the touching-areas, the touching-areas substantially inhibit air locally from passing through the matrix-mat; [5] the arrangement of the matrix-mat and of the front panel is such that, in front view of the matrix-mat, the touching-areas separate the respective non-touching-areas; [6] whereby the air-chamber located behind the matrix-mat includes respective separated air-containment-pockets, the air-containment pockets being defined by the respective non-touching-areas; and [7] the air-circulation-means is so arranged as to draw air through the non-touching-areas of the matrix-mat and into the respective air-containment pockets. Apparatus of claim 10, further characterised in that: [2] the front panel is formed with respective apertures, which connect the air-containment-pockets with a plenum chamber, which is located to the rear of the air-containment pockets; [3] the air-circulation means is effective to urge air to pass from the air-containment-pockets laterally into the plenum chamber, through the said apertures; [4] the apertures are small enough that, during operation of the air-circulation means, there exists a pressure differential between the air-circulation-pockets and the plenum chamber. Apparatus of claim 1, further characterised in that the fasteners comprise clips that pass through holes in the mat-support-means and the matrix-mat. Apparatus of claim 1, further characterised in that the mat-support-means includes a corrugated sheet of plastic.
Anspruch[fr]
- Appareil pour supporter mécaniquement des plantes en croissance dans une orientation verticale, dans lequel : - l'appareil comprend une matrice-mat (34) de support de plantes ; - l'appareil comprend un moyen (23) de support de mat ; - l'appareil comprend un ensemble d'éléments de fixation (36), par lesquels la matrice-mat est fixée mécaniquement au moyen de support de mat ; - les éléments de fixation sont plantés sur une grille d'un pas tel qu'aucun point dans la matrice-mat n'est éloigné de l'un des éléments de fixation de plus d'une distance L ; - le matériau de la matrice-mat est de structure et d'épaisseur telles que : (a) les racines d'une plante peuvent être introduites dans la matrice-mat et, lorsque la matrice-mat est orientée verticalement, la plante est supportée mécaniquement solidement dans et par le mat ; et (b) le matériau est intrinsèquement capable de se supporter lui-même et de supporter les plantes introduites dans celui-ci, entre les éléments de fixation, lorsque les éléments de fixation sont plantés sur ladite grille ; - l'appareil comprend un moyen (32) d'attache de support pour attacher le moyen de support de mat, avec la matrice-mat fixée à celui-ci, dans une orientation verticale ; l'appareil étant caractérisé par le fait que : - les matériaux de l'appareil sont non dégradables dans un environnement extérieur en ce qui concerne l'humidité et sont inertes et non biodégradables en ce qui concerne la croissance des plantes et l'action biologique associée ; et - le matériau de la matrice-mat est d'une nature fibreuse et les plantes peuvent être introduites dans le matériau par séparation des fibres et pression des racines entre celles-ci. - Appareil selon la revendication 1, caractérisé en outre par le fait que L est non supérieur à environ S mètre, et de préférence est non supérieur à environ R mètre. - Appareil selon la revendication 1, caractérisé en outre par le fait que l'appareil comprend un système d'arrosage hydroponique, comprenant un moyen de dépôt d'eau, un moyen de collecte d'eau et un moyen de circulation d'eau. - Appareil selon la revendication 3, en combinaison avec plusieurs plantes, caractérisé en outre par le fait que : - la matrice-mat s'étend dans une orientation verticale ; - les plantes ont été introduites par leurs racines dans le matériau de la matrice-mat ; - le moyen de dépôt d'eau du système d'arrosage hydroponique est structuré pour déposer de l'eau sur un emplacement supérieur de la matrice-mat, de telle sorte que l'eau coule vers le bas goutte à goutte à travers la matrice-mat, mouillant les racines des différentes plantes ; - le moyen de collecte d'eau du système d'arrosage hydroponique est structuré pour collecter de l'eau qui émerge d'un emplacement inférieur de la matrice-mat ; et - le moyen de circulation d'eau du système d'arrosage hydroponique est structuré pour recycler l'eau recueillie dans le moyen de collecte d'eau au moyen de dépôt d'eau. - Appareil selon la revendication 4, caractérisé en outre par le fait que : - la matrice-mat orientée verticalement, avec les plantes attachées, est perméable à un écoulement d'air la traversant horizontalement ; - l'appareil comprend un moyen de circulation d'air pour déplacer de l'air horizontalement à travers la matrice-mat ; et - la disposition de l'appareil est telle que l'air passant à travers le mat passe sur et à travers les racines mouillées des plantes introduites. - Appareil selon la revendication 1, en combinaison avec une paroi verticale, caractérisé en outre par le fait que : - la combinaison comprend des fixations de suspension, par lesquelles le moyen de support de mat est fixé à la paroi ; - la disposition de la combinaison est telle que la surface de la paroi n'est pas exposée directement à l'air qui est passé à travers la matrice-mat. - Appareil selon la revendication 1, caractérisé en outre par le fait que - le matériau de la matrice-mat a des fibres de matière plastique biologiquement inerte et non dégradable, et est exempt de résines et colles toxiques ; - les fibres sont mises sous forme de mat pour former un matériau bouffant ayant une masse volumique entre 0,02 et 0,05 gramme par cm3 ; - le diamètre de fibre est entre 0,15 mm et 0,4 mm, ou est entre 400 et 800 deniers ; - la plus grande partie des fibres dans le mat ont au moins cinq cm de long ; - la matrice-mat fibreuse a une épaisseur entre 1,5 cm et 4 cm, ce par quoi la matrice-mat peut être comprimée avec les doigts et se redresser lentement par effet de ressort une fois relâchée ; - la matrice-mat a une capacité de retenue d'eau entre 0,02 et 0,1 gramme d'eau par cm3 de la matrice-mat ; et - la matrice-mat, contenant des plantes et avec de l'eau s'écoulant sur et à travers la matrice-mat, a une résistance à l'écoulement d'air entre 0,51 et 1,27 cm de hauteur manométrique sous un écoulement d'air de 0,2 m/s. - Appareil selon la revendication 1, caractérisé en outre par le fait que la matrice-mat est formée d'une pluralité de pièces individuelles de matériau de mat fibreux, chacune ayant une surface entre deux et dix mètres carrés. - Appareil selon la revendication 1, caractérisé en outre par le fait que : - la matrice-mat est située en intérieur, dans une pièce, et est disposée de telle sorte que l'air passant à travers la matrice-mat est de l'air provenant de la pièce ; - le moyen de circulation d'air comprend une chambre à air située derrière la matrice-mat, et est efficace pour aspirer de l'air à travers la matrice-mat, dans la chambre à air, et pour recycler l'air de là dans la pièce ; - ce par quoi l'air dans la pièce circule et recircule de façon continue à travers la matrice-mat. - Appareil selon la revendication 1, caractérisé en outre par le fait que : - l'appareil comprend un panneau avant ; - la disposition de la matrice-mat et du panneau avant est telle qu'en vue de côté de la matrice-mat, (a) dans des zones de toucher de la matrice-mat, la matrice-mat touche le panneau avant, et (b) dans des zones de non toucher de la matrice-mat, la matrice-mat est éloignée du panneau avant ; - dans les zones de toucher, les zones de toucher empêchent de façon substantielle l'air localement de passer à travers la matrice-mat ; - la disposition de la matrice-mat et du panneau avant est telle qu'en vue de face de la matrice-mat, les zones de toucher séparent les zones de non toucher respectives ; - ce par quoi la chambre à air située derrière la matrice-mat comprend des poches de confinement d'air séparées respectives, les poches de confinement d'air étant définies par les zones de non toucher respectives ; et - le moyen de circulation d'air est disposé de façon à aspirer de l'air à travers les zones de non toucher de la matrice-mat et de le faire passer dans les poches de confinement d'air respectives. - Appareil selon la revendication 10, caractérisé en outre par le fait que : - le panneau avant comporte des ouvertures respectives, qui connectent les poches de confinement d'air avec une chambre d'équilibrage, qui est située à l'arrière des poches de confinement d'air ; - le moyen de circulation d'air est efficace pour forcer de l'air à passer des poches de confinement d'air latéralement dans la chambre d'équilibrage, à travers lesdites ouvertures ; - les ouvertures sont suffisamment petites pour que, pendant le fonctionnement du moyen de circulation d'air, il existe une pression différentielle entre les poches de confinement d'air et la chambre d'équilibrage. - Appareil selon la revendication 1, caractérisé en outre par le fait que les éléments de fixation comprennent des pinces qui passent à travers des trous dans le moyen de support de mat et la matrice-mat. - Appareil selon la revendication 1, caractérisé en outre par le fait que le moyen de support de mat comprend une feuille ondulée de matière plastique.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com